首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In most animals, males gain a fitness benefit by mating with many females, whereas the number of progeny per female is unlikely to increase as a function of additional mates. Furthermore, males of internally fertilizing species run the risk of investing in offspring of other males if they provide parental care. Nevertheless, males of many avian species and a minority of mammalian species provide parental care, and females of various species mate with multiple males. I investigate a two-locus genetic model for evolution of male parental care and female multiple mating in which females gain a direct benefit by multiple mating from the paternal care they thereby elicit for their offspring. The model suggests that, first, male parental care can evolve when it strongly enhances offspring survival and the direct costs of female multiple mating (e.g., loss of energy, risk of injury, exposure to infectious diseases) are greater than its indirect benefit (e.g., acquisition of good genes, increased genetic diversity among offspring); second, female multiple mating can evolve when paternal care is important for offspring survival or the indirect benefit of multiple mating is larger than its direct cost; and, finally, male parental care and female multiple mating can co-occur.  相似文献   

2.
Males gain a fitness benefit by mating with many females, whereas the number of progeny per female does not increase as a function of additional mates. Furthermore, males run the risk of investing in the offspring of other males if they provide parental care. Nevertheless, in various species, males provide parental care, and females mate with multiple males. We investigate a game-theoretical model in which females gain a direct benefit by multiple mating from the paternal care they elicit for their offspring. The parameters that directly favor male parental care, such as small cost of paternal care, have indirect positive effects on the evolution of female multiple mating, while they have negative effects in the opposite case. Both traits are more likely to evolve when the number of matings is smaller. The individual-based model of a diploid two-locus, two-allelic genetic model confirms the result.  相似文献   

3.
Female multiple mating (polyandry) is widespread across Insecta, even if mating can be costly to females. To explain the evolution and maintenance of polyandry, several hypotheses, mainly focusing on the material (direct) and/or the genetic (indirect) benefits, have been proposed and empirically tested in many species. Considering only the direct benefits, repeatedly‐mated females are expected to exhibit the same fitness as multiply‐mated females under the same mating frequency. In the present study, we compare the fitness of females received monandrous repeated mating (MM) and polyandrous multiple mating (PM) in a polyandrous leaf beetle Galerucella birmanica and assess female mate preference with regard to polyandry or monandry. Our data indicate that the longevity and the egg‐laying duration of MM females are significantly longer than that of PM females. MM females produce significantly more hatched eggs than PM females over their lifetime under the same mating frequency, which results from the high hatching rate of eggs produced by MM females. PM females mated with novel virgin males in the second mating suffer decreased longevity and lifetime fecundity compared with PM females mated with novel mated males in the second mating. Once‐mated females are more likely to re‐mate with familiar males than novel males. By contrast to expectations, the results of the present study suggest that repeated mating provides females with more direct benefits than multiple mating in G. birmanica, and females prefer to re‐mate with familiar males. The possible causes of this finding are discussed.  相似文献   

4.
ABSTRACT A two-step game model of female mate preference and paternal care is examined, with a particular focus on the case of two females and two males. In a mating season, females choose their mates, and in the following breeding season males invest in paternal care, knowing the likelihood of their paternity in chicks. If parental ability is the same between individuals of each sex, the evolutionarily stable mating pattern is always monogamy. If females differ in fecundity and males differ in paternal care capacity, monogamy with assortative mating is likely to be evolutionarily stable. If the male cost function increases at a strongly accelerating rate, however, polyandry is evolutionarily stable when the difference of female fecundity is very large, but the game may have no evolutionarily stable state when the difference of female fecundity is small. The care graph (in which females are connected to males giving paternal care to their chicks) is often much simpler than the mating graph (in which females are connected to males they accepted). To be exact, no "loop" should be included in the evolutionarily stable care graph for the general case of n females and m males. This prediction is in accord with the observed prevalence of social monogamy in spite of genetic promiscuity among altricial birds.  相似文献   

5.
Infant care from adult males is unexpected in species with high paternity uncertainty. Still, males of several polygynandrous primates engage in frequent affiliative interactions with infants. Two non‐exclusive hypotheses link male infant care to male mating strategies. The paternal investment hypothesis views infant care as a male strategy to maximize the survival of sired offspring, while the mating effort hypothesis predicts that females reward males who cared for their infant by preferably mating with them. Both hypotheses predict a positive relationship between infant care and matings with a particular female. However, the paternal investment hypothesis predicts that increased matings come before infant care whereas the mating effort hypothesis predicts that infant care precedes an increase in matings. Both hypotheses are usually tested from the perspective of the proportion of matings and care that individual females engage in and receive, rather than from the perspective of the care and mating behaviour of individual males. We tested the relationships between care and mating from both female and male perspectives in Barbary macaques. Mating predicted subsequent care and care predicted subsequent mating when viewed from the male but not the female perspective. Males mainly cared for infants of their main mating partners, but infants were not mainly cared for by their likely father. Males mated more with the mothers of their favourite infants, but females did not mate more with the main caretakers of their infants. We suggest that females do not choose their mating partners based on previous infant care, increasing paternity confusion. Males might try to increase paternal investment by distributing the care according to their own instead of female mating history. Further, males pursue females for mating opportunities based on previous care.  相似文献   

6.
It is widely accepted that male age can influence female mating preference and subsequent fitness consequences in many polyandrous species, yet this is seldom investigated in monandrous species. In the present study, we use the monandrous pine moth Dendrolimus punctatus to examine the effects of male age on female mating preference and future reproductive potential. In multiple male trials, when permitted free mating from an aggregation consisting of virgin males aged 0 (young), 2 (middle-aged) and 4 (old) days, virgin females preferentially mate with young and middle-aged males, although mating latency and mating duration are independent of male age. In single male trials, when virgin females are randomly assigned single virgin males of known age, a negative correlation is found between mating success and male age in this species. However, we find that male age also has no effect on mating latency and mating duration. Further fitness analysis reveals that females do not receive benefits in terms of oviposition period, total egg production, average daily egg production, percentage of egg hatching, longevity, expected reproduction and relative expected reproduction from mating with young and middle-aged males compared with mating with old males. The results of the present study are the first demonstrate that females mated preferentially with younger males but gain no apparent fitness benefits in a monandrous moth species.  相似文献   

7.
Given the costs of multiple mating, why has female polyandry evolved? Utetheisa ornatrix moths are well suited for studying multiple mating in females because females are highly polyandrous over their life span, with each male mate transferring a substantial spermatophore with both genetic and nongenetic material. The accumulation of resources might explain the prevalence of polyandry in this species, but another, not mutually exclusive, possibility is that females mate multiply to increase the probability that their sons will inherit more‐competitive sperm. This latter “sexy‐sperm” hypothesis posits that female multiple mating and male sperm competitiveness coevolve via a Fisherian runaway process. We tested the sexy‐sperm hypothesis by using competitive double matings to compare the sperm competition success of sons of polyandrous versus monandrous females. In accordance with sexy‐sperm theory, we found that in 511 offspring across 17 families, the male whose polyandrous mother mated once with each of three different males sired significantly more of all total offspring (81%) than did the male whose monandrous mother was mated thrice to a single male. Interestingly, sons of polyandrous mothers had a significantly biased sex ratio of their brood toward sons, also in support of the hypothesis.  相似文献   

8.
Genetic benefits from mating with multiple males are thought to favour the evolution of polyandry. However, recent evidence suggests that non-genetic paternal effects via seminal fluid might contribute to the observed effects of polyandry on offspring performance. Here, we test this hypothesis using the field cricket Teleogryllus oceanicus. Using interference RNA, we first show that at least one seminal fluid protein is essential for embryo survival. We then show that polyandrous females mated to three different males produced embryos with higher pre-hatching viability than did monandrous females mated with the same male three times. Pseudo-polyandrous females that obtained sperm and seminal fluid from a single male and seminal fluid from two additional males had embryos with viabilities intermediate between monandrous and polyandrous females. Our results suggest either that ejaculate mediated paternal effects on embryo viability have both genetic and non-genetic components, or that seminal fluids transferred by castrated males provide only a subset of proteins contained within the normal ejaculate, and are unable to exert their full effect on embryo viability.  相似文献   

9.
Females of many species are frequently courted by promiscuous males of their own and other closely related species. Such mating interactions may impose strong selection on female mating preferences to favor trait values in conspecific males that allow females to discriminate them from their heterospecific rivals. We explore the consequences of such selection in models of the evolution of female mating preferences when females must interact with heterospecific males from which they are completely postreproductively isolated. Specifically, we allow the values of both the most preferred male trait and the tolerance of females for males that deviate from this most preferred trait to evolve. Also, we consider situations in which females base their mating decisions on multiple male traits and must interact with males of multiple species. Females will rapidly differentiate in preference when they sometimes mistake heterospecific males for suitable mates, and the differentiation of female preference will select for conspecific male traits to differentiate as well. In most circumstances, this differentiation continues indefinitely, but slows substantially once females are differentiated enough to make mistakes rare. Populations of females with broader preference functions (i.e., broader tolerance for males with trait values that deviate from females' most preferred values) will evolve further to differentiate if the shape of the function cannot evolve. Also, the magnitude of separation that evolves is larger and achieved faster when conspecific males have lower relative abundance. The direction of differentiation is also very sensitive to initial conditions if females base their mate choices on multiple male traits. We discuss how these selection pressures on female mate choice may lead to speciation by generating differentiation among populations of a progenitor species that experiences different assemblages of heterospecifics. Opportunities for differentiation increase as the number of traits involved in mate choice increase and as the number of species involved increases. We suggest that this mode of speciation may have been particularly prevalent in response to the cycles of climatic change throughout the Quaternary that forced the assembly and disassembly of entire communities on a continentwide basis.  相似文献   

10.
Polyandry-induced sperm competition is assumed to impose costson males through reduced per capita paternity success. In contrast,studies focusing on the consequences of polyandry for femalesreport increased oviposition rates and fertility. For thesespecies, there is potential for the increased female fecundityassociated with polyandry to offset the costs to males of sharedpaternity. We tested this hypothesis by comparing the proportionand number of offspring sired by males mated with monandrousand polyandrous females in the hide beetle, Dermestes maculates,both for males mating with different females and for males rematingwith the same female. In 4 mating treatments, monandrous femalesmated either once or twice with the same male and polyandrousfemales mated either twice with 2 different males or thricewith 2 males (where 1 male mated twice). Polyandrous and twice-matingmonandrous females displayed greater fecundity and fertilitythan singly mating monandrous females. Moreover, males rematedto the same female had greater paternity regardless of whetherthat female mated with another male. In both polyandrous treatments,male mating order did not affect paternity success. Finally,although the proportion of eggs sired decreased if a male matedwith a polyandrous female, multiply mating females or femalesthat remated with a previous mate laid significantly more eggsand thus the actual number of eggs sired was comparable. Thus,males do not necessarily accrue a net fitness loss when matingwith polyandrous females. This may explain the absence of anyobvious defensive paternity-protection traits in hide beetlesand other species.  相似文献   

11.
E Ringler  M Ringler  R Jehle  W Hödl 《PloS one》2012,7(6):e40237
The adaptive significance of sequential polyandry is a challenging question in evolutionary and behavioral biology. Costs and benefits of different mating patterns are shaped by the spatial distribution of individuals and by genetic parameters such as the pairwise relatedness between potential mating partners. Thus, females should become less choosy as costs of mating and searching for mates increase. We used parentage assignments to investigate spatial and genetic patterns of mating across a natural population of the Neotropical frog Allobates femoralis, a species characterized by male territoriality and care and female iteroparity. There was no correlation between genetic and spatial distances between adult individuals across the population. In 72% of cases, females mated with males available within a radius of 20 m. Mean pairwise relatedness coefficients of successful reproducers did not differ from random mating but had a lower variance than expected by chance, suggesting maximal reproductive output at intermediate genetic divergence. We also found evidence for selection in favor of more heterozygous individuals between the embryo and adult stage. The level of sequential polyandry significantly increased with the number of spatially available males. Females that had more candidate males also produced more adult progeny. We hypothesize that the benefits associated with female multiple mating outweigh the costs of in- and outbreeding depression, and consequently precluded the evolution of 'choosy' mate selection in this species.  相似文献   

12.
Although females may require only one mating to become inseminated, many female animals engage in costly mating with multiple males. One potential benefit of polyandrous mating is gaining parental investment from multiple males. We developed two game theoretic models to explore this possibility. Our first model showed that male care of multiple females' offspring evolves when male help substantially increases offspring fitness, future mating opportunity is limited, and group size is small. In our second model, we assumed that males invest in the offspring of former mates and evaluated the fitness consequences of female monogamous and polyandrous mating strategies. Females benefit only from limited polyandry, that is, mating with several males. Polyandry is discouraged because females must share male investment with other polyandrous females, and paternal care is likely to experience diminishing returns. Females may enhance their access to male investment by competing with rival females and monopolizing investment, however. The results support the argument that females can gain paternal investment by mating with several males in small social groups (e.g., dunnocks Prunella modularis). The results do not support the argument that females can gain paternal investment from pronounced multiple mating in large social groups, however, as observed in many primate species.  相似文献   

13.
OMKAR  Geetanjali MISHRA 《昆虫学报》2014,57(10):1180-1187
【目的】尽管一雌多雄在瓢虫科中常见,但各研究中获得的数据不足以解释雌虫多次交配和一雌多雄的一般适应性意义或适合度后果。本研究以温度为胁迫因子,旨在评价一雌多雄的某些益处(如增加的适合度)是否可传递给后代。【方法】本研究检测了黄斑盘瓢虫Coelophora saucia (Mulsant) 3种交配处理中的适合度:一雌一雄(与同一雄虫交配5次,1次/d),先后一雌多雄(与5头不同的雄虫依次交配5次,即每天与新的雄虫交配1次),以及同时一雌多雄(放进5头雄虫,任由雌虫选择雄虫,交配5次,1次/d)。观察了各交配处理不同温度下(25, 27和 30℃)繁殖力、卵的育性、后代发育和存活。【结果】结果表明,经历一雌多雄然后进行交配选择或竞争的雌性的繁殖能力最强,后代能在更广温度范围内最好地适应发育和存活。但先后一雌多雄交配的雌性与一雌一雄交配的雌性的繁殖能力相似。【结论】结果说明,在无交配选择或雄性竞争的条件下,一雌多雄的益处不明显。这可能是由于在依次射精的雄性间存在精子竞争,或由于雌性的隐性选择。据我们所知,本研究中观察发现的无交配选择时不表现一雌多雄的益处的现象,之前在昆虫中未观察到过。  相似文献   

14.
The maintenance of female polyandry has traditionally been attributed to the material (direct) benefits derived from male mating resources (e.g. nuptial gifts) accrued by multiple mating. However, genetic (indirect) benefits offer a more robust explanation since only polyandrous, not monandrous, females may gain both material benefits from multiple mating and genetic benefits from multiple sires. Discriminating between material and genetic benefits is essential when addressing the mechanism by which polyandry is adaptively maintained, but are difficult to disentangle because they affect fitness in similar ways. To test the hypothesis that genetic benefits maintain polyandry, we compared four components of fitness (longevity, fecundity, hatching success and survivorship) between monandrous and polyandrous females in the ground cricket, Allonemobius socius. We discovered that females derived nongenetic benefits from mating multiply, in that the magnitude of the nuptial gift was positively associated with the number of eggs produced. However, polyandrous females had over a two-fold greater hatching success and a 43% greater offspring survivorship, leading to a significantly higher relative fitness than the monandrous strategy. These results were independent of the confounding effects of material benefits, implying that genetic contributions play a large role in the maintenance of polyandry and potentially in the antagonistic coevolutionary relationship between polyandry and male nuptial gifts. Copyright 2002 Published by Elsevier Science Ltd on behalf of The Association for the Study of Animal Behaviour  相似文献   

15.
The evolution of male mate choice is constrained by costs of choice in species with a male‐biased operational sex ratio (OSR). Previous theoretical studies have shown that significant benefits of male choice are required, for example, by mating with more fecund females, in order for these costs to be offset and a male preference to spread. In a series of population genetic models we show the novel effect that male mating preference, expressed as a bias in courtship, can spread when females prefer, and thus are more likely to mate with, males who court more. We explore two female preference functions for levels of male courtship, one representing a threshold and the other a weighted female preference. The basic finding generally holds for both preference functions. However, the preference function greatly affects the spread of a male preference allele after the addition of competing males who can court more in total. Our results thus stress that a thorough understanding of the response of females to male courtship is a critical component to understanding male preference evolution in polygynous species.  相似文献   

16.
Explaining the evolution of male care has proved difficult. Recent theory predicts that female promiscuity and sexual selection on males inherently disfavour male care. In sharp contrast to these expectations, male-only care is often found in species with high extra-pair paternity and striking variation in mating success, where current theory predicts female-only care. Using a model that examines the coevolution of male care, female care and female choice; I show that inter-sexual selection can drive the evolution of male care when females are able to bias mating or paternity towards parental males. Surprisingly, female choice for parental males allows male care to evolve despite low relatedness between the male and the offspring in his care. These results imply that predicting how sexual selection affects parental care evolution will require further understanding of why females, in many species, either do not prefer or cannot favour males that provide care.  相似文献   

17.
Mating success tends to be skewed toward dominant males, thoughfemale mate preferences may not always correlate with male dominance.In this study, we investigated the mating preferences of femalezebrafish, Danio rerio, in the absence of male–male competition.We paired females sequentially with males of known dominancerank, using a nested, repeated measures design, with egg productionas a measure of female mate preference. We predicted that femaleswould spawn more frequently and produce larger clutches whenpaired with males of higher dominance rank. We found significantdifferences among females in the size of clutches produced andamong males in the size of clutches received, but these differenceswere independent of male dominance rank. Male body size wasnot related to either dominance rank or clutch size received.These results indicate that females vary clutch size in relationto the males with which they are paired but that they do notfavor dominant males. Thus, male competition may normally overridefemale mate preference in zebrafish.  相似文献   

18.
Mating system variation is profound in animals. In insects, female willingness to remate varies from mating with hundreds of males (extreme polyandry) to never remating (monandry). This variation in female behaviour is predicted to affect the pattern of selection on males, with intense pre-copulatory sexual selection under monandry compared to a mix of pre- and post-copulatory forces affecting fitness under polyandry. We tested the hypothesis that differences in female mating biology would be reflected in different costs of pre-copulatory competition between males. We observed that exposure to rival males early in life was highly costly for males of a monandrous species, but had lower costs in the polyandrous species. Males from the monandrous species housed with competitors showed reduced ability to obtain a mate and decreased longevity. These effects were specific to exposure to rivals compared with other types of social interactions (heterospecific male and mated female) and were either absent or weaker in males of the polyandrous species. We conclude that males in monandrous species suffer severe physiological costs from interactions with rivals and note the significance of male–male interactions as a source of stress in laboratory culture.  相似文献   

19.
Abstract:  The effect of diamondback moth (DBM), Plutella xylostella (Lep., Plutellidae) male and female multiple mating on fecundity, fertility, and longevity was studied. Males could mate for five times with virgin females during scotophase. The successful copulation rates, fecundity of female, and longevity of both females and males decreased when male mating times increased, whereas copulation duration increased. Correlation coefficient between copulation duration and male mating times was significant ( r  = 0.7358, P = 0.0001, spearman rank-order correlation). There were linear relationships between mating history of males and longevities of males and females, and regression relationships between them were significant. Mated females had similar daily reproductive pattern, which laid the most eggs on the first day after mating in spite of their mates' mating history. Virgin females laid some infertile eggs before they died. Most of the females mated once during their lifespan but 19.9% of females mated twice when one female kept with one male during scotophase. There were no significant differences in the fecundity, fertility and longevity between the single- and twice-mated females. Correlation coefficient between copulation duration and female mating times was not significant ( r  = 0.0860, P = 0.8575). Results suggested that DBM females may be monandrous. Multiple mating did not increase male or female mating fitness.  相似文献   

20.
It is generally believed that level of paternity (the proportion of zygotes in a brood that were fertilized by the male providing parental care) has an important role in the evolution of parental care. We have used population genetics models to investigate this role. The models indicate that only in mating systems where a parental male “sacrifices” promiscous matings can paternity influence the evolution of male parental care. This is because level of paternity can reflect the number of opportunities for these promiscuous fertilizations. For example, high paternity can mean few opportunities and therefore a low cost for paternal care.Certain behaviors may preadapt a species for the evolution of male parental care because they decrease the costs of providing care. For example, in fish species where male care has evolved from spawning territories, the very establishment of territories may have precluded males from gaining promiscuous matings, thereby eliminating the promiscuity costs and facilitating the evolution of care. Without a promiscuity cost, level of paternity will not have influenced the evolution of male care in fishes.Because paternity has limited influence in the evolution of male care, differences in reliability of parentage between males and females are unlikely to explain the prevalence of female care. Our analysis suggests that paternity differences between species cannot serve as a general explanation for the observed patterns of parental care behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号