首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Common marmosets are cooperatively breeding monkeys that exhibit high reproductive skew: most subordinate females fail to reproduce, while others attempt to breed but produce very few surviving infants. An extensive dataset on the mechanisms limiting reproduction in laboratory-housed and free living subordinate females provides unique insights into the causes of reproductive skew. Non-breeding adult females undergo suppression of ovulation and inhibition of sexual behaviour; however, they receive little or no aggression or mating interference by dominants and do not exhibit behavioural or physiological signs of stress. Breeding subordinate females receive comparable amounts of aggression to non-breeding females but are able to conceive, gestate and lactate normally. In groups containing two breeding females,however, both dominant and subordinate breeders kill one another's infants. These findings suggest that preconception reproductive suppression is not imposed on subordinate females by dominants, at a proximate level, but is instead self-imposed by most subordinates, consistent with restraint models of reproductive skew. In contrast to restraint models, however, this self-suppression probably evolved not in response to the threat of eviction by dominant females but in response to the threat of infanticide. Thus,reproductive skew in this species appears to be generated predominantly by subordinate self-restraint, in a proximate sense, but ultimately by dominant control over subordinates' reproductive attempts.  相似文献   

2.
In many vertebrates, reproductive performance increases with advancing age but mechanisms involved in such a pattern remain poorly studied. One potential mechanism may be the hormonal stress response, which shifts energy investment away from reproduction and redirects it towards survival. In birds, this stress response is achieved through a release of corticosterone and is also accompanied by a decrease in circulating prolactin, a hormone involved widely in regulating parental cares. It has been predicted that, when the value of the current reproduction is high relative to the value of future reproduction and survival, as it is expected to be in older adults, the stress response should be attenuated to ensure that reproduction is not inhibited. We tested this hypothesis by measuring the corticosterone and prolactin responses of known-age (8-36 years old) incubating snow petrels (Pagadroma nivea) to a standardized capture/handling stress protocol. We also investigated whether an attenuation of the stress responses will correlate with a lower occurrence of egg neglect, a frequently observed behaviour in snow petrels. The probability of successfully fledging a chick increased from 6 years to 12 years before stabilizing after 12 years of age. Corticosterone response to stress was unaffected by age. Prolactin response to stress, however, was influenced clearly by age: in both sexes older breeders had higher stress-induced prolactin levels than younger ones. This was due to an increasing attenuation of the prolactin response to stress with advancing age in females, and in males this was due to a probably higher intrinsic capacity of older males to secrete prolactin. Moreover, higher stress-induced prolactin levels were correlated with a lower probability of neglecting the egg. In young breeders, the combination of a robust corticosterone increase with a lower ability to maintain prolactin secretion during acute stress is probably one of the functional causes of their lower incubation commitment. We suggest that the ability to maintain a threshold level of prolactin during a stressful situation may be an important physiological mechanism involved in the improvement of reproductive performance with advancing age in long-lived birds.  相似文献   

3.
The social organization of species ranges from solitary-living to complex social groups. While the evolutionary reasons of group-living are well studied, the physiological mechanisms underlying alternative social systems are poorly understood. By studying group-living and solitary individuals of the same species, we can determine hormonal correlates of sociality without the problem of confounding phylogenetic factors. The African striped mouse (Rhabdomys pumilio) is a socially flexible species, which can be solitary or alternatively form complex family groups, depending on population density and the extent of reproductive competition. We predicted group-living striped mice to show signs of reproductive suppression and social stress, resulting in higher corticosterone but lower testosterone levels when compared to solitary-living individuals. To determine whether differences in social organization correlated with hormonal differences, we collected blood samples from free-living striped mice during four breeding seasons when we experimentally induced solitary-living in philopatric individuals by locally reducing population density. Striped mice that were group-living did not change their corticosterone or estosterone levels during the study, indicating that there was no temporal effect during the breeding season. Striped mice of both sexes had significantly lower corticosterone levels after switching from group- to solitary-living. Solitary males – but not solitary females – had higher testosterone levels than group-living conspecifics. Our results suggest that group-living results in physiological stress and can induce reproductive suppression, at least in philopatric males. The switch to solitary-living may thus be a tactic to avoid reproductive competition within groups, and is associated with decreased stress hormone levels and onset of independent reproduction.  相似文献   

4.
Seasonal changes in stress steroid hormone secretions are thought to reflect investment in self-maintenance versus reproduction. The capricious conditions hypothesis (CCH) posits that reduced corticosterone (CORT) secretion during stress coincident with parental phases of breeding is necessary in harsh environments because a full response would otherwise trigger repeated nest abandonments. To test this hypothesis, we measured seasonal changes in stress physiology in free-living red crossbills (Loxia curvirostra), an opportunistically breeding songbird that regularly breeds in summer and winter. This species allows unique comparisons of breeding physiology under very different seasonal environmental conditions within locations. We found strong support for the CCH: red crossbills showed reduced CORT secretion only when in high reproductive condition in the winter, when compared with summer breeders and winter non-breeders. These data demonstrate that behavioural status and local environmental conditions interact to affect mechanisms underlying investment trade-offs, presumably in a way that maximizes lifetime reproductive success.  相似文献   

5.
Hormones mediate major physiological and behavioural components of the reproductive phenotype of individuals. To understand basic evolutionary processes in the hormonal regulation of reproductive traits, we need to know whether, and during which reproductive phases, individual variation in hormone concentrations relates to fitness in natural populations. We related circulating concentrations of prolactin and corticosterone to parental behaviour and reproductive success during both the pre-breeding and the chick-rearing stages in both individuals of pairs of free-living house sparrows, Passer domesticus. Prolactin and baseline corticosterone concentrations in pre-breeding females, and prolactin concentrations in pre-breeding males, predicted total number of fledglings. When the strong effect of lay date on total fledgling number was corrected for, only pre-breeding baseline corticosterone, but not prolactin, was negatively correlated with the reproductive success of females. During the breeding season, nestling provisioning rates of both sexes were negatively correlated with stress-induced corticosterone levels. Lastly, individuals of both sexes with low baseline corticosterone before and high baseline corticosterone during breeding raised the most offspring, suggesting that either the plasticity of this trait contributes to reproductive success or that high parental effort leads to increased hormone concentrations. Thus hormone concentrations both before and during breeding, as well as their seasonal dynamics, predict reproductive success, suggesting that individual variation in absolute concentrations and in plasticity is functionally significant, and, if heritable, may be a target of selection.  相似文献   

6.
Life history trade-offs are often hierarchical with decisions at one level affecting lower level trade-offs. We investigated trade-off structure in female side-blotched lizards (Uta stansburiana), which exhibit two evolved strategies: yellow-throated females are K-strategists and orange-throated are r-strategists. Corticosterone treatment was predicted to differentially organize these females' reproductive decisions. Corticosterone-treated yellow females suppressed reproduction but survived well, and augmented egg mass without decreasing clutch size. Conversely, corticosterone enhanced mortality and reproductive rates in orange females, and increased egg mass only after lengthy exposure. Corticosterone did not affect post-laying condition, suggesting that corticosterone increased egg mass through enhanced energy acquisition (income breeding). Corticosterone enhanced survival of lightweight females, but decreased survival of heavy females, introducing a foraging vs. predation trade-off. We conclude that rather than being a direct, functional relationship, observed trade-offs between offspring size and number represent evolved differences in hierarchical organization of multidimensional trade-offs, particularly in response to stress.  相似文献   

7.
Reproducing parents face the difficult challenge of trading-off investment in current reproduction against presumed future survival and reproduction. Glucocorticoids are supposed to mediate this trade-off because the adrenocortical response to stress disrupts normal reproductive behaviour in favour of self-maintenance and own survival. According to the brood-value hypothesis, individuals with a low survival probability until the next reproductive season have to invest in current reproduction, a process driven by a down-regulation of their adrenocortical response. If the adrenocortical response to stress effectively mediates the trade-off between current reproduction versus future survival and reproduction, we expect a negative relationship with reproductive success and a positive correlation of the adrenocortical stress response with survival. We studied the relationship between corticosterone secretion in parents and their current brood value, reproductive success and survival in a short-lived multi-brooded bird, the Eurasian hoopoe Upupa epops. The adrenocortical response to acute handling stress was correlated with the brood value within the individual (first and second broods of the year) and between individuals. Birds breeding late in the season mounted a lower total corticosterone response to acute stress than birds breeding earlier, while females showed lower levels than males. We observed a negative relationship between the adrenocortical stress response and rearing success or fledging success in females, as predicted by the brood-value hypothesis. However, we could not evidence a clear link between the adrenocortical stress response and survival. Future research testing the brood-value hypothesis and trade-offs between current reproduction and future survival should also measure free corticosterone and carefully differentiate between cross-sectional (i.e. between-individual) and individual-based experimental studies.  相似文献   

8.
Circulating concentrations of plasma corticosterone and gonadal steroids were measured in intact and gonadectomized male and female lizards (Cnemidophorus sexlineatus) following acute stress (handling) in the laboratory. There was a significant increase in plasma corticosterone after stress. Whereas intact females exhibited greater concentrations of corticosterone relative to intact males, ovariectomized females exhibited lower concentrations of corticosterone relative to castrated males. In addition to sex differences in corticosterone responses to gonadectomy, progesterone was elevated by stress in both intact and ovariectomized females but not in males. Corticosterone adjusted for castration and handling in males was negatively correlated with the plasma androgen level. The adrenal responsiveness of males to acute stress may be attenuated by androgens presumably secreted by the testis. Not only does adrenal function influence reproduction, but adrenal responses differ between males and females, and appear to be influenced by the gonadal axis. The sex differences in adrenal responses to stress likely reflect different reproductive strategies and nutritional requirements of males and females during the breeding season.  相似文献   

9.
The effects of breeding season and reproductive status on male and female reproduction were investigated in the common mole-rat, Cryptomys hottentotus hottentotus, a cooperatively breeding rodent which exhibits a unique combination of seasonal breeding and a reproductive division of labor. Pituitary function was examined by measuring the luteinizing hormone (LH) responses to single doses of 2 microg exogenous gonadotrophin-releasing hormone (GnRH) and physiological saline in 69 males and 58 females from 35 wild caught colonies. Neither males nor females exhibited any apparent manifestation of season on basal LH concentrations or on pituitary sensitivity to stimulation by exogenous GnRH. The continuance of reproductive function during the nonbreeding period is essential in common mole-rat males and females, as this period coincides with the period of maximal dispersal opportunity in the winter rainfall area they inhabit. Normal circulating levels of reproductive hormones in dispersing animals may aid intersexual recognition, assist pairbond formation, and thus prime animals for independent reproduction. Circulating basal concentrations of LH as well as LH levels measured in response to a single exogenous GnRH challenge were not significantly different between the reproductive and non-reproductive groups of either sex, suggest the absence of a physiologically well-defined suppression of reproduction in subordinate common mole-rats.  相似文献   

10.
Serum corticosterone was previously studied in numerous elasmobranch fishes (sharks, skates and rays), but the role of this steroid, widespread throughout many taxa, has yet to be defined. The goal of this study was to test whether corticosterone varied in response to acute and chronic capture stress, and across the reproductive cycle in the bonnethead shark, Sphyrna tiburo, and Atlantic stingray, Dasyatis sabina. Serum corticosterone in S. tiburo increased following capture and again 24 h post-capture, possibly caused by interference with 1alpha-hydroxycorticosterone, the primary stress hormone in elasmobranchs. Higher serum concentrations in males compared to females were observed in both species. Variations in corticosterone also occurred during the reproductive cycle in both species. Consistent with other taxa, elevations in male bonnethead sharks and stingrays coincided with peak testicular development and mating. Elevations in female bonnethead sharks occurred from the time of mating through sperm storage into early gestation. In contrast, corticosterone levels in female stingrays were low during their protracted mating season, but elevated through late gestation and parturition. These results indicate that corticosterone has a limited role, if any, in acute and chronic stress associated with capture in S. tiburo, but likely has physiological functions associated with its glucocorticoid properties across the reproductive cycle of both species.  相似文献   

11.
To successfully reproduce in the Arctic, birds must modulate their neuroendocrine and behavioural systems. These adjustments include an attenuation of the stress responsiveness of the hypothalamic-pituitary-adrenal (HPA) axis to external stimuli and a behavioural insensitivity to high corticosterone (B) levels. The HPA axis was examined in free-living territorial polygynandrous Smith's longspurs (Calcarius pictus) that migrate to breed on the Arctic tundra. Basal and stress-induced B levels were measured through the breeding season and were found to be significantly lower in females compared with males. This was not a consequence of adrenal insensitivity, because intrajugular injections of adrenocorticotrophin hormone (ACTH) enhanced B release in incubating females. In males the adrenocortical response to stress was significantly attenuated during the parental phase compared with arrival at the breeding ground. In contrast to temperate passerines, there was no significant decrease in male territorial aggressive behaviour when B was experimentally elevated, suggesting a behavioural insensitivity to glucocorticoids. This mechanism is hypothesized to increase reproductive success by preventing interruptions to parental care during transient deleterious environmental perturbations, which are often experienced in the short Arctic breeding season. Modulation of the HPA axis in this species in relation to life-history stage, lifetime reproductive success and the polygynandrous mating system is discussed.  相似文献   

12.
Endocrine systems have an important mechanistic role in structuring life-history trade-offs. During breeding, individual variation in prolactin (PRL) and corticosterone (CORT) levels affects behavioral and physiological processes that drive trade-offs between reproduction and self-maintenance. We examined patterns in baseline (BL) and stress induced (SI; level following a standard capture-restraint protocol) levels of PRL and CORT for breeding mourning doves (Zenaida macroura). We determined whether the relationship of adult condition and parental effort to hormone levels in wild birds was consistent with life-history predictions. Both BL PRL and BL CORT level in adults were positively related to nestling weight at early nestling ages, consistent with the prediction of a positive relationship of hormone levels to current parental effort of adults and associated increased energy demand. Results are consistent with the two hormones acting together at baseline levels to limit negative effects of CORT on reproduction while maintaining beneficial effects such as increased foraging for nestling feeding. Our data did not support predictions that SI responses would vary in response to nestling or adult condition. The magnitude of CORT response in the parents to our capture-restraint protocol was negatively correlated with subsequent parental effort. Average nestling weights for adults with the highest SI CORT response were on average 10–15% lighter than expected for their age in follow-up visits after the stress event. Our results demonstrated a relationship between individual hormone levels and within population variation in parental effort and suggested that hormonal control plays an important role in structuring reproductive decisions for mourning doves.  相似文献   

13.
Data addressing adrenocortical modulation across taxonomic groups are limited, especially with regard to how female reproductive condition influences the sensitivity of the hypothalamus–pituitary–adrenal axis. We investigated seasonal and reproductive variation in basal and stress-induced hormone profiles in a population of free-ranging timber rattlesnakes (Crotalus horridus) in north-central Pennsylvania during spring (i.e., May), summer (i.e., July), and early fall (i.e., September). Baseline corticosterone concentrations varied seasonally and were significantly lower during the summer sampling period in July. We observed a significant negative relationship between baseline corticosterone and testosterone in male snakes, while baseline corticosterone and estradiol tended to be positively correlated in females. Treatment of snakes with 1 h of capture stress significantly increased corticosterone across all seasons. However, there was a significant interaction between corticosterone responses to capture stress and season, suggesting that adrenocortical function is modulated seasonally. Because elevated corticosterone may be associated with reproduction, we asked whether hormonal stress responses vary with female reproductive condition. Although sample sizes are low, reproductive snakes had significantly higher baseline and stress-induced corticosterone concentrations than non-reproductive or post-parturient females. Further, despite similar baseline corticosterone concentrations between non-reproductive and post-parturient rattlesnakes, post-parturient females responded to capture stress with a significantly higher increase in corticosterone. Collectively, these data suggest that the sensitivity of the hypothalamus–pituitary–adrenal axis varies both seasonally and with changing reproductive states.  相似文献   

14.
We report the results of the first field study examining seasonal changes in corticosterone responses of typically long-lived birds of the order Procellariiformes. In particular, we examined whether grey-faced petrels Pterodroma macroptera gouldi showed changes in circulating baseline corticosterone concentrations and corticosterone responses to a standardized handling protocol across the breeding season. Such changes have been associated with changes in body condition and variations in energy demands on adult birds through the breeding season. During early incubation, males were in significantly better condition than females that had just completed laying, whereas during late incubation, males were in significantly poorer condition than females. In spite of these differences, there was no significant difference in baseline corticosterone concentrations between sexes or among birds at different reproductive stages. However, we detected significant differences in corticosterone responses associated with a standardized handling protocol at different stages through the breeding season. Responses were significantly greater during incubation compared with the prelay period and late chick rearing. Body condition was weakly and negatively correlated with maximum and total integrated corticosterone level, indicating that some of the individual variability in stress corticosterone responses could be explained by variation in body condition. However, the largest stress response occurred during late incubation and was independent of sex, although males were in relatively poor condition and females in relatively good condition. This period coincided with the breeding stage in which energy constraints on individual adults were higher than at other periods of the reproductive cycle and birds may be physiologically primed for extended fasts.  相似文献   

15.
We examined behavioural and hormonal stress responses in a small seabird (little auk, Alle alle), which exhibits a transition from biparental to male-only care towards the end of the nesting period, in order to understand the mechanisms underlying this parental strategy. We hypothesized that the male staying with the chick should be less sensitive to stressors. As such the male might offer the offspring more efficient protection during the fledging period than the female. We tested this hypothesis by observing male and female behaviour in a neophobia test. We also measured the birds' baseline and stress-induced levels of corticosterone and prolactin using the standardized capture-and-restraint protocol. Both sexes respond rapidly to foreign objects, delaying the entry time to the nest with food, consuming the food load, and/or temporarily abandoning feeding. However, we did not find any differences between the sexes in the frequency of each behaviour or in the time of the first reaction to the experimental treatment. Level of both corticosterone and prolactin increased after the experimental treatment. However, we did not find sex differences in baseline and stress-induced hormone levels. The results indicate that the males are as much sensitive to the stress situation as the females. Thus, the pattern of male and female behavioural and hormonal responses to stress does not predict their behaviour at the final breeding stage.  相似文献   

16.
Serum corticosterone was previously studied in numerous elasmobranch fishes (sharks, skates and rays), but the role of this steroid, widespread throughout many taxa, has yet to be defined. The goal of this study was to test whether corticosterone varied in response to acute and chronic capture stress, and across the reproductive cycle in the bonnethead shark, Sphyrna tiburo, and Atlantic stingray, Dasyatis sabina. Serum corticosterone in S. tiburo increased following capture and again 24 h post-capture, possibly caused by interference with 1α-hydroxycorticosterone, the primary stress hormone in elasmobranchs. Higher serum concentrations in males compared to females were observed in both species. Variations in corticosterone also occurred during the reproductive cycle in both species. Consistent with other taxa, elevations in male bonnethead sharks and stingrays coincided with peak testicular development and mating. Elevations in female bonnethead sharks occurred from the time of mating through sperm storage into early gestation. In contrast, corticosterone levels in female stingrays were low during their protracted mating season, but elevated through late gestation and parturition. These results indicate that corticosterone has a limited role, if any, in acute and chronic stress associated with capture in S. tiburo, but likely has physiological functions associated with its glucocorticoid properties across the reproductive cycle of both species.  相似文献   

17.
To overcome unpredictable stressful transitory events, animals trigger an allostatic response involving the hypothalamic–pituitary–adrenal cortex. This hormonal response, which involves the release of glucocorticoids which in turn mediate between the main physiological mechanisms that regulate the energetic demands and resource allocation trade-off with behavioural responses to environmental perturbations and may ultimately lead to variation in fitness. We have used the Cory’s shearwater Calonectris borealis, a sexually dimorphic pelagic seabird with a partial migratory strategy, as a model bird species to analyse a number of traits related to the stress response. We investigated whether the activation of a stressful response, mediated by corticosterone, during the wintering period (1) correlated with the previous breeding success, (2) was affected by the migratory behaviour of male birds and (3) had consequences in the fitness of the birds. Corticosterone levels in feathers grown overwinter were analysed in 61 adult birds during three consecutive migratory periods (2009–2012) and in 14 immature birds in the wintering period 2010–2011. Moreover, the levels of corticosterone were analysed in experimental birds which were freed from their reproductive duties and compared with control birds which raised fledglings to the end of the breeding period. The results show that the levels of corticosterone were sex dependent, differed between years and were affected by the migratory strategy performed by the birds. The activation of the stressful response over the wintering period generated residual carry-over effects that positively affected the reproductive output in the subsequent breeding stage, a phenomenon previously undescribed in a long-lived pelagic seabird. Our study provides evidence that the analysis of corticosterone from feathers is a useful tool to evaluate carry-over effects in birds far away from breeding sites, opening new possibilities for future studies in this field.  相似文献   

18.
A cost of reproduction in Drosophila melanogaster: stress susceptibility   总被引:1,自引:0,他引:1  
Little is known about physiological mechanisms that underlie the cost of reproduction. We tested the hypothesis that stress susceptibility is a cost of reproduction. In one test of our hypothesis, Drosophila melanogaster females were exposed to a juvenile hormone analog (methoprene) to stimulate egg production followed by stress assays. A sterile stock of D. melanogaster was employed as a control for reproduction. Exposure of fertile females to methoprene resulted in an increase in female reproduction and increased susceptibility to oxidative stress and starvation (compared to solvent controls). Sterile females did not exhibit a decrease in stress resistance. Mating also stimulated egg production. As a second test of our hypothesis, mated females were compared to virgin females. Mated fertile females were relatively susceptible to oxidative stress, but this relationship was not evident when mated and virgin sterile females were compared. The results of the present study support the hypothesis that stress susceptibility is a cost of reproduction.  相似文献   

19.
Corticosterone is an important hormone of the stress response that regulates physiological processes and modifies animal behavior. While it positively acts on locomotor activity, it may negatively affect reproduction and social activity. This suggests that corticosterone may promote behaviors that increase survival at the cost of reproduction. In this study, we experimentally investigate the link between corticosterone levels and survival in adult common lizards (Lacerta vivipara) by comparing corticosterone-treated with placebo-treated lizards. We experimentally show that corticosterone enhances energy expenditure, daily activity, food intake, and it modifies the behavioral time budget. Enhanced appetite of corticosterone-treated individuals compensated for increased energy expenditure and corticosterone-treated males showed increased survival. This suggests that corticosterone may promote behaviors that reduce stress and it shows that corticosterone per se does not reduce but directly or indirectly increases longer-term survival. This suggests that the production of corticosterone as a response to a stressor may be an adaptive mechanism that even controls survival.  相似文献   

20.
Changes in reproductive state or the environment may affect the sensitivity of the hypothalamic-pituitary-andrenal (HPA) axis. However, little is known about the dynamics of the resulting corticosteroid stress response, in particular in tropical mammals. In this study, we address the modulation of corticosterone release in response to different reproductive conditions and seasonality in 326 free-living common fruit-eating bats (Artibeus jamaicensis) on Barro Colorado Island in Panama during dry and wet seasons. We present strong evidence that stress sensitivity is primarily modulated by reproductive condition. In reproductively active females, corticosterone increases were more rapid and reached higher levels, but also decreased significantly faster than in inactive females. The corticosterone response was weaker in reproducing males than in females and delayed compared to non-reproductive males. Testes volume in reproductively active males was negatively correlated with corticosterone concentrations. Our findings suggest differentiated dynamics in the corticosterone stress response between sexes, potentially reflecting conflicting ecological demands. In females, a strong acute corticosterone response may represent high stress- and risk-sensitivity that facilitates escape and thus helps to protect reproduction. In males, suppression during reproductive activity could reflect lowered stress sensitivity to avoid chronically elevated corticosterone levels in times of frequent aggressive and therefore costly inter-male encounters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号