首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary 1. We examined the actions of mercury (Hg2+) and zinc (Zn2+) on voltage-activated calcium channel currents of cultured rat dorsal root ganglion (DRG) neurons, using the whole-cell patch clamp technique.2. Micromolar concentrations of both cations reduced voltage-activated calcium channel currents. Calcium channel currents elicited by voltage jumps from a holding potential of –80 to 0 mV (mainly L- and N-currents) were reduced by Hg2+ and Zn2+. The threshold concentration for Hg2+ effects was 0.1 µM and that for Zn2+ was 10µM. Voltage-activated calcium channel currents were abolished (>80%) with 5µM Hg2+ or 200µM Zn2+. The peak calcium current was reduced to 50% (IC50) by 1.1µM Hg2+ or 69µM Zn2+. While Zn2+ was much more effective in reducing the T-type calcium channel current—activated by jumping from –80 to –35 mV—Hg2+ showed some increased effectiveness in reducing this current.3. The effects of both cations occurred rapidly and a steady state was reached within 1–3 min. While the action of Zn2+ was not dependent on an open channel state, Hg2+ effects depended partially on channel activation.4. While both metal cations reduced the calcium channel currents over the whole voltage range, some charge screening effects were detected with Hg2+ and with higher concentrations (>100µM) of Zn2+.5. As Zn2+ in the concentration range used had no influence on resting membrane currents, Hg2+ caused a clear inward current at concentrations µM.6. In the present study we discuss whether the actions of both metals on voltage-activated calcium channel currents are mediated through the same binding site and how they may be related to their neurotoxic effects.  相似文献   

2.
Summary 1. Using conventional two-microelectrode voltage-clamp techniques we studied the effects of inorganic mercury (HgCl2) on acetylcholine-, carbachol-, and glutamate-activated currents onAplysia neurons. Hg2+ was applied with microperfusion.2. Acetylcholine and carbachol activated an inward, sodium-dependent current in the anterior neurons of the pleural ganglion. The medial neurons gave a biphasic current to acetylcholine and carbachol, which was outward at resting membrane potential. The faster component was Cl dependent and reversed at about –60 mV, while the slower component was K+ dependent and reversed at greater than –80 mV.3. Hg2+ (0.1–10 µM) caused a dramatic increase in the acetylcholine- and carbachol-induced inward current in anterior neurons and the fast Cl current in medial neurons. With only a 1-min preapplication of Hg2+, the acetylcholine- or carbachol-activated sodium or chloride currents were increased to 300% and the effect was only partly reversible. The threshold concentration was 0.1 µM Hg2+.4. Contrary to the effects on sodium and chloride currents, concentrations of 0.1–10 µM Hg2+ caused a complete and irreversible blockade of K+-dependent acetylcholine and carbachol currents. The block of the potassium current was relatively fast and increased with time. The concentration of HgCl2 that gave a half-maximal blockade of the carbachol-activated potassium current was 0.89 µM. The chloride-dependent current elicited by glutamate on medial neurons was increased by HgCl2 as well.5. These results suggest that actions at agonist-activated channels must be considered as contributing to mercury neurotoxicity. It is possible that the toxic actions of Hg2+ on synaptic transmission at both pre- and postsynaptic sites are important factors in the mechanism of Hg2+ toxicity.  相似文献   

3.
Summary Patch-clamp and single cell [Ca2+] i measurements have been used to investigate the effects of the potassium channel modulators cromakalim, diazoxide and tolbutamide on the insulin-secreting cell line RINm5F. In intact cells, with an average cellular transmembrane potential of –62±2 mV (n=42) and an average basal [Ca2+] i of 102±6nm (n=37), glucose (2.5–10mm): (i) depolarized the membrane, through a decrease in the outward KATP current, (ii) evoked Ca2+ spike potentials, and (iii) caused a sharp rise in [Ca2+] i . In the continued presence of glucose both cromakalim (100–200 m) and diazoxide (100 m) repolarized the membrane, terminated Ca2+ spike potentials and attenuated the secretagogue-induced rise in [Ca2+] i . In whole cells (voltage-clamp records) and excised outside-out membrane patches, both cromakalim and diazoxide enhanced the current by opening ATP-sensitive K+ channels. Diazoxide was consistently found to be more potent than cromakalim. Tolbutamide, a specific inhibitor of ATP-sensitive K+ channels, reversed the effects of cromakalim on membrane potential and KATP currents.  相似文献   

4.
A reversible and easy assembled fluorescent sensor based on calix[4]arene and phenolphthalein (C4P) was developed for selective zinc ion (Zn2+) sensing in aqueous samples. The probe C4P demonstrated high selective and sensitive detection towards Zn2+ over other competitive metal ions. Interaction of Zn2+ with a solution of C4P resulted in a considerable increment in emission intensity at 440 nm (λex = 365 nm) due to the suppression of photoinduced electron transfer (PET) process and the restriction of C=N isomerization . The binding constant (Ka) of C4P with Zn2+ was calculated to be 4.50 × 1011 M?2 and also the limit of detection of C4P for Zn2+ was as low as 0.108 μM (at 10?7 M level). Moreover, the fluorescence imaging in the human colon cancer cells suggested that C4P had great potential to be used to examine Zn2+ in vivo.  相似文献   

5.
TheCl and K+ currents underlying the action potential (AP) in the giant alga Chara were directly recorded with the action potential clamp method. An electrically triggered action potential was recorded and repetitively replayed as command voltage to the same cell under voltage clamp. The resulting clamp current was close to zero. Only the initial rectangular current used for stimulation was approximately reproduced by the clamp circuit. Inhibition of Cl channels with niflumic acid or ethacrynic acid and of K+ channels with Ba2+ evoked characteristic compensation currents because the amplifier had to add the selectively inhibited currents. Integration of the compensation currents revealed a mean flux through Cl and K+ channels of 3.3 10–6 and 2.1 10–6 mole M–2 AP–1 respectively. The dynamics of CI and K+ channel activation/inactivation were obtained by converting the relevant clamp currents to ionic permeabilities using the Goldman-Hodgkin-Katz current equation. During the AP the Cl permeability reaches a peak 370 ms, on average, after termination of the stimulating pulse. The following inactivation proceeds 3.6 times slower than the activation. The increase in K+ permeability lags behind the rise in Cl permeability, reaching a peak approximately 2 s after the latter.  相似文献   

6.
This paper provides the first study of voltage-sensitive membrane currents present in heart myocytes from cephalopods. Whole cell patch clamp recordings have revealed six different ionic currents in myocytes freshly dissociated from squid cardiac tissues (branchial and systemic hearts). Three types of outward potassium currents were identified: first, a transient outward voltage-activated A-current (IA), blocked by 4-aminopyridine, and inactivated by holding the cells at a potential of −40 mV; second, an outward, voltage-activated, delayed rectifier current with a sustained time course (IK); and third, an outward, calcium-dependent, potassium current (IK(Ca)) sensitive to Co2+ and apamin, and with the characteristic N-shaped current voltage relationship. Three inward voltage-activated currents were also identified. First, a rapidly activating and inactivating, sodium current (INa), blocked by tetrodotoxin, inactivated at holding potentials more positive than −40 mV, and abolished when external sodium was replaced by choline. Second, an L-type calcium current (ICa,L) with a sustained time course, suppressed by nifedipine or Co2+, and enhanced by substituting Ca2+ for Ba2+ in the external medium. The third inward current was also carried by calcium ions, but could be distinguished from the L-type current by differences in its voltage dependence. It also had a more transient time course, was activated at more negative potentials, and resembled the previously described low-voltage-activated, T-type calcium current. Accepted: 24 September 1999  相似文献   

7.
The potassium A-current (IKA) is important in regulating the membrane potential between action potentials. The whole-cell patch-clamp technique was applied to cultured Drosophila neurons derived from embryonic neuroblasts. IKA was measured from neurons before and after application of 0.1 mM lanthanum to the external saline. IKA was smaller in the lanthanum-containing saline (7±1 pA) than in the control saline (34±6 pA). Activation and inactivation of IKA were unchanged by lanthanum. These results suggest that lanthanum neurotoxicity may lead to increased neuronal excitability. Moreover, given this inhibition of IKA, lanthanum should not be used to block calcium current in studies of K+ currents.  相似文献   

8.
The TRK proteins—Trk1p and Trk2p— are the main agents responsible for “active” accumulation of potassium by the yeast Saccharomyces cerevisiae. In previous studies, inward currents measured through those proteins by whole-cell patch-clamping proved very unresponsive to changes of extracellular potassium concentration, although they did increase with extracellular proton concentration—qualitatively as expected for H+ coupling to K+ uptake. These puzzling observations have now been explored in greater detail, with the following major findings: a) the large inward TRK currents are not carried by influx of either K+ or H+, but rather by an efflux of chloride ions; b) with normal expression levels for Trk1p and Trk2p in potassium-replete cells, the inward TRK currents are contributed approximately half by Trk1p and half by Trk2p; but c) strain background strongly influences the absolute magnitude of these currents, which are nearly twice as large in W303-derived spheroplasts as in S288c-derived cells (same cell-size and identical recording conditions); d) incorporation of mutations that increase cell size (deletion of the Golgi calcium pump, Pmr1p) or that upregulate the TRK2 promoter, can further substantially increase the TRK currents; e) removal of intracellular chloride (e.g., replacement by sulfate or gluconate) reveals small inward currents that are K+-dependent and can be enhanced by K+ starvation; and f) finally, the latter currents display two saturating kinetic components, with preliminary estimates of K0.5 at 46 μM [K+]out and 6.8 mM [K+]out, and saturating fluxes of ∼5 mM/min and ∼10 mM/min (referred to intracellular water). These numbers are compatible with the normal K+-transport properties of Trk1p and Trk2p, respectively.This revised version was published online in August 2005 with a corrected cover date.  相似文献   

9.
The lobster (Homarus americanus) hepato-pancreatic epithelial baso-lateral cell membrane possesses three transport proteins that transfer calcium between the cytoplasm and hemolymph: an ATP-dependent calcium ATPase, a sodium-calcium exchanger, and a verapamil-sensitive cation channel. We used standard centrifugation methods to prepare purified hepato-pancreatic baso-lateral membrane vesicles and a rapid filtration procedure to investigate whether 65Zn2+ transfer across this epithelial cell border occurs by any of these previously described transporters for calcium. Baso-lateral membrane vesicles were osmotically reactive and exhibited a time course of uptake that was linear for 10–15 s and approached equilibrium by 120 s. In the absence of sodium, 65Zn2+ influx was a hyperbolic function of external zinc concentration and followed the Michaelis-Menten equation for carrier transport. This carrier transport was stimulated by the addition of 150 M ATP (increase in Km and Jmax) and inhibited by the simultaneous presence of 150 mol l–1 ATP+250 mol l–1 vanadate (decrease in both Km and Jmax). In the absence of ATP, 65Zn2+ influx was a sigmoidal function of preloaded vesicular sodium concentration (0, 5, 10, 20, 30, 45, and 75 mmol l–1) and exhibited a Hill Coefficient of 4.03±1.14, consistent with the exchange of 3 Na+/1Zn2+. Using Dixon analysis, calcium was shown to be a competitive inhibitor of baso-lateral membrane vesicle 65Zn2+ influx by both the ATP-dependent (Ki=205 nmol l–1 Ca2+) and sodium-dependent (Ki=2.47 mol l–1 Ca2+) transport processes. These results suggest that zinc transport across the lobster hepato-pancreatic baso-lateral membrane largely occurred by the ATP-dependent calcium ATPase and sodium-calcium exchanger carrier proteins.Communicated by: I.D. Hume  相似文献   

10.
The effects of sodium metabisulfite (SMB), a general food preservative, on potassium currents in rat dorsal root ganglion (DRG) neurons were investigated using the whole-cell patch-clamp technique. SMB increased the amplitudes of both transient outward potassium currents and delayed rectifier potassium current in concentration- and voltage-dependent manner. The transient outward potassium currents (TOCs) include a fast inactivating (A-current or I A) current and a slow inactivating (D-current or I D) current. SMB majorly increased IA, and ID was little affected. SMB did not affect the activation process of transient outward currents (TOCs), but the inactivation curve of TOCs was shifted to more positive potentials. The inactivation time constants of TOCs were also increased by SMB. For delayed rectifier potassium current (I K), SMB shifted the activation curve to hyperpolarizing direction. SMB differently affected TOCs and I K, its effects major on A-type K+ channels, which play a role in adjusting pain sensitivity in response to peripheral redox conditions. SMB did not increase TOCs and I K when adding DTT in pipette solution. These results suggested that SMB might oxidize potassium channels, which relate to adjusting pain sensitivity in pain-sensing DRG neurons.  相似文献   

11.
孟令博  赵曼  亢燕  祁智 《西北植物学报》2021,41(10):1681-1690
以羊草幼苗为研究对象,通过调整全营养培养基(CK,0.05 mmol/L Fe2+、0.015 mmol/L Zn2+)中铁或者锌含量设置0、10倍、20倍Fe2+(Zn2+)浓度处理Fe0(Zn0)、Fe10(Zn10)、Fe20(Zn20),以及在高铁培养基中单独添加0.15 mmol/L Zn2+或同时添加10 mmol/L Ca2+、5 mmol/L Mg2+、20 mmol/L K+处理,测定培养6 d后幼苗生长指标和矿质元素含量、以及高铁(Fe20)处理下幼苗根中抗氧化指标和相关基因表达量,探究不同浓度Fe2+、Zn2+对羊草幼苗生长、矿质元素吸收积累及抗氧化指标、基因表达的影响。结果表明:(1)缺锌(Zn0)显著抑制羊草幼苗鲜重的增加和Zn元素的积累,但促进Fe、Mg元素的积累;高浓度锌(Zn10、Zn20)显著促进幼苗叶片生长和Zn元素的积累;缺铁(Fe0)显著抑制幼苗的根长、鲜重和Fe元素的积累,促进Mg、Zn元素的积累;高浓度铁(Fe10、Fe20)显著抑制羊草幼苗根叶生长、根毛发育和Ca、Zn、Mg、K元素的积累。(2)增加Zn2+和Ca2+、Mg2+、K+浓度无法恢复高铁胁迫对幼苗生长的抑制作用。(3)高浓度铁(Fe20)处理羊草幼苗48 h后,根部过氧化物酶、超氧化物歧化酶、过氧化氢酶、抗坏血酸过氧化物酶、谷胱甘肽还原酶活性和丙二醛、抗坏血酸、还原型谷胱甘肽含量显著升高;烟酰胺合成酶基因、过氧化物酶基因表达量显著下调,植物类萌发素蛋白基因表达量显著上调。研究发现,羊草幼苗生长发育和矿质元素积累对环境中Zn2+浓度变化不敏感,却受到环境中高浓度Fe2+的显著抑制,并造成严重的氧化胁迫伤害,这种伤害无法在添加Zn2+或同时添加Ca2+、Mg2+、K+的条件下恢复。  相似文献   

12.
These experiments were conducted to determine the membrane K+ currents and channels in human urinary bladder (HTB-9) carcinoma cells in vitro. K+ currents and channel activity were assessed by the whole-cell voltage clamp and by either inside-out or outside-out patch clamp recordings. Cell depolarization resulted in activation of a Ca2+-dependent outward K+ current, 0.57 ± 0.13 nS/pF at −70 mV holding potential and 3.10 ± 0.15 nS/pF at 30 mV holding potential. Corresponding patch clamp measurements demonstrated a Ca2+-activated, voltage-dependent K+ channel (KCa) of 214 ± 3.0 pS. Scorpion venom peptides, charybdotoxin (ChTx) and iberiotoxin (IbTx), inhibited both the activated current and the KCa activity. In addition, on-cell patch recordings demonstrated an inwardly rectifying K+ channel, 21 ± 1 pS at positive transmembrane potential (V m ) and 145 ± 13 pS at negative V m . Glibenclamide (50 μm), Ba2+ (1 mm) and quinine (100 μm) each inhibited the corresponding nonactivated, basal whole-cell current. Moreover, glibenclamide inhibited K+ channels in inside/out patches in a dose-dependent manner, and the IC50= 46 μm. The identity of this K+ channel with an ATP-sensitive K+ channel (KATP) was confirmed by its inhibition with ATP (2 mm) and by its activation with diazoxide (100 μm). We conclude that plasma membranes of HTB-9 cells contain the KCa and a lower conductance K+ channel with properties consistent with a sulfonylurea receptor-linked KATP. Received: 12 June 1997/Revised: 21 October 1997  相似文献   

13.
Patch clamp experiments were conducted on satellite glial cells attached to the cell body of neurons in place within the nervous system of the snail Helix pomatia. The glial cells were studied using cell-attached and whole-cell patch clamp configurations while the underlying neurons were under current or voltage clamp control.The resting potential of the glial cells (–69 mV) was more negative than that of the underlying neurons (–53 mV), due to their high K+ selectivity. Densely packed K+ channels were present, some of which were active at the cell resting potential. Neuronal firing elicited a cumulative depolarization of the glial cells. Large K+ currents flowing from V-clamped neurons depolarized the glial layer by up to 30 mV. The glial depolarization was directly correlated with the size of the neuronal K+ current. The glial cells recovered their resting potential within 2–5 sec. The neuronal depolarization induced a delayed (20–30 sec) and persistent (3–4 min) increase in the glial K+ channel opening probability. Likewise, pulses of K+ (20–50 mM)-rich saline activated the glial channels, unless the underlying neuron was held hyperpolarized. In low Ca2+-high Mg2+ saline, neuron depolarization and K+-rich saline did not activate the glial K+ channels.These data indicate that a calcium-dependent signal released from the neuronal cell body was involved in glial channel regulation. Neuron-induced channel opening may help eliminate the K+ ions flowing from active neurons.I. Gommerat is recipient of a fellowship from the Ministère de la Recherche et de la Technologie.This work was supported by the CNRS and by a grant from the Fondation pour la Recherche Médicale. We would like to thank Mrs. M. André and Mr. G. Jacquet for technical assistance and Mrs. J. Blanc for improving the English.  相似文献   

14.
The octapeptide neurohormone D (NHD), a member of the family of adipokinetic hormones (AKH-peptides), increases the frequency of spontaneous activity in dorsal unpaired median (DUM) neurones isolated from the terminal ganglion of the cockroach Periplaneta americana. The increase in spike frequency is accompanied by changes in the shape and the amplitude of the single action potentials, e.g. a more pronounced afterhyperpolarization. Effects of NHD on membrane currents were investigated in these DUM cells with whole-cell voltage-clamp measurements. A voltage-independent Ca2+ current flowing at the resting potential (ICa,R) was found. NHD, at nanomolar concentrations, enhanced this ICa,R in a concentration-dependent manner. 0.1 mM Cd2+markedly reduced ICa,R and in this case ICa,R was hardly potentiated by NHD.In the presence of NHD a fast activating Ca2+-dependent K+current sensitive to charybdotoxin and to low concentrations of tetraethylammonium was augmented. The enhanced afterhyperpolarization of action potentials can be accounted for by the increase in the Ca2+-dependent K+ current.The changes of the membrane currents induced by NHD are discussed with respect to further effects on the spike pattern and in relation to the previously described mode of action of AKH-peptides in other preparations.Abbreviations NHD neurohormone D - AKH adipokinetic hormone  相似文献   

15.
Current clamp data of the squid axon indicate that there is a qualitative change in the adaptive response as the magnitude of the current step is increased. Large stimulus currents have a strong inhibitory effect on spike generation and on active responses in general. Such currents always lead to only one action-potential and to the elimination of post-spike subthreshold oscillation. In view of a direct connection between stimulus current and potassium current I K, the potassium channel of the Hodgkin-Huxley model is reinterpreted in a natural way such that the K+ conductance is directly dependent on I K in addition to a voltage dependence. The I-Kdependence seems to dominate whenever the stimulus current is greater than approximately 35 μA/cm2. For current ramps, and large current steps, such a current formulation leads to good agreement with the data.  相似文献   

16.
Purified epithelial brush border membrane vesicles (BBMV) were produced from the hepatopancreas of the Atlantic White shrimp, Litopeneaus setiferus, using standard methods originally developed for mammalian tissues and previously applied to other crustacean and echinoderm epithelia. These vesicles were used to study the cation dependency of sugar and amino acid transport across luminal membranes of hepatopancreatic epithelial cells. 3H-d-glucose uptake by BBMV against transient sugar concentration gradients occurred when either transmembrane sodium or potassium gradients were the only driving forces for sugar accumulation, suggesting the presence of a possible coupled transport system capable of using either cation. 3H-l-histidine transport was only stimulated by a transmembrane potassium gradient, while 3H-l-leucine uptake was enhanced by either a sodium or potassium gradient. These responses suggest the possible presence of a potassium-dependent transporter that accommodates either amino acid and a sodium-dependent system restricted only to l-leucine. Uptake of 3H-l-leucine was significantly stimulated (P < 0.05) by several metallic cations (e.g., Zn2+, Cu2+, Mn2+, Cd2+, or Co2+) at external pH values of 7.0 or 5.0 (internal pH 7.0), suggesting a potential synergistic role of the cations in the transmembrane transfer of amino acids. 3H-l-histidine influxes (15 suptakes) were hyperbolic functions of external [zinc] or [manganese], following Michaelis–Menten kinetics. The apparent affinity constant (e.g., K m) for manganese was an order of magnitude smaller (K m = 0.22 μM Mn) than that for zinc (K m = 1.80 μM Zn), while no significant difference (P > 0.05) occurred between their maximal transport velocities (e.g., J max). These results suggest that a number of cation-dependent nutrient transport systems occur on the shrimp brush border membrane and aid in the absorption of these important dietary elements.  相似文献   

17.
Volume-sensitive chloride and potassium currents were studied, using the whole-cell clamp technique, in cultured wild-type mouse proximal convoluted tubule (PCT) epithelial cells and compared with those measured in PCT cells from null mutant kcne1 –/– mice. In wild-type PCT cells in primary culture, a Cl conductance activated by cell swelling was identified. The initial current exhibited an outwardly rectifying current-voltage (I-V) relationship, whereas steady-state current showed decay at depolarized membrane potentials. The ion selectivity was I > Br > Cl >> gluconate. This conductance was sensitive to 1 mM 4,4-Diisothiocyanostilbene-2,2-disulfonic acid (DIDS), 0.1 mM 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) and 1 mM diphenylamine-2-carboxylate (DPC). Osmotic stress also activated K+ currents. These currents are time-independent, activated at depolarized potentials, and inhibited by 0.5 mM quinidine, 5 mM barium, and 10 µM clofilium but are insensitive to 1 mM tetraethylammonium (TEA), 10 nM charybdotoxin (CTX), and 10 µM 293B. In contrast, the null mutation of kcne1 completely impaired volume-sensitive chloride and potassium currents in PCT. The transitory transfection of kcne1 restores both Cl and K+ swelling-activated currents, confirming the implication of KCNE1 protein in the cell-volume regulation in PCT cells in primary cultures.  相似文献   

18.
Summary Under two-electrode voltage clamp, a mutant ofP. tetraurelia, restless (rst/rst), showed a large increase in induced current and an outward tail current when compared to the wildtype cell for hyperpolarizing voltage steps. An increase in the induced and tail currents is also observed for depolarizing voltage steps. The larger current during voltage steps and tail in the mutant were eliminated by the use of CsCl-filled electrodes and tetraethylammonium ion (TEA+) in the bath solution, characterizing the lesion as affecting a K+ conductance. Ionophoretic injection of ethylene glycol bis-(beta-aminoethyl ether) n,n,n,n-tetraacetic acid (EGTA) to buffer internal Ca2+ concentration reduced the increased K+ current and tail of therestless cell, indicating Ca2+ activation of the K+ current. Time course and amplitude of remaining currents after blockage of K+ conductances with Cs+ and TEA+ were similar in wild-type andrestless cells suggesting norestless defect in entry of calcium. The Ca2+-activated sodium current was similar in the mutant to that in wild type arguing against a defect in calcium regulation activating the K+ channel in therestless cell. We conclude that therestless mutation alters a Ca2+-activated potassium conductance other than the one previously described. The multiplicity of Ca2+-activated potassium conductances inParamecium is discussed.  相似文献   

19.
We report that Drosophila retinal photoreceptors express inwardly rectifying chloride channels that seem to be orthologous to mammalian ClC-2 inward rectifier channels. We measured inwardly rectifying Cl currents in photoreceptor plasma membranes: Hyperpolarization under whole-cell tight-seal voltage clamp induced inward Cl currents; and hyperpolarization of voltage-clamped inside-out patches excised from plasma membrane induced Cl currents that have a unitary channel conductance of ∼3.7 pS. The channel was inhibited by 1 mM Zn2+ and by 1 mM 9-anthracene, but was insensitive to DIDS. Its anion permeability sequence is Cl = SCN> Br>> I, characteristic of ClC-2 channels. Exogenous polyunsaturated fatty acid, linolenic acid, enhanced or activated the inward rectifier Cl currents in both whole-cell and excised patch-clamp recordings. Using RT-PCR, we found expression in Drosophila retina of a ClC-2 gene orthologous to mammalian ClC-2 channels. Antibodies to rat ClC-2 channels labeled Drosophila photoreceptor plasma membranes and synaptic regions. Our results provide evidence that the inward rectification in Drosophila retinal photoreceptors is mediated by ClC-2-like channels in the non-transducing (extra-rhabdomeral) plasma membrane, and that this inward rectification can be modulated by polyunsaturated fatty acid. G. Ugarte and R. Delgado contributed equally to this work.  相似文献   

20.
Voltage clamp technique was used to study macroscopic ionic currents in Rana esculenta oocytes. Depolarization steps led to the activation of a single type of outward current (I out) when contaminant potassium and calcium-dependent chloride currents were pharmacologically inhibited. The voltage threshold of I out activation was 10 mV and this current, which did not inactivate, presented a deactivation the time constant of 73±21 msec (n=26) corresponding to a membrane voltage of –60 mV. Its reversal potential (E rev) was dependent on the magnitude of the depolarization and also on pulse duration. These changes in E rev were thought to reflect intracellular ion depletion occurring during activation of the remaining outward current. Furthermore, the activation threshold of I out was clearly affected by modifications in extracellular and intracellular H+ concentrations. Indeed, intracellular alkalinization (evoked by external application of ammonium chloride) or extracellular acidification induced a rightward shift in the activation threshold while intracellular acidification (evoked by external application of sodium acetate) or extracellular alkalinization shifted this threshold toward a more negative value. Lastly, I out was dramatically reduced by divalent cations such as Cd2+, Ni2+ or Zn2+ and was strongly decreased by 4 Aminopyridine (4-AP), wellknown H+ current antagonists already described in many cell types. Therefore, it was suggested that the outward current was prominently carried by H+ ions, which may play a key role in the regulation of intracellular pH and subsequent pH dependent processes in Rana oocyte.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号