首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The kinetic properties of wild-type and mutant oligopeptide binding proteins of Lactococcus lactis were determined. To observe the properties of the mutant proteins in vivo, the oppA gene was deleted from the chromosome of L. lactis to produce a strain that was totally defective in oligopeptide transport. Amplified expression of the oppA gene resulted in an 8- to 12-fold increase in OppA protein relative to the wild-type level. The amplified expression was paralleled by increased bradykinin binding activity, but had relatively little effect on the overall transport of bradykinin via Opp. Several site-directed mutants were constructed on the basis of a comparison of the primary sequences of OppA from Salmonella enterica serovar Typhimurium and L. lactis, taking into account the known structure of the serovar Typhimurium protein. Putative peptide binding-site residues were mutated. All the mutant OppA proteins exhibited a decreased binding affinity for the high-affinity peptide bradykinin. Except for OppA(D471R), the mutant OppA proteins displayed highly defective bradykinin uptake, whereas the transport of the low-affinity substrate KYGK was barely affected. Cells expressing OppA(D471R) had a similar K(m) for transport, whereas the V(max) was increased more than twofold as compared to the wild-type protein. The data are discussed in the light of a kinetic model and imply that the rate of transport is determined to a large extent by the donation of the peptide from the OppA protein to the translocator complex.  相似文献   

2.
Growth of Lactococcus lactis in milk depends on the utilization of extracellular peptides. Up to now, oligopeptide uptake was thought to be due only to the ABC transporter Opp. Nevertheless, analysis of several Opp-deficient L. lactis strains revealed the implication of a second oligopeptide ABC transporter, the so-called Opt system. Both transporters are expressed in wild-type strains such as L. lactis SK11 and Wg2, whereas the plasmid-free strains MG1363 and IL-1403 synthesize only Opp and Opt, respectively. The Opt system displays significant differences from the lactococcal Opp system, which made Opt much more closely related to the oligopeptide transporters of streptococci than to the lactococcal Opp system: (i) genetic organization, (ii) peptide uptake specificity, and (iii) presence of two oligopeptide-binding proteins, OptS and OptA. The fact that only OptA is required for nutrition calls into question the function of the second oligopeptide binding protein (Opts). Sequence analysis of oligopeptide-binding proteins from different bacteria prompted us to propose a classification of these proteins in three distinct groups, differentiated by the presence (or not) of precisely located extensions.  相似文献   

3.
Specificity of Milk Peptide Utilization by Lactococcus lactis   总被引:1,自引:0,他引:1       下载免费PDF全文
To study the substrate specificity of the oligopeptide transport system of Lactococcus lactis for its natural substrates, the growth of L. lactis MG1363 was studied in a chemically defined medium containing milk peptides or a tryptic digest of αs2-casein as the source of amino acids. Peptides were separated into acidic, neutral, and basic pools by solid-phase extraction or by cation-exchange liquid chromatography. Their ability to sustain growth and the time course of their utilization demonstrated the preferential use of hydrophobic basic peptides with molecular masses ranging between 600 and 1,100 Da by L. lactis MG1363 and the inability to use large, acidic peptides. These peptide utilization preferences reflect the substrate specificity of the oligopeptide transport system of the strain, since no significant cell lysis was inferred. Considering the free amino acid content of milk and these findings on peptide utilization, it was demonstrated that the cessation of growth of L. lactis MG1363 in milk was due to deprivation of leucine and methionine.  相似文献   

4.
In this study we investigated the prevalence of the oppA gene, encoding the oligopeptide binding protein (OppA) of the major bacterial oligopeptide uptake system (Opp), in different species of the genus Xanthomonas. The oppA gene was detected in two Xanthomonas axonopodis strains among eight tested Xanthomonas species. The generation of an isogenic oppA-knockout derivative of the Xac 306 strain, showed that the OppA protein neither plays a relevant role in oligopeptide uptake nor contributes to the infectivity and multiplication of the bacterial strain in leaves of sweet orange (Citrus sinensis) and Rangpur lime (Citrus limonia). Taken together these results suggest that the oppA gene has a recent evolutionary history in the genus and does not contribute in the physiology or pathogenesis of X. axonopodis.  相似文献   

5.
A proton motive force-driven di-tripeptide carrier protein (DtpT) and an ATP-dependent oligopeptide transport system (Opp) have been described for Lactococcus lactis MG1363. Using genetically well-defined mutants in which dtpT and/or opp were inactivated, we have now established the presence of a third peptide transport system (DtpP) in L. lactis. The specificity of DtpP partially overlaps that of DtpT. DtpP transports preferentially di- and tripeptides that are composed of hydrophobic (branched-chain amino acid) residues, whereas DtpT has a higher specificity for more-hydrophilic and charged peptides. The toxic dipeptide L-phenylalanyl-beta-chloro-L-alanine has been used to select for a di-tripeptide transport-negative mutant with the delta dtpT strain as a genetic background. This mutant is unable to transport di- and tripeptides but still shows uptake of amino acids and oligopeptides. The DtpP system is induced in the presence of di- and tripeptides containing branched-chain amino acids. The use of ionophores and metabolic inhibitors suggests that, similar to Opp, DtpP-mediated peptide transport is driven by ATP or a related energy-rich phosphorylated intermediate.  相似文献   

6.
7.
The purification and functional reconstitution of a five-component oligopeptide ATP-binding cassette transporter with a remarkably wide substrate specificity are described. High-affinity peptide uptake was dependent on liganded substrate-binding protein OppA, which interacts with the translocator OppBCDF with higher affinity than unliganded OppA. Transport screening with combinatorial peptide libraries revealed that (i) the Opp transporter is not selective with respect to amino acid side chains of the transported peptides; (ii) any peptide that can bind to OppA is transported via Opp, including very long peptides up to 35 residues long; and (iii) the binding specificity of OppA largely determines the overall transport selectivity.  相似文献   

8.
The effect of autoproteolysis of Lactococcus lactis lactocepin III on its specificity towards beta-casein was investigated. beta-Casein degradation was performed by using either an autolysin-defective derivative of L. lactis MG1363 carrying the proteinase genes of L. lactis SK11, which was unable to transport oligopeptides, or autoproteolyzed enzyme purified from L. lactis SK11. Comparison of the peptide pools by high-performance liquid chromatography analysis revealed significant differences. To analyze these differences in more detail, the peptides released by the cell-anchored proteinase were identified by on-line coupling of liquid chromatography to mass spectrometry. More than 100 oligopeptides were released from beta-casein by the cell-anchored proteinase. Analysis of the cleavage sites indicated that the specificity of peptide bond cleavage by the cell-anchored proteinase differed significantly from that of the autoproteolyzed enzyme.  相似文献   

9.
Oligopeptides play important roles in bacterial nutrition and signaling. The oligopeptide permease (opp) gene cluster was cloned from Vibrio fluvialis. The V. fluvialis opp operon encodes five proteins: OppA, B, C, D and F. The deduced amino acid sequence of these proteins showed high similarity with those from other Gram-negative bacteria. To investigate whether OppA is involved in biofilm production, an oppA knockout mutant was constructed by homologous recombination. The oppA mutant produced more abundant biofilm than the wild type in BHI medium. When both strains were grown in minimal medium, we could not detect biofilm formation. However, it was found that the biofilm productivity of the oppA mutant was two folds greater than that of the wild type in minimal medium containing peptone or tryptone. This variation in biofilm production was demonstrated by scanning electron microscopy (SEM). In minimal medium containing C-sources, both strains produced some biofilm without significant difference in the biofilm productivity. Complementation of oppA gene with the plasmid pOAC2, which contains oppA ORF plus promoter regions, was sufficient to restore growth rate and biofilm to the wild type. These results suggest that the OppA protein is involved in uptake of peptides and affects biofilm productivity.  相似文献   

10.
Lactococcus lactis ML3 possesses two different peptide transport systems of which the substrate size restriction and specificity have been determined. The first system is the earlier-described proton motive force-dependent di-tripeptide carrier (E. J. Smid, A. J. M. Driessen, and W. N. Konings, J. Bacteriol. 171:292-298, 1989). The second system is a metabolic energy-dependent oligopeptide transport system which transports peptides of four to at least six amino acid residues. The involvement of a specific oligopeptide transport system in the utilization of tetra-alanine and penta-alanine was established in a mutant of L. lactis MG1363 that was selected on the basis of resistance to toxic analogs of alanine and alanine-containing di- and tripeptides. This mutant is unable to transport alanine, dialanine, and trialanine but still shows uptake of tetra-alanine and penta-alanine. The oligopeptide transport system has a lower activity than the di-tripeptide transport system. Uptake of oligopeptides occurs in the absence of a proton motive force and is specifically inhibited by vanadate. The oligopeptide transport system is most likely driven by ATP or a related energy-rich, phosphorylated intermediate.  相似文献   

11.
Lactococcus lactis degrades exogenous proteins such as beta-casein to peptides of 4-30 amino acids, and uses these as nitrogen sources. The binding protein or receptor (OppA(Ll)) of the oligopeptide transport system (Opp) of L.LACTIS: has the unique capacity to bind peptides from five up to at least 20 residues. To study the binding mechanism of OppA(Ll), nonameric peptides were used in which the cysteine at position 1, 3, 4, 5, 6, 7 or 9 was selectively labeled with either bulky and non-fluorescent or bulky and fluorescent groups. Also, nonameric peptides with a non-natural residue, azatryptophan, at positions 3 or 7 were used. The fluorescence of azatryptophan reports on the polarity of the environment. The studies indicate that the binding protein encloses the first six amino acids of the peptide, whereas the remaining residues stick out and interact with the surface of the binding protein. The peptide binding mechanism of OppA(Ll) is discussed in relation to known three-dimensional structures of members of this class of proteins, and an adaptation of the general binding mechanism is proposed.  相似文献   

12.
The oligopeptide transport system (Opp) of Lactococcus lactis belongs to the class of binding protein-dependent ABC-transporters. This system has the unique capacity to mediate the uptake of peptides from 4 up to at least 18 residues. Kinetic analysis of peptide binding to the binding protein, OppA, revealed a relationship between the peptide dissociation constants and the length of the ligand. The dissociation constants varied from submicromolar for dodecapeptides to millimolar for pentapeptides. This implies that the residues 6-12 of the peptide contribute to the binding affinity, and, in contrast to the current views on peptide binding by homologous proteins, these residues must interact with OppA. Analysis of pre-steady-state kinetics of binding showed that the observed differences in the -values result primarily from variations in the dissociation rate constants. These results are discussed in relation to the affinity constant for transport of these substrates. Overall, the data suggest that the slow dissociation rate constants for the larger peptides are rate determining in the translocation of peptides across the membrane.  相似文献   

13.
Abstract Citrate permease gene expression in the plasmid-free Lactococcus lactis strains IL1403 and MG1363 was studied. The ability to transport citrate results in diacetyl and acetoin production in IL1403 but not in MG1363. Citrate lyase, α-acetolactate decarboxylase, diacetyl and acetoin reductase were detected in IL1403. These data show that L. lactis ssp. lactis strain IL1403 is a citrate permease mutant of the biovar. diacetylactis . Immunological analysis revealed the α-and β-subunits of citrate lyase not only in IL1403 but also in MG1363 where no citrate lyase activity was found.  相似文献   

14.
Despite research into the nutritional requirements of Helicobacter pylori, little is known regarding its use of complex substrates, such as peptides. Analysis of genome sequences revealed putative ABC-type transporter genes for dipeptide (dppABCDF) and oligopeptide (oppABCD) transport. Genes from each system were PCR amplified, cloned, and disrupted by cassette insertion either individually (dppA, dppB, dppC, oppA, oppB, and oppC) or to create double mutants (dppA oppA, dppB oppB, dppB dppC, and oppB oppC). Peptide-utilizing abilities of the strains were assessed by monitoring growth in a chemically defined medium where the only source of the essential amino acid isoleucine was from peptides of various lengths (two to nine amino acids long). The dipeptide system mutants lacked the ability to use certain dipeptides, hexapeptides, and nonapeptides. However, these mutants retained some ability to grow with other dipeptides, tripeptides, and tetrapeptides. Of the oligopeptide mutants, only the oppB strain differed significantly from the wild type. This strain showed a wild-type phenotype for growth with longer peptides (hexa- and nonapeptides) while having a decreased ability to utilize di-, tri-, and tetrapeptides. The dppA oppA and dppB oppB mutants showed similar phenotypes to those of the dppA and dppB mutants, respectively. Peptide digestion by metalloproteases was ruled out as the cause for residual peptide transport by growing mutant strains in the presence of either EDTA or EGTA. Degradation products associated with a fluorescein isothiocyanate-labeled hexapeptide (plus cells) were minimal. An as yet unidentified peptide transport system(s) in H. pylori is proposed to be responsible for the residual transport.  相似文献   

15.
16.
A novel 51-kb conjugative transposon of Lactococcus lactis, designated Tn6098, encoding the capacity to utilize α-galactosides such as raffinose and stachyose, was identified and characterized. Alpha-galactosides are a dominant carbon source in many plant-derived foods. Most dairy lactococcus strains are unable to use α-galactosides as a growth substrate, yet many of these strains are known to have beneficial industrial traits. Conjugal transfer of Tn6098 was demonstrated from the plant-derived donor strain L. lactis KF147 to the recipient L. lactis NZ4501, a derivative of the dairy model strain L. lactis MG1363. The integration of Tn6098 into the genome of the recipient strain was confirmed by Illumina sequencing of the transconjugant L. lactis NIZO3921. The molecular structure of the integration site was confirmed by a PCR product spanning the insertion site. A 15-bp direct repeat sequence (TTATACCATAATTAC) is present on either side of Tn6098 in the chromosome of L. lactis KF147. One copy of this sequence is also present in the L. lactis MG1363 chromosome and represents the sole integration site. Phenotypic characterization of all strains showed that the transconjugant has not only acquired the ability to grow well in soy milk, a substrate rich in α-galactosides, but also has retained the flavor-forming capabilities of the recipient strain L. lactis MG1363. This study demonstrates how (induced) conjugation can be used to exploit the beneficial industrial traits of industrial dairy lactic acid bacteria in fermentation of plant-derived substrates.  相似文献   

17.
The oligopeptide-binding protein, OppA, binds and ushers oligopeptide substrates to the membrane-associated oligopeptide permease (Opp), a multi-component ABC-type transporter involved in the uptake of oligopeptides expressed by several bacterial species. In the present study, we report the cloning, purification, refolding and conformational analysis of a recombinant OppA protein derived from Xanthomonas axonopodis pv. citri (X. citri), the etiological agent of citrus canker. The oppA gene was expressed in Escherichia coli BL21 (DE3) strain under optimized inducing conditions and the recombinant protein remained largely insoluble. Solubilization was achieved following refolding of the denatured protein. Circular dichroism analysis indicated that the recombinant OppA protein preserved conformational features of orthologs expressed by other bacterial species. The refolded recombinant OppA represents a useful tool for structural and functional analyses of the X. citri protein.  相似文献   

18.
A physical and genetic map of the chromosome of the Lactococcus lactis subsp. cremoris reference strain MG1363 was established. The physical map was constructed for NotI, ApaI, and SmaI enzymes by using a strategy that combines creation of new rare restriction sites by the random-integration vector pRL1 and ordering of restriction fragments by indirect end-labeling experiments. The MG1363 chromosome appeared to be circular and 2,560 kb long. Seventy-seven chromosomal markers were located on the physical map by hybridization experiments. Integration via homologous recombination of pRC1-derived plasmids allowed a more precise location of some lactococcal genes and determination of their orientation on the chromosome. The MG1363 chromosome contains six rRNA operons; five are clustered within 15% of the chromosome and transcribed in the same direction. Comparison of the L. lactis subsp. cremoris MG1363 physical map with those of the two L. lactis subsp. lactis strains IL1403 and DL11 revealed a high degree of restriction polymorphism. At the genetic organization level, despite an overall conservation of gene organization, strain MG1363 presents a large inversion of half of the genome in the region containing the rRNA operons.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号