首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During viral entry, herpes simplex virus (HSV) glycoprotein D (gD) interacts with a specific cellular receptor such as nectin-1 (PRR1/HveC/CD111) or the herpesvirus entry mediator A (HVEM/HveA). Nectin-1 is involved in cell-to-cell adhesion. It is located at adherens junctions, where it bridges cells through homophilic or heterophilic interactions with other nectins. Binding of HSV gD prevents nectin-1-mediated cell aggregation. Since HSV gD affects the natural function of nectin-1, we further investigated the effects of gD expression on nectin-1 during HSV infection or in transfected cells. We also studied the importance of the interaction between nectin-1 and the cytoplasmic protein afadin for HSV entry and spread as well as the effects of infection on this interaction. In these investigations, we used a panel of cells expressing nectin-1 or nectin-1-green fluorescent protein fusions as the only mediators of HSV entry. During HSV infection, nectin-1 localization at adherens junction was dramatically altered in a manner dependent on gD expression. Nectin-1 and gD colocalized at cell contact areas between infected and noninfected cells and at the edges of plaques. This specific accumulation of gD at junctions was driven by expression of nectin-1 in trans on the surface of adjacent cells. Reciprocally, nectin-1 was maintained at junctions by the trans expression of gD in the absence of a cellular natural ligand. Our observations indicate that newly synthesized gD substitutes for nectin-1 of infected cells at junctions with noninfected cells. We propose that gD attracts and maintains the receptor at junctions where it can be used for virus spread.  相似文献   

2.
3.
Interaction of herpes simplex virus (HSV) glycoprotein D (gD) with specific cellular receptors is essential for HSV infection of susceptible cells. Virus mutants that lack gD can bind to the cell surface (attachment) but do not enter, implying that interaction of gD with its receptor(s) initiates the postattachment (entry) phase of HSV infection. In this report, we have studied HSV entry in the presence of the gD-binding variable (V) domain of the common gD receptor nectin-1/HveC to determine whether cell association of the gD receptor is required for HSV infection. In the presence of increasing amounts of the soluble nectin-1 V domain (sNec1(123)), increasing viral entry into HSV-resistant CHO-K1 cells was observed. At a multiplicity of 3 in the presence of optimal amounts of sNec1(123), approximately 90% of the cells were infected. The soluble V domain of nectin-2, a strain-specific HSV entry receptor, promoted entry of the HSV type 1 (HSV-1) Rid-1 mutant strain, but not of wild-type HSV-1. Preincubation and immunofluorescence studies indicated that free or gD-bound sNec1(123) did not associate with the cell surface. sNec1(123)-mediated entry was highly impaired by interference with the cell-binding activities of viral glycoproteins B and C. While gD has at least two functions, virus attachment to the cell and initiation of the virus entry process, our results demonstrate that the attachment function of gD is dispensable for entry provided that other means of attachment are available, such as gB and gC binding to cell surface glycosaminoglycans.  相似文献   

4.
Binding of herpes simplex virus (HSV) glycoprotein D (gD) to a cell surface receptor is required to trigger membrane fusion during entry into host cells. Nectin-1 is a cell adhesion molecule and the main HSV receptor in neurons and epithelial cells. We report the structure of gD bound to nectin-1 determined by x-ray crystallography to 4.0 Å resolution. The structure reveals that the nectin-1 binding site on gD differs from the binding site of the HVEM receptor. A surface on the first Ig-domain of nectin-1, which mediates homophilic interactions of Ig-like cell adhesion molecules, buries an area composed by residues from both the gD N- and C-terminal extensions. Phenylalanine 129, at the tip of the loop connecting β-strands F and G of nectin-1, protrudes into a groove on gD, which is otherwise occupied by C-terminal residues in the unliganded gD and by N-terminal residues in the gD/HVEM complex. Notably, mutation of Phe129 to alanine prevents nectin-1 binding to gD and HSV entry. Together these data are consistent with previous studies showing that gD disrupts the normal nectin-1 homophilic interactions. Furthermore, the structure of the complex supports a model in which gD-receptor binding triggers HSV entry through receptor-mediated displacement of the gD C-terminal region.

Authors Summary

Herpes simplex virus (HSV) is a widespread human pathogen. Four viral glycoproteins (gD, gB, gH/gL) are required for HSV entry into host cells. gD binding to a cell surface receptor triggers conformational changes in the other viral glycoproteins leading to membrane fusion and viral entry. Two structurally unrelated cellular protein receptors, nectin-1 and HVEM, can mediate HSV entry upon binding to gD. The structure presented here reveals the molecular basis for the stable interaction between HSV-1 gD and the receptor nectin-1. Comparison with the previously determined structures of the gD/HVEM complex and unliganded gD shows that, despite the fact that the two receptors interact with different binding sites, they both cause a similar conformational change in gD. Therefore, our data point to a conserved mechanism for receptor mediated activation of the HSV entry process. In addition, the gD/Nectin-1 structure reveals that the gD-binding site overlaps with a surface involved in nectin-1 homo-dimerization. This observation explains how gD interferes with the cell adhesion function of nectin-1. Finally, the gD/Nectin-1 complex displays similarities with other viral ligands bound to immunoglobulin-like receptors suggesting a convergent mechanism for receptors selection and usage.  相似文献   

5.
6.
The entry of herpes simplex virus (HSV) into cells requires the interaction of viral glycoprotein D (gD) with a cellular gD receptor to trigger the fusion of viral and cellular membranes. Nectin-1, a member of the immunoglobulin superfamily, can serve as a gD receptor for HSV types 1 and 2 (HSV-1 and HSV-2, respectively) as well as for the animal herpesviruses porcine pseudorabies virus (PRV) and bovine herpesvirus 1 (BHV-1). The HSV-1 gD binding domain of nectin-1 is hypothesized to overlap amino acids 64 to 104 of the N-terminal variable domain-like immunoglobulin domain. Moreover, the HSV-1 and PRV gDs compete for binding to nectin-1. Here we report that two amino acids within this region, at positions 77 and 85, are critical for HSV-1 and HSV-2 entry but not for the entry of PRV or BHV-1. Replacement of either amino acid 77 or amino acid 85 reduced HSV-1 and HSV-2 gD binding but had a lesser effect on HSV entry activity, suggesting that weak interactions between gD and nectin-1 are sufficient to trigger the mechanism of HSV entry. Substitution of both amino acid 77 and amino acid 85 in nectin-1 significantly impaired entry activity for HSV-1 and HSV-2 and eliminated binding to soluble forms of HSV-1 and HSV-2 gDs but did not impair the entry of PRV and BHV-1. Thus, amino acids 77 and 85 of nectin-1 form part of the interface with HSV gD or influence the conformation of that interface. Moreover, the binding sites for HSV and PRV or BHV-1 gDs on nectin-1 may overlap but are not identical.  相似文献   

7.
Herpes simplex virus (HSV) entry requires the interaction between the envelope glycoprotein D (gD) and a cellular receptor such as nectin-1 (also named herpesvirus entry mediator C [HveC]) or HveA/HVEM. Nectin-1 is a cell adhesion molecule found at adherens junctions associated with the cytoplasmic actin-binding protein afadin. Nectin-1 can act as its own ligand in a homotypic interaction to bridge cells together. We used a cell aggregation assay to map an adhesive functional site on nectin-1 and identify the effects of gD binding and HSV early infection on nectin-1 function. Soluble forms of nectin-1 and anti-nectin-1 monoclonal antibodies were used to map a functional adhesive site within the first immunoglobulin-like domain (V domain) of nectin-1. This domain also contains the gD-binding site, which appeared to overlap the adhesive site. Thus, soluble forms of gD were able to prevent nectin-1-mediated cell aggregation and to disrupt cell clumps in an affinity-dependent manner. HSV also prevented nectin-1-mediated cell aggregation by occupying the receptor. Early in infection, nectin-1 was not downregulated from the cell surface. Rather, detection of nectin-1 changed gradually over a 30-min period of infection, as reflected by a decrease in the CK41 epitope and an increase in the CK35 epitope. The level of detection of virion gD on the cell surface increased within 5 min of infection in a receptor-dependent manner. These observations suggest that cell surface nectin-1 and gD may undergo conformational changes during HSV entry as part of an evolving interaction between the viral envelope and the cell plasma membrane.  相似文献   

8.
Martinez WM  Spear PG 《Journal of virology》2001,75(22):11185-11195
One step in the process of herpes simplex virus (HSV) entry into cells is the binding of viral glycoprotein D (gD) to a cellular receptor. Human nectin-2 (also known as HveB and Prr2), a member of the immunoglobulin (Ig) superfamily, serves as a gD receptor for the entry of HSV-2, variant forms of HSV-1 that have amino acid substitutions at position 25 or 27 of gD (for example, HSV-1/Rid), and porcine pseudorabies virus (PRV). The gD binding region of nectin-2 is believed to be localized to the N-terminal variable-like (V) Ig domain. In order to identify specific amino acid sequences in nectin-2 that are important for HSV entry activity, chimeric molecules were constructed by exchange of sequences between human nectin-2 and its mouse homolog, mouse nectin-2, which mediates entry of PRV but not HSV-1 or HSV-2. The nectin-2 chimeric molecules were expressed in Chinese hamster ovary cells, which normally lack a gD receptor, and tested for cell surface expression and viral entry activity. As expected, chimeric molecules containing the V domain of human nectin-2 exhibited HSV entry activity. Replacement of either of two small regions in the V domain of mouse nectin-2 with amino acids from the equivalent positions in human nectin-2 (amino acids 75 to 81 or 89) transferred HSV-1/Rid entry activity to mouse nectin-2. The resulting chimeras also exhibited enhanced HSV-2 entry activity and gained the ability to mediate wild-type HSV-1 entry. Replacement of amino acid 89 of human nectin-2 with the corresponding mouse amino acid (M89F) eliminated HSV entry activity. These results identify two different amino acid sequences, predicted to lie adjacent to the C' and C" beta-strands of the V domain, that are critical for HSV entry activity. This region is homologous to the human immunodeficiency virus binding region of CD4 and to the poliovirus binding region of CD155.  相似文献   

9.
10.
Herpes simplex viruses (HSV) harness cellular calcium signaling pathways to facilitate viral entry. Confocal microscopy and small interfering RNA (siRNA) were used to identify the source of the calcium and to dissect the requisite viral-cell interactions. Binding of HSV to human epithelial cells induced no calcium response, but shifting the cells to temperatures permissive for penetration triggered increases in plasma membrane calcium followed by a global release of intracellular calcium. Transfection with siRNA targeting the proteoglycan syndecan-2 blocked viral binding and abrogated any calcium response. Transfection with siRNA targeting nectin-1, a glycoprotein D receptor, also prevented both membrane and intracellular calcium responses. In contrast, the membrane response was preserved after transfection with siRNA targeting integrinalphav, a novel glycoprotein H receptor. The membrane response, however, was not sufficient for viral entry, which required interactions with integrinalphav and release of inositol-triphosphate receptor-dependent intracellular calcium stores. Thus, calcium plays a critical, complex role in HSV entry.  相似文献   

11.

Background

Herpes simplex virus (HSV) can utilize multiple pathways to enter host cells. The factors that determine which route is taken are not clear. Chinese hamster ovary (CHO) cells that express glycoprotein D (gD)-binding receptors are model cells that support a pH-dependent, endocytic entry pathway for all HSV strains tested to date. Fusion-from-without (FFWO) is the induction of target cell fusion by addition of intact virions to cell monolayers in the absence of viral protein expression. The receptor requirements for HSV-induced FFWO are not known. We used the syncytial HSV-1 strain ANG path as a tool to evaluate the complex interplay between receptor usage, membrane fusion, and selection of entry pathway.

Results

Inhibitors of endocytosis and endosome acidification blocked ANG path entry into CHO cells expressing nectin-1 receptors, but not CHO-nectin-2 cells. Thus, under these conditions, nectin-2 mediates pH-independent entry at the plasma membrane. In addition, CHO-nectin-2 cells supported pH-dependent, endocytic entry of different strains of HSV-1, including rid1 and HFEM. The kinetics of ANG path entry was rapid (t1/2 of 5–10 min) regardless of entry route. However, HSV-1 ANG path entry by fusion with the CHO-nectin-2 cell plasma membrane was more efficient and resulted in larger syncytia. ANG path virions added to the surface of CHO-nectin-2 cells, but not receptor-negative CHO cells or CHO-nectin-1 cells, induced rapid FFWO.

Conclusion

HSV-1 ANG path can enter CHO cells by either endocytic or non-endocytic pathways depending on whether nectin-1 or nectin-2 is present. In addition to these cellular receptors, one or more viral determinants is important for the selection of entry pathway. HSV-induced FFWO depends on the presence of an appropriate gD-receptor in the target membrane. Nectin-1 and nectin-2 target ANG path to divergent cellular pathways, and these receptors may have different roles in triggering viral membrane fusion.  相似文献   

12.
Viral entry may preferentially occur at the apical or the basolateral surfaces of polarized cells, and differences may impact pathogenesis, preventative strategies, and successful implementation of viral vectors for gene therapy. The objective of these studies was to examine the polarity of herpes simplex virus (HSV) entry using several different human epithelial cell lines. Human uterine (ECC-1), colonic (CaCo-2), and retinal pigment (ARPE-19) epithelial cells were grown on collagen-coated inserts, and the polarity was monitored by measuring the transepithelial cell resistance. Controls were CaSki cells, a human cervical cell line that does not polarize in vitro. The polarized cells, but not CaSki cells, were 16- to 50-fold more susceptible to HSV infection at the apical surface than at the basolateral surface. Disruption of the tight junctions by treatment with EGTA overcame the restriction on basolateral infection but had no impact on apical infection. No differences in binding at the two surfaces were observed. Confocal microscopy demonstrated that nectin-1, the major coreceptor for HSV entry, sorted preferentially to the apical surface, overlapping with adherens and tight junction proteins. Transfection with small interfering RNA specific for nectin-1 resulted in a significant reduction in susceptibility to HSV at the apical surface but had little impact on basolateral infection. Infection from the apical but not the basolateral surface triggered focal adhesion kinase phosphorylation and led to nuclear transport of viral capsids and viral gene expression. These studies indicate that access to nectin-1 contributes to preferential apical infection of these human epithelial cells by HSV.  相似文献   

13.
We isolated a human cDNA by expression cloning and characterized its gene product as a new human protein that enables entry and infection of herpes simplex virus (HSV). The gene, designated hfl-B5, encodes a type II cell surface membrane protein, B5, that is broadly expressed in human primary tissue and cell lines. It contains a high-scoring heptad repeat at the extracellular C terminus that is predicted to form an alpha-helix for coiled coils like those in cellular SNAREs or in some viral fusion proteins. A synthetic 30-mer peptide that has the same sequence as the heptad repeat alpha-helix blocks HSV infection of B5-expressing porcine cells and human HEp-2 cells. Transient expression of human B5 in HEp-2 cells results in increased polykarocyte formation even in the absence of viral proteins. The B5 protein fulfills all criteria as a receptor or coreceptor for HSV entry. Use by HSV of a human cellular receptor, such as B5, that contains putative membrane fusion domains provides an example where a pathogenic virus with broad tropism has usurped a widely expressed cellular protein to function in infection at events that lead to membrane fusion.  相似文献   

14.
Nectin-1 is an immunoglobulin (Ig)-like entry receptor for herpes simplex virus (HSV). Like other nectins, nectin-1 forms dimers and mediates cell adhesion through interactions with other nectins. We constructed a second-domain deletion mutant of nectin-1 (nectin-1-Delta2) to examine the role of the second Ig-like domain in HSV entry. Nectin-1-Delta2 exhibited a severely reduced ability to mediate HSV entry and accumulated in the endoplasmic reticulum but retained the ability to interact with its HSV ligand, gD. The failure of nectin-1-Delta2 to mediate HSV entry probably resulted from its failure to be transported to a membrane targeted by HSV for viral entry.  相似文献   

15.
Yoon M  Spear PG 《Journal of virology》2002,76(14):7203-7208
Nectin-1, a cell adhesion molecule belonging to the immunoglobulin superfamily, can bind to virion glycoprotein D (gD) to mediate entry of herpes simplex viruses (HSV) and pseudorabies virus (PRV). Nectin-1 colocalizes with E-cadherin at adherens junctions in epithelial cells. The disruption of cell junctions can result in the redistribution of nectin-1. To determine whether disruption of junctions by calcium depletion influenced the susceptibility of epithelial cells to viral entry, Madin-Darby canine kidney cells expressing endogenous nectin-1 or transfected human nectin-1 were tested for the ability to bind soluble forms of viral gD and to be infected by HSV and PRV, before and after calcium depletion. Confocal microscopy revealed that binding of HSV and PRV gD was localized to adherens junctions in cells maintained in normal medium but was distributed, along with nectin-1, over the entire cell surface after calcium depletion. Both the binding of gD and the fraction of cells that could be infected by HSV-1 and PRV were enhanced by calcium depletion. Taken together, these results provide evidence that nectin-1 confined to adherens junctions in epithelial cells is not very accessible to virus, whereas dissociation of cell junctions releases nectin-1 to serve more efficiently as an entry receptor.  相似文献   

16.
The human genome contains about 1.5 million Alu elements, which are transcribed into Alu RNAs by RNA polymerase III. Their expression is upregulated following stress and viral infection, and they associate with the SRP9/14 protein dimer in the cytoplasm forming Alu RNPs. Using cell-free translation, we have previously shown that Alu RNPs inhibit polysome formation. Here, we describe the mechanism of Alu RNP-mediated inhibition of translation initiation and demonstrate its effect on translation of cellular and viral RNAs. Both cap-dependent and IRES-mediated initiation is inhibited. Inhibition involves direct binding of SRP9/14 to 40S ribosomal subunits and requires Alu RNA as an assembly factor but its continuous association with 40S subunits is not required for inhibition. Binding of SRP9/14 to 40S prevents 48S complex formation by interfering with the recruitment of mRNA to 40S subunits. In cells, overexpression of Alu RNA decreases translation of reporter mRNAs and this effect is alleviated with a mutation that reduces its affinity for SRP9/14. Alu RNPs also inhibit the translation of cellular mRNAs resuming translation after stress and of viral mRNAs suggesting a role of Alu RNPs in adapting the translational output in response to stress and viral infection.  相似文献   

17.
18.
Translation of m7G-capped cellular mRNAs is initiated by recruitment of ribosomes to the 5' end of mRNAs via eukaryotic translation initiation factor 4F (eIF4F), a heterotrimeric complex comprised of a cap-binding subunit (eIF4E) and an RNA helicase (eIF4A) bridged by a scaffolding molecule (eIF4G). Internal translation initiation bypasses the requirement for the cap and eIF4E and occurs on viral and cellular mRNAs containing internal ribosomal entry sites (IRESs). Here we demonstrate that eIF4E availability plays a critical role in the switch from cap-dependent to IRES-mediated translation in picornavirus-infected cells. When both capped and IRES-containing mRNAs are present (as in intact cells or in vitro translation extracts), a decrease in the amount of eIF4E associated with the eIF4F complex elicits a striking increase in IRES-mediated viral mRNA translation. This effect is not observed in translation extracts depleted of capped mRNAs, indicating that capped mRNAs compete with IRES-containing mRNAs for translation. These data explain numerous reported observations where viral mRNAs are preferentially translated during infection.  相似文献   

19.
M Niepmann  A Petersen  K Meyer    E Beck 《Journal of virology》1997,71(11):8330-8339
The synthesis of picornavirus polyproteins is initiated cap independently far downstream from the 5' end of the viral RNA at the internal ribosome entry site (IRES). The cellular polypyrimidine tract-binding protein (PTB) binds to the IRES of foot-and-mouth disease virus (FMDV). In this study, we demonstrate that PTB is a component of 48S and 80S ribosomal initiation complexes formed with FMDV IRES RNA. The incorporation of PTB into these initiation complexes is dependent on the entry of the IRES RNA, since PTB and IRES RNA can be enriched in parallel either in 48S or 80S ribosomal complexes by stage-specific inhibitors of translation initiation. The formation of the ribosomal initiation complexes with the IRES occurs slowly, is temperature dependent, and correlates with the incorporation of PTB into these complexes. In a first step, PTB binds to the IRES, and then the small ribosomal subunit encounters this PTB-IRES complex. Mutations in the major PTB-binding site interfere simultaneously with the formation of initiation complexes, translation efficiency, and PTB cross-linking. PTB stimulates translation directed by the FMDV IRES in a rabbit reticulocyte lysate depleted of internal PTB, and the efficiency of translation can be restored to the original level by the addition of PTB. These results indicate that PTB plays an important role in the formation of initiation complexes with FMDV IRES RNA and in stimulation of internal translation initiation with this picornavirus.  相似文献   

20.
A significant number of viral and cellular mRNAs utilize cap-independent translation, employing mechanisms distinct from those of canonical translation initiation. Cap-independent translation requires noncanonical, cellular RNA-binding proteins; however, the roles of such proteins in ribosome recruitment and translation initiation are not fully understood. This work demonstrates that a nucleo-cytoplasmic SR protein, SRp20, functions in internal ribosome entry site (IRES)-mediated translation of a viral RNA. We found that SRp20 interacts with the cellular RNA-binding protein, PCBP2, a protein that binds to IRES sequences within the genomic RNAs of certain picornaviruses and is required for viral translation. We utilized in vitro translation in HeLa cell extracts depleted of SRp20 to demonstrate that SRp20 is required for poliovirus translation initiation. Targeting SRp20 in HeLa cells with short interfering RNAs resulted in inhibition of SRp20 protein expression and a corresponding decrease in poliovirus translation. Our data have identified a previously unknown function of an SR protein (i.e., the stimulation of IRES-mediated translation), further documenting the multifunctional nature of this important class of cellular RNA-binding proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号