首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 75 毫秒
1.
在化猪肝微粒体磷脂酰肌醇-4-激酶(PI-4-K)的基础上,制备该酶的免疫血清,提纯IgG,并建立了PI4-K的ELISA,进行不同组织中PI4-K的免疫沉淀分析和免疫定量。结果证明:猪肝微粒体PI4-K的抗血清或抗体IgG可沉淀猪肾和猪肺的微粒膜,猪肝细胞膜和人中性粒细胞细胞膜TritonX-100增溶液(TXSM)中的PI4-K表明不同组织,不同亚细胞和不同种属的PI4-K有相似的抗原性。猪肝  相似文献   

2.
磷脂酰肌醇—3激酶/蛋白激酶B信号系统   总被引:3,自引:0,他引:3  
质膜民分磷脂酰肌醇被其3位激酶(PI3K)活化后,可以使蛋白激酶B(PKB)由细胞浆定位于胞膜,继而被磷酸化激活。PKB是原癌基因akt的产物,具有丝/苏氨酸蛋白激酶活性,介导细胞代谢、生长、增殖等效应。PI3/PKB系统是近年来发现的一个生长因子信号转导通路。  相似文献   

3.
胰岛素(Insulin,INS)通过胰岛素信号转导途径发挥其促进合成代谢、稳定血糖的生理作用,磷脂酰肌醇-3激酶(phos-phatidylinositol-3-kinase,PI-3K)是胰岛素信号转导中的关键分子.PI-3K是由催化和调节亚基构成的异源二聚体.催化和调节亚基在数量上保持平衡,此平衡的紊乱可以改变PI-3K的活性.研究表明调节亚基p85α与胰岛素的敏感性成负相关,动物和人胰岛素抵抗(Insulin resistance,IR)发生调节亚基p85α的过度表达.  相似文献   

4.
Zou W  Li ZY  Li CL  Cui ZC 《生理科学进展》2000,31(2):120-124
蛋白激酶B(PKB)是原癌基因c-akt的表达产物,它参与由生长因子激活的经磷脂磷肌醇3-激酶(PI3K)介导的信号转导过程。与许多蛋白激酶相似,PKB分子具有一特殊的AH/PH结构域(AH/PHdomain),后者能介导信号分子间的相互作用。PKB是PI3K直接的靶蛋白。PI3K产生的脂类第二信使PI-3,4,P2和PI-3,4,5-P3等均能与PKB和磷酸肌醇依赖性蛋白激酶(PDK)的AH/P  相似文献   

5.
Lipofectin介导反义磷脂酰肌醇3(IP3)-激酶寡核苷酸(ODN)转染HepG2细胞.用逆转录PCR法检测IP3-激酶mRNA表达水平,以Sandwich ELISA法检测AP-1的活化.结果表明a)反义IP3激酶ODN抑制IP3激酶mRNA表达;b)白介素-18(IL-18)诱导AP-1活化,AP-1的光密度值从基础水平的O.134±O.009上升至1. 704±0.019;c)反义IP3-激酶ODN呈时间 (5~24h)和剂量(1~8μg)依赖性地抑制IL-18诱导的AP-1活化,反义IP3-激酶ODN 2μg与细胞孵育8h的抑制作用最强,AP-1的光密度值从对照组的1.704±O.019下降到O.722±0.026,抑制丰达57.6%.上述结果表明,IP3-激酶调控白介素-18诱导的AP-1活化.  相似文献   

6.
磷脂酰肌醇转移蛋白(phosphatidylinositol/phosphatidylcholine transfer proteins,PITP)普遍存在于真核生物细胞中,PITP能够结合并交换一分子的磷脂酰肌醇(phosphatidylinositol,PI)或磷脂酰胆碱(phosphatidylcholine,PC),并促进这两类脂分子在细胞内膜组分间的转移。PITP对细胞内膜组分间脂类的运输和代谢、分泌囊泡的形成和运输、磷脂酶C(phospholipase,PLC)调节的信号传导以及神经退化等生理生化过程具有重要的影响。综述了近年来PITP的研究进展,并对目前研究中存在的一些问题进行探讨。  相似文献   

7.
8.
9.
目的幽门螺杆菌被认为是诱发胃癌的最强的风险因素。幽门螺旋杆菌的毒性成分是可以增加癌症危险的cag分泌系统,它可以使cagA和肽聚糖易位进入宿主细胞,进而激活信号转导通路。AKT是磷脂酰肌醇3。激酶(PI3K)的目的蛋白,并在胃癌中被激活,但PI3K-AKT和具有潜在致癌性的幽门螺旋杆菌诱导的细胞反应之间的关系尚不清楚。方法我们揭示了介导幽门螺旋杆菌刺激的AKT活化和胃上皮细胞的这些生物学结果之间的分子通路。结果幽门螺旋杆菌以Scr和表皮生长因子受体依赖性方式增加PI3K-AKT的信号,是幽门螺旋杆菌诱导的细胞迁移不可或缺的。结论这些结果表明,PI3K-AKT信号调节幽门螺旋杆菌诱发的病理生理反应,从而降低癌变门槛。  相似文献   

10.
目的:探讨雷公藤内酯醇对哮喘气道重构及磷脂酰肌醇3激酶(PI3K)表达的影响。方法:将40只SD大鼠随机分为5组(n=8):A组(正常对照组);B组(哮喘4周组);C组(哮喘6周组);D组(给药4周组);E组(给药6周组)。测定气道反应性并观察气道壁嗜酸性粒细胞浸润;图像分析软件测定支气管壁厚度、支气管平滑肌厚度及支气管平滑肌细胞核数量;免疫组织化学染色、逆转录聚合酶链式反应(RT-PCR)检测PI3K蛋白及mRNA表达。结果:①B组、C组PI3Kp85α的蛋白及mRNA表达水平显著高于A组(P均<0.01),E组上述指标较B组、C组、D组均显著降低(P<0.01、P<0.01、P<0.05);②B组及C组支气管壁厚度、支气管壁平滑肌厚度、支气管壁平滑肌细胞核数量均较A组明显增加(P均<0.01),而E组上述指标较B组、C组、D组均显著降低(P均<0.01);③B组、C组的气道反应性均高于A组(P均<0.01),E组较B组、C组、D组均显著降低(P<0.01、P<0.01、P<0.05)。结论:气道平滑肌增生是气道重构的一个显著特征,PI3K可能在此起促进作用。雷公藤内酯醇可能通过下调PI3K的表达而减轻哮喘气道高反应性及抑制气道平滑肌增生,对哮喘气道重构有一定治疗作用。  相似文献   

11.
The extensive sequence homology that exists among the catalyticdomains of phosphatidylinositol 3- and 4-kinases allowed usto clone a novel human gene encoding a putative phosphatidylinositolkinase, NPIK. Among other known phosphatidylinositol 3- and4-kinases, NPIK was most closely related to yeast PIK1 phosphatidylinositol4-kinase. Several forms of NPIK cDNAs were isolated, and expressionof NPIK message was detected in a wide variety of tissues. Fluorescencein situ hybridization and radiation hybrid analyses assignedthe NPIK gene to human chromosome 1. Recombinant NPIK proteincatalyzed a conversion from phosphatidylinositol to phosphatidylinositol4-phosphate. The catalytic activity of NPIK was augmented byTriton X-100, and was reduced in the presence of adenosine.Using green .uorescent protein system we determined that NPIKis localized in the cytoplasm. Taken together, the data suggestthat NPIK may play a pivotal role in regulating the synthesisof phosphatidylinositol 4-phosphate at the site(s) accessiblefrom cytoplasm.  相似文献   

12.
13.
Giudici ML  Lee K  Lim R  Irvine RF 《FEBS letters》2006,580(30):6933-6937
There are three known splice variants of Type Iγ phosphatidylinositol 4-phosphate 5-kinase (PIPkin Iγ): PIPkins Iγ87, Iγ90, and the most recently cloned (Giudici, M.L., Emson, P.C. and Irvine, R.F. (2004) A novel neuronal-specific splice variant of Type I phosphatidylinositol 4-phosphate 5-kinase isoform gamma. Biochem. J. 379, 489–496) PIPkin IγC (here called PIPkin Iγ93). Here, we have explored the subcellular localisation and mobility of Type I PIPkins in transfected cells by confocal microscopy and flourescence recovery after photobleaching. The unique behaviour shown by PIPkin Iγ93 is consistent with its suggested distinct function. Moreover, the markedly different localisation and mobility of active versus inactive PIPkin Iγ93 provide insights into the factors that dictate cellular targeting of Type Iγ PIPkins.  相似文献   

14.
We previously found that pathophysiological concentrations (< or = 10 nm) of an amyloid beta protein (Abeta25-35) reduced the plasma membrane phosphatidylinositol monophosphate level in cultured rat hippocampal neurons with a decrease in phosphatidylinositol 4-monophosphate-dependent Cl- -ATPase activity. As this suggested an inhibitory effect of Abeta25-35 on plasma membrane phosphatidylinositol 4-kinase (PI4K) activity, in vitro effects of Abetas on PI4K activity was examined using rat brain subcellular fractions and recombinant human type II PI4K (PI4KII). Abeta25-35 (10 nm) inhibited PI4KII activity, but neither PI 3-kinase (PI3K) nor type III PI4K (PI4KIII) activity, in microsomal fractions, while 100 nm Abeta25-35 inhibited PI3K activity in mitochondrial fractions. In plasma membrane-rich fractions, Abetas (> 0.5 nm) dose-dependently inhibited PI4KII activity, the maximal inhibition to 77-87% of control being reached around 10 nm of Abetas without significant changes in apparent Km values for ATP and PI, suggesting non-competitive inhibition by Abetas. The inhibition by 10 nm Abeta25-35 was reversible. In recombinant human PI4KIIalpha, inhibition profiles of Abetas were similar to those in rat brain plasma membranes. Therefore, pathophysiological concentrations of Abetas directly and reversibly inhibited plasma membrane PI4KII activity, suggesting that plasma membrane PI4KII is a target of Abetas in the pathogenesis of Alzheimer's disease.  相似文献   

15.
This work tested the theory that neuronal calcium sensor-1 (NCS-1) has effects on neurotransmitter release beyond its actions on membrane channels. We used nerve-ending preparations where membrane channels are bypassed through membrane permeabilization made by mechanical disruption or streptolysin-O. Nerve ending NCS-1 and phosphatidylinositol 4-kinase (PI4K) are largely or entirely particulate, so their concentrations in nerve endings remain constant after breaching the membrane. Exogenous, myristoylated NCS-1 stimulated nerve ending phosphatidylinositol 4-phosphate [PI(4)P] synthesis, but non-myristoylated-NCS-1 did not. The N-terminal peptide of NCS-1 interfered with PI(4)P synthesis, and with spontaneous and Ca(2+)-evoked release of both [(3)H]-norepinephrine (NA) and [(14)C]-glutamate (glu) in a concentration-dependent manner. An antibody raised against the N-terminal of NCS-1 inhibited perforated nerve ending PI(4)P synthesis, but the C-terminal antibody had no effects. Antibodies against the N- and C-termini of NCS-1 caused significant increases in mini/spontaneous/stimulation-independent release of [(3)H]-NA from perforated nerve endings, but had no effect on [(14)C]-glu release. These results support the idea that NCS-1 facilitates nerve ending neurotransmitter release and phosphoinositide production via PI4K and localizes these effects to the N-terminal of NCS-1. Combined with previous work on the regulation of channels by NCS-1, the data are consistent with the hypothesis that a NCS-1-PI4K (NP, neuropotentiator) complex may serve as an essential linker between lipid and protein metabolism to regulate membrane traffic and co-ordinate it with ion fluxes and plasticity in the nerve ending.  相似文献   

16.
Neutrophils play a central role in host defense and are recruited in vast numbers to sites of infection where they phagocytose and kill invading bacterial pathogens. Neutrophils have a short half-life that is extended at the inflamed site by pro-inflammatory cytokines and contact with bacterial cell walls. Normal resolution of inflammation involves the removal of neutrophils and other inflammatory cells by the induction of apoptosis. Spontaneous neutrophil apoptosis does not require Fas ligation, but is mediated by caspases 3, 8 and possibly caspase 9 and also involves activation of protein kinase C-. With chronic inflammatory disease, neutrophil apoptosis is delayed by pro-inflammatory cytokines, leading to persistence of neutrophils at the inflamed site and non-specific tissue damage. Here we discuss the evidence for inhibition of neutrophil apoptosis via signaling though PI-3-kinase and downstream pathways, including PDK-1 and PKB. Therapeutic strategies to resolve chronic inflammation could therefore usefully target neutrophil apoptosis and the PI-3-kinase or PKC- signaling pathways.  相似文献   

17.
Disruption of cell–extracellular matrix interaction causes epithelial cells to undergo apoptosis called anoikis, and resistance to anoikis has been suggested to be a critical step for cancer cells to metastasize. EphA2 is frequently overexpressed in a variety of human cancers, and recent studies have found that overexpression of EphA2 contributes to malignant cellular behavior, including resistance to anoikis, in several different types of cancer cells. Here we show that Ephexin4, a guanine nucleotide exchange factor for the small GTPase RhoG that interacts with EphA2, plays an important role in the regulation of anoikis. Knockdown of Ephexin4 promoted anoikis in HeLa cells, and experiments using a knockdown-rescue approach showed that activation of RhoG, phosphatidylinositol 3-kinase (PI3K), and Akt was required for the Ephexin4-mediated suppression of anoikis. Indeed, Ephexin4 knockdown caused a decrease in RhoG activity and Akt phosphorylation in HeLa cells cultured in suspension. In addition, Ephexin4 was involved in the EphA2-mediated suppression of anoikis. Taken together, these results suggest that Ephexin4 mediates resistance to anoikis through activation of RhoG and PI3K downstream of EphA2.  相似文献   

18.
The effects of sanguinarine on IgE mediated early signaling mechanisms leading to inflammatory mediators release were investigated. Pretreatment of RBL 2H3 cells with sanguinarine inhibited IgE induced activation of type II PtdIns 4-kinase activity. Concomitant with type II PtdIns 4-kinase inhibition, sanguinarine also inhibited IgE induced degranulation and β hexosaminidase release in RBL 2H3 cells. In vitro assays showed sanguinarine inhibited type II PtdIns 4-kinase activity in a dose dependent fashion with no effect on PtdIns 3-kinase activity. Fluorescence spectroscopic studies suggested that sanguinarine binds to type II PtdIns 4-kinases α and β isoforms with a Kd of 2.4 and 1.8 μM, respectively. Kinetic studies showed that sanguinarine competes with PtdIns binding site of type II PtdIns 4-kinase β. These results suggest that the anti-inflammatory effects of sanguinarine on PtdIns 3-kinase signaling pathway are more likely an indirect effect and emphasize the importance of the cross talk between type II PtdIns 4-kinases and PtdIns 3-kinases.  相似文献   

19.

Background

Upon lipopolysaccharide (LPS) stimulation, activation of both the Toll-like receptor 4 (TLR4) and phosphoinositide 3-kinase (PI3K) pathways serves to balance proinflammatory and anti-inflammatory responses. Although the antagonist to TLR4 represents an emerging promising target for the treatment of sepsis; however, the role of the PI3K pathway under TLR4-null conditions is not well understood. This goal of this study was to investigate the effect of inhibition of PI3K on innate resistance to LPS toxicity in a murine model.

Results

The overall survival of the cohorts receiving intraperitoneal injections of 100, 500, or 1000 μg LPS from Escherichia coli serotype 026:B6 after 7 d was 100%, 10%, and 10%, respectively. In contrast, no mortality was noted after 500-μg LPS injection in Tlr4-/- mice. When the PI3K inhibitor LY294002 was injected (1 mg/25 g body weight) 1 h prior to the administration of LPS, the overall survival of the Tlr4-/- mice was 30%. In the Tlr4-/- mice, the LPS injection induced no NF-κB activation but an increased Akt phosphorylation in the lung and liver, when compared to that of the C57BL/6 mice. Injection of 500 μg LPS led to a significant induction in O2- detected by electron paramagnetic resonance (EPR) spin trapping spectroscopy in the lung and liver at 3 and 6 h in C57BL/6 but not Tlr4-/- mice. Addition of LY294002 only significantly increased the O2- level in the lung and liver of the Tlr4-/- mice but not in the C57BL/6 mice following 500-μg LPS injection. In addition, the serum IL-1β and IL-2 levels were more elevated in C57BL/6 mice than in Tlr4-/- mice. Notably, IL-1β and IL-2 were significantly increased in Tlr4-/- mice but not in the C57BL/6 mice when the PI3K pathway was inhibited by LY294002 prior to LPS injection.

Conclusions

In this study, we demonstrate that innate resistance to LPS toxicity in Tlr4-/- mice is impaired by inhibition of the PI3K pathway, with a corresponding increase in mortality and production of tissue O2- and inflammatory cytokines.  相似文献   

20.
PI4K230, an isoform of phosphatidylinositol 4-kinase, known primarily as a cytoplasmic membrane-bound enzyme, was detected recently also in the nucleolus of several cells. Here we provide mechanistic insight on the targeting function of its putative nuclear localization signal (NLS) sequences using molecular modeling, digitonin-permeabilized HeLa cells and binding to various importins. The synthetic sequence 916NFNHIHKRIRRVADKYLSG934 comprising a putative monopartite NLS (NLS1), targeted covalently bound fluorescent BSA to the nucleoplasm via classical importin α/β mechanism employing importins α1 and α3 but not α5. This transport was inhibited by wheat germ agglutinin and GTPγS. The sequence 1414SKKTNRGSQLHKYYMKRRTL1433, a putative bipartite NLS (NLS2) proved ineffective in nuclear targeting if conjugated to fluorescently labeled BSA. Nonetheless, NLS2 or either of its basic clusters directed to the nucleolus soybean trypsin inhibitor that can pass the nuclear pore complex passively; moreover, an expressed 58 kDa fragment of PI4K230 (AA1166–1667) comprising NLS2 was also imported into the nucleus by import factors of reticulocyte lysate or by importin α1/β or α3/β complexes and localized to the nucleolus. We conclude that the putative bipartite NLS itself is a nucleolar targeting signal, and for nuclear import PI4K230 requires a larger sequence around it or, alternatively, the monopartite NLS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号