首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is necessary to continue to screen for new metabolites and evaluate the potential of less known and new bacterial taxa so that new and improved compounds for future use against drug-resistant bacteria or for chemical modification may be developed. There has been considerable interest in the detection and identification of marine microorganisms since they have been reported to produce bioactive compounds ranging from antitumour to antibacterial and antiviral agents. In this study, an improved technique that involves the exploitation of marine actinophages as indicators of the marine actinomycete taxa and uses marine bacteriophages as tools to reduce the numbers of common marine bacteria, which impedes the growth of rare actinomycetes on isolation plates, has been applied. This technique reduced the numbers of colony forming units of unwanted bacteria on isolation plates and hence increased the chances of detecting novel marine actinomycete genera for isolation and subsequent screening for antiviral activity.  相似文献   

2.
It is necessary to develop new methods for the isolation of unknown actinomycetes from soils. To evaluate the effects of oligotrophic medium on the isolation of soil actinomycetes and develop a new isolation method, the Gause’s synthetic medium was diluted to one tenth the recommended concentration in the present study. Soil dilution plate technique was used to isolate actinomycetes from the soil samples. Oligotrophy decreased actinomycete and streptomycete counts, as well as the number of antagonistic actinomycete species. Oligotrophy also decreased the number of actinomycete species in five samples. Some actinomycete species were cultured only on the oligotrophic medium, whereas other species could not be cultured. Oligotrophy decreased actinomycete counts more significantly for soils with organic matter content >40 g/kg. We used 16S rRNA sequence analysis to identify 22 actinomycete species that were only cultured on the oligotrophic medium. Oligotrophic medium was helpful for the isolation of Streptomyces spp., Micromonospora spp. and Streptosporangium spp. Slightly more than 80 % of the identified actinomycete species were biologically active. Therefore, we could draw a conclusion that oligotrophic medium could be helpful for the discovery of new antibiotic producers and the exploitation and utilization of new, biologically active compounds.  相似文献   

3.
A novel actinobacterium, designated KMM 3890 was isolated from a bottom sediment sample collected from the Sakhalin shallow environment. Phylogenetic analysis based on 16S rRNA gene sequences demonstrated strain KMM 3890 affiliation to the genus Citricoccus. In addition to its hemolytic activity, this strain exhibited inhibitory activity against Gram-positive bacteria. It was found that the marine isolate Citricoccus sp. KMM 3890 produced and excreted into the culture medium a large amount of the compound, which was isolated and structurally characterized as known cyclic siderophore nocardamine on the basis of combined spectral analyses. Nocardamine showed inhibitory effects to colony formation of T-47D, SK-Mel-5, SK-Mel-28 and PRMI-7951 tumor cell lines and a weak antimicrobial against Gram-positive bacteria and no revealed cytotoxic activity. This study can be considered as the first report on marine isolate of the genus Citricoccus producing nocardamine with antitumor activity.  相似文献   

4.
Harmful algal blooms (HABs), commonly called red tides, are caused by some toxic phytoplanktons, and have made massive economic losses as well as marine environmental disturbances. As an effective and environment-friendly strategy to control HAB outbreaks, biological methods using marine bacteria capable of killing the harmful algae or algicidal extracellular compounds from them have been given attention. A new member of the gamma-Proteobacteria, Hahella chejuensis KCTC 2396, was originally isolated from the Korean seashore for its ability to secrete industrially useful polysaccharides, and was characterized to produce a red pigment. This pigment later was identified as an alkaloid compound, prodigiosin. During the past several decades, prodigiosin has been extensively studied for its medical potential as immunosuppressants and antitumor agents, owing to its antibiotic and cytotoxic activities. The lytic activity of this marvelous molecule against Cochlodinium polykrikoides cells at very low concentrations (1 ppb) was serendipitously detected, making H. chejuensis a strong candidate among the biological agents for HAB control. This review provides a brief overview of algicidal marine bacteria and their products, and describes in detail the algicidal characteristics, biosynthetic process, and genetic regulation of prodigiosin as a model among the compounds active against red-tide organisms from the biochemical and genetic viewpoints.  相似文献   

5.
Actinomycete bacteria produce a wide variety of secondary metabolites with diverse biological activities, some of which have been developed for human medicine. Rare actinomycetes are promising sources in search for new drugs, and their potential for producing biologically active molecules is poorly studied. In this work, we have investigated the diversity of actinomycetes in the shallow water sediments of the Trondheim fjord (Norway). Due to the use of different selective isolation methods, an unexpected variety of actinomycete genera was isolated. Although the predominant genera were clearly Streptomyces and Micromonospora, representatives of Actinocorallia, Actinomadura, Knoellia, Glycomyces, Nocardia, Nocardiopsis, Nonomuraea, Pseudonocardia, Rhodococcus and Streptosporangium genera were isolated as well. To our knowledge, this is the first report describing isolation of Knoellia and Glycomyces species from the marine environment. 35 selected actinomycete isolates were characterized by 16S rDNA sequencing, and were shown to represent strains from 11 different genera. In addition, these isolates were tested for antimicrobial activity and the presence of polyketide synthase and non-ribosomal peptide synthetase genes. This study confirms the significant biodiversity of actinobacteria in the Norwegian marine habitats, and their potential for producing biologically active compounds.  相似文献   

6.
The continued development of culturing technologies for the discovery of new molecules from marine microbes is of paramount importance for drug discovery. Coupled with this, the use of the high-throughput approach shows promise for increasing the number of Gram-negative and non-filamentous bacteria cultures that can be surveyed, since they show a lower potential of bioactivity. In this work, we propose a new strategy of high-throughput cultivation of bacteria inspired by a dilution-to-extinction (DTE) methodology for the isolation of, and screening for, new cytotoxic compound producing marine bacteria. A marine sponge tissue was directly used as inoculum and the results were compared with the data obtained through the direct plating isolation method. Enterobacterial repetitive intergenic consensus polymerase chain reaction (ERIC-PCR) genomic fingerprinting indicated the isolation of four bioactive strains, three of them producers of a pederin-like compound, and the fourth one able to synthesize a different compound, still unidentified, rendered by the DTE approach, in comparison with one bioactive strain identified through the plating method. Analyses based on the 16S rRNA gene data showed the existence of two different species belonging to the genus Labrenzia. The efficiency and diversity ratio in the number of isolates and compounds are discussed. In view of the results, the proposed DTE approach proved to be efficient for the isolation of new cytotoxic compounds of marine origin and pave the way for future potential applications.  相似文献   

7.
Sponges (Porifera) currently represent one of the richest sources of natural products and account for almost half of the pharmacologically active compounds of marine origin. However, to date very little is known about the pharmacological potential of the sponges from polar regions. In this work we report on screening of ethanolic extracts from 24 Antarctic marine sponges for different biological activities. The extracts were tested for cytotoxic effects against normal and transformed cell lines, red blood cells, and algae, for modulation of the activities of selected physiologically important enzymes (acetylcholinesterase, butyrylcholinesterase, and α-amylase), and for inhibition of growth of pathogenic and ecologically relevant bacteria and fungi. An extract from Tedania (Tedaniopsis) oxeata was selectively cytotoxic against the cancer cell lines and showed growth inhibition of all of the tested ecologically relevant and potentially pathogenic fungal isolates. The sponge extracts from Isodictya erinacea and Kirkpatrickia variolosa inhibited the activities of the cholinesterase enzymes, while the sponge extracts from Isodictya lankesteri and Inflatella belli reduced the activity of α-amylase. Several sponge extracts inhibited the growth of multiresistant pathogenic bacterial isolates of different origins, including extended-spectrum beta-lactamase and carbapenem-resistant strains, while sponge extracts from K. variolosa and Myxilla (Myxilla) mollis were active against a human methicillin-resistant Staphylococcus aureus strain. We conclude that Antarctic marine sponges represent a valuable source of biologically active compounds with pharmacological potential.  相似文献   

8.
The North Sea bryozoan Flustra foliacea was investigated to determine its secondary metabolite content. Gas chromatography-mass spectrometry analysis of a dichloromethane extract of the bryozoan enabled 11 compounds to be identified. Preparative high-performance liquid chromatography of the extract resulted in the isolation of 10 brominated alkaloids (compounds 1 to 10) and one diterpene (compound 11). All of these compounds were tested to determine their activities in agar diffusion assays against bacteria derived from marine and terrestrial environments. Compounds 1, 3 to 7, 10, and 11 exhibited significant activities against one or more marine bacterial strains originally isolated from F. foliacea but only weak activities against all of the terrestrial bacteria. By using the biosensors Pseudomonas putida(pKR-C12), P. putida(pAS-C8), and Escherichia coli(pSB403) the antagonistic effect on N-acyl-homoserine lactone-dependent quorum-sensing systems was investigated. Compounds 8 and 10 caused reductions in the signal intensities in these bioassays ranging from 50 to 20% at a concentration of 20 μg/ml.  相似文献   

9.
A series of phenazine compounds, including 15 synthetics and a natural derivative, iodinin, were tested for inhibition of selected phytopathogenic bacteria and fungi. Eleven of the compounds had bacteriostatic activity for Xanthomonas oryzae. Three other species of Xanthomonas were resistant. Phenazine 5-oxide was the most effective phenazine against the bacterial leaf blight.  相似文献   

10.
Lapachol was chemically modified to obtain its thiosemicarbazone and semicarbazone derivatives. These compounds were tested for antimicrobial activity against several bacteria and fungi by the broth microdilution method. The thiosemicarbazone and semicarbazone derivatives of lapachol exhibited antimicrobial activity against the bacteria Enterococcus faecalis and Staphylococcus aureus with minimal inhibitory concentrations (MICs) of 0.05 and 0.10 µmol/mL, respectively. The thiosemicarbazone and semicarbazone derivatives were also active against the pathogenic yeast Cryptococcus gattii (MICs of 0.10 and 0.20 µmol/mL, respectively). In addition, the lapachol thiosemicarbazone derivative was active against 11 clinical isolates of Paracoccidioides brasiliensis, with MICs ranging from 0.01-0.10 µmol/mL. The lapachol-derived thiosemicarbazone was not cytotoxic to normal cells at the concentrations that were active against fungi and bacteria. We synthesised, for the first time, thiosemicarbazone and semicarbazone derivatives of lapachol. The MICs for the lapachol-derived thiosemicarbazone against S. aureus, E. faecalis, C. gattii and several isolates of P. brasiliensis indicated that this compound has the potential to be developed into novel drugs to treat infections caused these microbes.  相似文献   

11.
为从广西北部湾的泥样和植物中分离海洋放线菌,筛选具有抑菌活性的菌株,分离活性化合物。研究采用普通稀释法分离菌株,对发酵产物进行抑菌活性测试,利用活性追踪分离活性化合物,并通过波谱方法确定化合物结构。结果表明从6个海泥样品和3个植物样品中共分离73株放线菌,筛选得到具有抑香蕉枯萎病和金黄色葡萄球菌活性的菌株7株,并从其中的1株链霉菌 Streptomyces sp.MDCW-126的次级代谢产物中分离鉴定了星形孢菌素。从广西北部湾分离的药用活性菌株资源具有开发和深入研究价值。  相似文献   

12.
Actinomycetes are an important source of novel, biologically active compounds. New methods need to be developed for isolating previously unknown actinomycetes from soil. The objective of this experiment was to study microwave irradiation of soil as a means for isolating previously unknown actinomycetes. Soil samples were collected at ten elevations between 800 m and 3670 m on Taibai Mountain, Shaanxi Province, China. Moistened soil samples were irradiated at 120 W heating power (2450 MHz) for 3 min using a household microwave oven. Irradiation increased total actinomycete, streptomycete, and antagonistic actinomycete counts on three types of culture media. Irradiation also increased the number of culturable actinomycete isolates. Some actinomycete isolates were culturable only after the soil was irradiated, whereas other isolates could not be cultured after irradiation. Irradiation of soil from elevations >3000 m increased actinomycete counts significantly but had little effect on the number of culturable actinomycete isolates. In contrast, irradiation of samples from elevations <3000 m had relatively little effect on actinomycete counts, but significantly increased the number of culturable actinomycete isolates. We used 16S rDNA sequence analysis to identity 14 actinomycete isolates that were only culturable after irradiation. Microwave irradiation of soil was helpful for isolating Streptomyces spp., Nocardia spp., Streptosporangium spp., and Lentzea spp. Slightly more than 90% of the identified actinomycete species were biologically active. In conclusion, microwave irradiation is a useful tool for isolating biologically active actinomycetes from soil.  相似文献   

13.
Marine sediment samples from Visakhapatnam coast of Bay of Bengal, India, were investigated as a source of actinomycetes to screen for the production of antibiotics and cytotoxic compounds. Actinomycete strain DVR D4 with interesting bioactivity profile was isolated during our systematic study of marine actinomycetes. Based on biochemical properties and 16S rDNA analysis the isolate DVR D4 was identified as a strain of Amycolatopsis alba. A solvent extraction followed by a chromatographic purification helped to isolate a cytotoxic compound, which was identified as 1(10-aminodecyl) Pyridinium salt antibiotic, on the basis of spectral data. The compound showed potent cytotoxic activity against cancer cell lines of cervix (HeLa), breast (MCF-7) and brain (U87MG) in vitro and also exhibited antibacterial activities against Gram-positive and Gram-negative bacteria.  相似文献   

14.
In this research paper, a stepwise chemical reaction was conducted to synthesize and develop of a new potent azo-oxazolone, which was used as prototypical molecule for production of two series of azo-benzimide (5a–j) and azo-imidazolone (6a–j). FT-IR, 1H NMR, 13C NMR and CHN analysis were used for the structural elucidation. The high biological efficiency of newly obtained compounds was confirmed by in vitro antioxidant efficacy and in vitro antimicrobial activity against gram-positive and gram-negative bacteria via disc diffusion and tube dilution techniques. In addition, in vivo anti-microbial activity of some of the synthesized compounds was determined by using burnt rats which infected by Staphylococcus aureus. Tested compounds have shown high anti-microbial activity and wound healing in comparison to ucederm as a control. In vivo acute toxicity was carried out by up and down method for the compounds 4, 5d and 6d. The limited test dose was 2000 mg/kg, while the maximum tolerated dose was 5000 mg/kg which has administered no lethality recorded.  相似文献   

15.
Aims:  The objective of this research was to isolate and identify a cytotoxic marine bacterium, BIT-33, and to investigate the apoptosis effects of its metabolite on colon cancer cells.
Method and Results:  We isolated 93 marine bacteria from seawater samples. Of these, strain BIT-33 exhibited the strongest cytotoxic activity on three colon cancer cells (HT-29, SW480 and HCT116). Biochemical tests and 16S rDNA sequencing of this strain allowed us to identify BIT-33 as a strain of Bacillus vallismortis . The cytotoxic compound from B. vallismortis BIT-33 was purified by reverse-phase high-performance liquid chromatography. Direct cytotoxic effect of the compound was measured by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazoliumbromide assay. The compound induced apoptosis of colon cancer cells, as indicated by DNA fragmentation of agarose gel electrophoresis, flow cytometric analysis (sub-G1 method) and annexin V staining.
Conclusion:  The cytotoxic compound from B. vallismortis BIT-33 was purified, and the compound showed direct cytotoxic and apoptotic effects on colon cancer cells in a dose- and time-dependent manner.
Significance and Impact of the Study:  Taken together, our results suggest that the compound from B. vallismortis BIT-33 could be a candidate for the development of apoptosis-specific anti-tumour agents. This study indicated that marine bacteria could be an important source of cytotoxic metabolites.  相似文献   

16.
Historically, marine invertebrates have been a prolific source of unique natural products, with a diverse array of biological activities. Recent studies of invertebrate-associated microbial communities are revealing microorganisms as the true producers of many of these compounds. Inspired by the human microbiome project, which has highlighted the human intestine as a unique microenvironment in terms of microbial diversity, we elected to examine the bacterial communities of fish intestines (which we have termed the fish microbiome) as a new source of microbial and biosynthetic diversity for natural products discovery. To test the hypothesis that the fish microbiome contains microorganisms with unique capacity for biosynthesizing natural products, we examined six species of fish through a combination of dissection and culture-dependent evaluation of intestinal microbial communities. Using isolation media designed to enrich for marine Actinobacteria, we have found three main clades that show taxonomic divergence from known strains, several of which are previously uncultured. Extracts from these strains exhibit a wide range of activities against both gram-positive and gram-negative human pathogens, as well as several fish pathogens. Exploration of one of these extracts has identified the novel bioactive lipid sebastenoic acid as an anti-microbial agent, with activity against Staphylococcus aureus, Bacillus subtilis, Enterococcus faecium, and Vibrio mimicus.  相似文献   

17.
Endophytic actinomycetes from Azadirachta indica A. Juss. were screened and evaluated for their anti-microbial activity against an array of pathogenic fungi and bacteria. A total of 55 separate isolates were obtained from 20 plants, and 60% of these showed inhibitory activity against one or more pathogenic fungi and bacteria. Actinomycetes were most commonly recovered from roots (54.5% of all isolates), followed by stems (23.6%), and leaves (21.8%). The dominant genus was Streptomyces (49.09% of all isolates), while Streptosporangium (14.5%), Microbispora (10.9%), Streptoverticillium (5.5%), Sacchromonospora sp. (5.5%), and Nocardia (3.6%) were also recovered. Streptomyces isolates AzR 006, 011, and 031 (all from roots) had acute activity against Pseudomonas fluorescens, while AzR027, 032, and 051 (also all from roots) showed activity against Escherichia coli. Meanwhile, an isolate of Nocardia sp. from leaves (AzL025) showed antagonism against Bacillus subtilis. Overall, 32 of the 55 were found to have broad spectrum significant antimicrobial activity, while about 4% of them showed strong and acute inhibition to pathogenic fungi and bacteria. Isolates of Streptomyces AzR031, 008, and 047, Nocardia sp. AzL025, and Streptosporangium sp. AzR 021 and 048 are of particular interest because they showed significant antagonistic activity against root pathogens, including Pythium and Phytophthora sp. Thus, many of the isolates recovered from A. indica in this study may be used in developing potential bio-control agents against a range of pathogenic fungi and bacteria and in the production of novel natural antimicrobial compounds. These results not only further our understanding of plant–microbe interactions but also indicate that there is an untapped resource of endophytic microorganisms that could be exploited in the biotechnological, medicinal, and agricultural industries.  相似文献   

18.
Nine compounds isolated from the leaf and stem of Vitis amurensis Rupr. (Vitaceae) were evaluated for their antimicrobial activity against two oral pathogens, Streptococcus mutans and Streptococcus sanguis, which are associated with caries and periodontal disease, respectively. The results of several antimicrobial tests, including MIC, MBC, and TBAI, showed that three compounds inhibited the growth of the test bacteria at concentrations ranging from 12.5 to 50 μg/mL. Among these compounds, compound 5, trans-ε-viniferin, displayed the strongest activity against S. mutans and S. sanguis with MIC values of 25 and 12.5 μg/mL, respectively. This is the first report on the antimicrobial activity of stilbenes and oligostilbenes isolated from the leaf and stem of V. amurensis. Thus, this result suggests that natural antimicrobial compounds derived from V. amurensis may benefit oral health as plaque-control agents for the prevention of dental caries and periodontal disease.  相似文献   

19.
Five series of dihydrotriazine derivatives containing chalcone (13a–i), phenoxy acetophenone (14a–b), benzyl benzene (15a–c), naphthoxyl acetophenone (16a–b) and benzyl naphthalene (17a–h) moieties were designed and synthesized. The antibacterial and antifungal activities of these compounds were evaluated against several strains of Gram-positive and Gram-negative bacteria, as well as a single fungus. Compound 17h was found to be the most potent of all of the compounds tested, with an MIC value of 0.5?μg/mL against several Gram-positive (Staphylococcus aureus 4220 and QRSA CCARM 3505) and Gram-negative (Escherichia coli 1924) strains of bacteria. However, this compound was inactive against Pseudomonas aeruginosa 2742 and Salmonella typhimurium 2421, indicating that its antibacterial spectrum is similar to those of the positive controls gatifloxacin and moxifloxacin. The cytotoxic activity of the compound 13i, 16b and 17h was assessed in Human normal liver cells.  相似文献   

20.
Cyanobacteria are widely recognized as a valuable source of bioactive metabolites. The majority of such compounds have been isolated from so-called complex cyanobacteria, such as filamentous or colonial forms, which usually display a larger number of biosynthetic gene clusters in their genomes, when compared to free-living unicellular forms. Nevertheless, picocyanobacteria are also known to have potential to produce bioactive natural products. Here, we report the isolation of hierridin B from the marine picocyanobacterium Cyanobium sp. LEGE 06113. This compound had previously been isolated from the filamentous epiphytic cyanobacterium Phormidium ectocarpi SAG 60.90, and had been shown to possess antiplasmodial activity. A phylogenetic analysis of the 16S rRNA gene from both strains confirmed that these cyanobacteria derive from different evolutionary lineages. We further investigated the biological activity of hierridin B, and tested its cytotoxicity towards a panel of human cancer cell lines; it showed selective cytotoxicity towards HT-29 colon adenocarcinoma cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号