首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This study details an investigation of the viscoelastic behavior of some biomaterials (nacre, cattle horn and beetle cuticle) at lamellar length scales using quasi-static and dynamic nanoindentation techniques in the materials' Transverse Direction (TD) and Longitudinal Direction (LD). Our results show that nacre exhibits high fracture toughness moving towards a larger cam- paniForm as the stress frequency varies from 10 Hz to 200 Hz. Elytra cuticle exhibits the least fracture toughness presenting little energy dissipation in TD. It was initially speculated that the fracture toughness of the subject materials would be directly related to energy-dissipating mechanisms (mechanical hysteresis), but not the maximum value of the loss tangent tan& However, it was found that the materials' elastic modulus and hardness are similar in both the TD and LD when assessed using the quasi-static nanoindentation method, but not dynamic nanoindentation. It is believed that the reported results can be useful in the design of new crack arrest and damping materials based on biological counterparts.  相似文献   

2.
Many types of tissues in living organisms exhibit a combination of different properties to fulfil their mechanical functions in complex environments. Nacre with more than 90% brittle and hard phase and a little protein matrix, exhibits high strength and toughness, which is difficult to achieve in artificial materials. Researchers have shown that the toughness of nacre is related to the cracking process. Most of them, however, assume an obvious pre-existing crack on the model and the initiation of the microscopical pre-existing crack is not considered yet. Based on fracture mechanics with the cohesive zone model, we reveal the mechanism of the crack initiation and propagation pattern in staggered biomaterials without any pre-existing crack. The simulation result shows that there are two crack propagation modes: localized mode and unlocalized mode. A crack initiates and propagates in a small area in the localized mode, while cracks initiate at different points and propagate in various paths in the unlocalized mode. The crack initiation mechanism from the intrinsic properties of the material is clarified using energy based stability analysis. The result shows that the shear interfacial mechanism significantly delays the crack initiation.  相似文献   

3.
BACKGROUND: The Florida manatee (Trichechus manatus latirostris) is listed as endangered by the U.S. Department of the Interior. Manatee ribs have different microstructure from the compact bone of other mammals. Biomechanical properties of the manatee ribs need to be better understood. Fracture toughness (K(C)) has been shown to be a good index to assess the mechanical performance of bone. Quantitative fractography can be used in concert with fracture mechanics equations to identify fracture initiating defects/cracks and to calculate the fracture toughness of bone materials. METHOD OF APPROACH: Fractography is a standard technique for analyzing fracture behavior of brittle and quasi-brittle materials. Manatee ribs are highly mineralized and fracture in a manner similar to quasi-brittle materials. Therefore, quantitative fractography was applied to determine the fracture toughness of manatee ribs. RESULTS: Average fracture toughness values of small flexure specimens from six different sizes of manatees ranged from 1.3 to 2.6 MPa(m)(12). Scanning electron microscope (SEM) images show most of the fracture origins were at openings for blood vessels and interlayer spaces. CONCLUSIONS: Quantitative fractography and fracture mechanics can be combined to estimate the fracture toughness of the material in manatee rib bone. Fracture toughness of subadult and calf manatees appears to increase as the size of the manatee increases. Average fracture toughness of the manatee rib bone materials is less than the transverse fracture toughness of human and bovine tibia and femur.  相似文献   

4.
A fracture mechanics study of cortical bone is presented to investigate the contribution, development morphology of microcracking in cortical bone during crack propagation. Post-hoc analyses of microcrack orientation, crack propagation velocity and fracture surface roughness were conducted on previously tested human and bovine bone compact tension specimens. It was found that, consistent with its higher toughness, bovine bone formed significantly more longitudinal, transverse and inclined microcracks than human bone. However, in human bone more of the microcracks that formed were longitudinal than transverse or inclined, a feature that would optimise bone's toughness. Crack propagation velocity in human and bovine bone displayed the same characteristic pattern with crack extension, where an increase in velocity is followed by a consequent decrease and vice versa. On the basis of this pattern, a model or crack propagation has been proposed. It provides a detailed account of mocrocrack formation and contribution towards the propagation of a fracture crack. Analyses of fracture surfaces indicated that, consistent with its higher toughness, bovine bone displays a rougher surface than human bone but they both have the same basic fractured element, i.e. a mineralised collagen fibril.  相似文献   

5.
Mechanical properties of nacre and highly mineralized bone   总被引:2,自引:0,他引:2  
We compared the mechanical properties of 'ordinary' bovine bone, the highly mineralized bone of the rostrum of the whale Mesoplodon densirostris, and mother of pearl (nacre) of the pearl oyster Pinctada margaritifera. The rostrum and the nacre are similar in having very little organic material. However, the rostral bone is much weaker and more brittle than nacre, which in these properties is close to ordinary bone. The ability of nacre to outperform rostral bone is the result of its extremely well-ordered microstructure, with organic material forming a nearly continuous jacket round all the tiny aragonite plates, a design well adapted to produce toughness. In contrast, in the rostrum the organic material, mainly collagen, is poorly organized and discontinuous, allowing the mineral to join up to form, in effect, a brittle stony material.  相似文献   

6.
The bovine hoof has been examined as a model for the study of keratinized skin appendages. We characterized the keratin polypeptides of hoof bed and matrix and compared them to epidermis using two-dimensional electrophoresis and immunoblot techniques. Both hoof tissues express keratins 6 and 16 (as described by Franke et al. (1981) J. Mol. Biol. 153, 933-959) and b2 and a1-4 which are previously undescribed proteins unique to the bovine hoof. Keratins of hoof matrix and bed share one or more common antigenic components as defined by immunoblot analysis. Hoof matrix expresses keratins 7 and 14, which are absent in hoof bed, and also expresses a greater number of isoelectric variants of keratin 6. Biopsies of hoof bed and matrix transplanted onto athymic mice both made hard hoof and underwent active keratin synthesis as evidenced by incorporation of [3H]leucine. Indirect immunofluorescence studies of the grafts showed that they had the histology and immunoreactivity previously noted for hoof bed and matrix. The two-dimensional gel electrophoretic patterns of both grafts were similar and expressed keratins b2 and a1-4. We conclude that a unique group of keratins exists in hoof. Furthermore, while hoof matrix is the major contributor to hard hoof, hoof bed epidermis maintains the capacity to make hard hoof and may contribute to the synthesis of the hoof plate in vivo. The ability to graft hoofs onto athymic mice provides an opportunity for the study of a number of aspects of hoof formation.  相似文献   

7.
Abstract. Autotomy of the elytra (scales) in the annelid Alentia gelatinosa occurs at a breakage plane near the junction between the elytron and its elytrophore (stalk), and requires fracture of the external epidermal cuticle. The mechanism of cuticular fracture was investigated by light and electron microscopy, glycoconjugate histochemistry, direct observation of autotomy in isolated preparations, and mechanical tests. The breakage plane crosses the elytrophoral wall at a cuticular thickening and passes through the subelytral cavity between the elytron and the terminal septum of the elytrophore. At the cuticular breakage zone (CBZ), the collagenous framework of the normal cuticle is replaced with non‐collagenous microfibrils. The CBZ has a complex glycoconjugate composition and includes a strongly sulfated, uronic acid‐containing glycosaminoglycan and a high proportion of disulfide or sulfydryl linkages. Tonofilament‐rich epidermal cells (tendon cells) are attached to the thick cuticle on the dorsal and ventral sides of the CBZ. Dorsal tendon cells have long processes that extend into the elytron near the roof of the subelytral cavity. Ventral tendon cells are linked by connective tissue to the longitudinal and terminal sphincter muscles of the elytrophore. Mechanical tests showed that the elytrophoral wall is not inherently weaker at the autotomy plane than elsewhere. It is hypothesized that at autotomy (i) contractile force generated by the sphincter muscle is transmitted through elytrophoral tendon cells to the ventral side of the CBZ and (ii) contraction of the longitudinal and main circular muscles of the elytrophore increases hydrostatic pressure in its lumen, everts the terminal septum, and generates tension that is transmitted through elytral tendon cells to the dorsal side of the CBZ. This results in stress concentration at the basal edge of the CBZ and initiates fracture. The distinctive microstructure and macromolecular composition of the CBZ may reduce its fracture toughness and make it more susceptible to brittle failure.  相似文献   

8.
The purpose of this work is to investigate the use of indentation fracture as a method of measuring toughness at the microscale in cortical bone. Indentation fracture employs sharp indenters to initiate cracks, whose length can be used to calculate the toughness of the material. Only a cube corner indenter tip is found to initiate cracks at a suitable size scale for microstructural measurement. Cracks from 7 to 56 microm in length are produced using loads from 0.05 to 3N. Preliminary data predicts rising toughness with increasing crack length (rising R-curve behaviour) at the microscale. This technique provides a new insight into fracture in cortical bone since it allows the investigator to observe mechanisms and measure toughness at a size scale at which in vivo damage is known to exist.  相似文献   

9.
Bone is an anisotropic material with a hierarchical structure consisting of organic matrix, minerals and water. Fracture toughness (K(C)) has been shown to be a good index to assess the mechanical performance of bone. A chevron-notched (CN) beam test, a standard fracture mechanics test successfully applied to many other materials, was used to determine the transverse-direction fracture toughness in manatee rib and bovine femur cortical bone. Although human and bovine bone has been well studied, there is virtually no information on the toughness of manatee rib bone. As a biological material, manatee rib is interesting for study in that it is a highly mineralized bone. Three major advantages of the CN specimen test are: (1) it is easier to reach plane strain condition; (2) there is no fatigue-precracking needed; and (3) it is relatively easy to produce stable crack propagation before catastrophic fracture. The fracture toughness values of manatee rib and bovine femur were measured to be 4.5 +/- 0.5 MPa m(1/2) and 5.8 +/- 0.5 MPa m(1/2), respectively. Based on the microstructures shown in SEM images, two features that contributed to the greater fracture toughness of bovine femur were identified as greater osteon density and lesser porosity.  相似文献   

10.
Fracture toughness and crack tip opening angle were measured for bovine patellar cartilage using modified single-edged notch specimens of two thicknesses. There was no difference in fracture toughness between thin (0.7 mm) versus relatively thick (2.7 mm) specimens, but the crack tip opening angle at initiation of crack propagation was larger for the thin specimens (106 deg) than for the thick specimens (70 deg). Fracture toughness of the bovine patellar cartilage (1.03 kJ/m2) was not statistically different than that reported previously for canine patellar cartilage (1.07 kJ/m2) employing the same methods. Large variation in measurements for both bovine and canine cartilage are in part attributable to variation between individual animals, and are consistent with variation in other mechanical property measurements for articular cartilage. The observed reduction in crack tip opening angle with increased specimen thickness is consistent with behavior of some engineering materials, and demonstrates that specimen thickness influences fracture behavior for bovine patellar cartilage.  相似文献   

11.
Bone is a composite composed mainly of organics, minerals, and water. Many researchers have studied effects such as crack velocity, density, orientation, storage media, porosity, and age on the fracture toughness (K(C), also called critical stress intensity factor) of compact bone. Most of these studies were conducted at room temperature. Considering that the body temperature of animals is greater than room temperature, and that bone has a large volumetric percentage of organics and water (generally, 55-65%), it is hypothesized that temperature has a significant effect on the fracture toughness of compact bone. Single-edge V-notched (SEVN) specimens were prepared to measure the fracture toughness of bovine femur and manatee rib in water at 0, 10, 23, 37, and 50 degrees C in four-point flexure. The fracture toughness values of bovine femur and manatee rib were found to decrease from 7.0 to 4.3MPam(1/2) and from 5.5 to 4.0MPam(1/2), respectively, as temperature increased over a temperature range of 50 degrees C. The results support the hypothesis that temperature has a significant effect on the fracture toughness of compact bone. Therefore, we suggest that study on fracture toughness of bone should be done at physiologically relevant temperatures.  相似文献   

12.
Bone, a tri-phase composite, consists of nano-sized apatite minerals, an organic component, and water. Heat-treated bovine cortical bone has been proposed as a candidate for void-filling bone substitute. However, the toughness of heat-treated bone is not yet fully studied. Fracture toughness (K(c)) and work of fracture (W(f)) of hydrated, dehydrated, and ashed bovine bone were estimated using a single-edge V-notched beam method. Thermal gravimetric analysis and differential thermal analysis were used to determine the temperature at which the organics and water were removed. Dehydrated specimens were obtained by placing the samples in a 60 degrees C vacuum oven for 24h or a 110 degrees C furnace for 2h. Ashed specimens were obtained by heat-treating samples at 600 degrees C for 24h. K(c) of bovine specimens decreased from 5.5MPa.m(1/2) for hydrated bone, to 3.8MPa.m(1/2) for dehydrated specimens, and to 0.36MPa.m(1/2) for ashed specimens. W(f) decreased from 7.1 to 1.1kJ/m(2) for dehydrated specimens, and to 0.04kJ/m(2) for ashed specimens. The main reasons for the significant decreases in K(c) and W(f) may be attributed to water's ability in stabilizing collagen structure and to the organics' ability in making bone more ductile. Because of the large decrease in fracture toughness and work of fracture, we suggest that ashed bone is not appropriate for load-bearing bone substitute in areas where bone experiences loadings in flexure.  相似文献   

13.
The ultrastructure of the calcareous skeleton is described in twenty–one species of recent tubuliporine cyclostome bryozoans, using field emission SEM. The succession of skeletal fabrics in interior walls may be classified into four different fabric suites. The first–formed part of the calcitic skeleton in all species for which it has been observed is a precursory fabric of tiny, wedge–shaped crystallites. This is succeeded in about half of the species studied by a fabric of transverse fibres, followed by foliated fabric and often semi–nacre (fabric suite 1). Most of the remaining species lack transverse fibres and have interior walls largely comprising semi–nacre (fabric suite 2). A few species have skeletons consisting of predominantly distally–oriented, irregularly or regularly foliated fabric (fabric suite 3). A single species has a skeleton of proximally–oriented foliated fabric (fabric suite 4). Basal exterior walls in all species have a precursory fabric of tiny wedge–shaped crystallites without a strong preferred orientation, deposited directly upon the organic cuticle, followed by a layer of planar spherulitic structure, which in turn is succeeded by a similar fabric to that developed in the interior wall of the species concerned. Outermost layers of frontal exterior walls exhibit one of the following combinations of three fabrics: an outer layer of (1) finely granular or wedge–shaped crystallites; a thin dense granular layer followed by (2) distally accreting planar spherulitic fabric., or (3) obliquely accreting planar spherulitic fabric growing partly towards the midline of the frontal wall. Terminal diaphragms usually have outer layers dominated by planar spherulitic ultrastructure with centripetal growth directions. The fabric suites present in tubuliporines encompass most known fabrics found in the other cyclostome suborders and support the notion that this species–rich suborder occupies a central position in cyclostome evolution.  相似文献   

14.
1 Introduction Insects have been adapted to their living surround-ings. Two different adaptations they have were the pas-sive adaptation and the active adaptation. For examples,the passive adaptation of soil insects to the soil habitatresulted in shorter or vestigial additional legs, the bodybecoming smaller, thinner or flatter, and wings and eyesdiminishing; the stronger digging legs of some soil in-sects were a result of active adaptation for burrowing [1]. The biological character…  相似文献   

15.
The nacre of mollusk shells is distinguished by an exceptional mechanical efficiency which is derived essentially from its lamellar structure and frequently acts as a source of inspiration for the development of biomimetic materials. The structure and mechanical properties of nacre have been intensively investigated with a special focus on its toughening strategies; nevertheless, the fracture mechanisms, more specifically the critical stress/strain conditions for the failure of nacre, and the effects of structural orientation and hydration state remain largely unexplored. Here uniaxial compression tests were performed on nacre of both dry and hydrated states with different off-axis angles, i.e., the inclination of loading axis with respect to the lamellar structure, ranging from 0° to 90°. The mechanical properties and fracture characteristics of nacre and their dependences on the structural orientation and hydration state were elucidated in terms of mechanics behind failure. Quantitative relationships were established between the mechanical properties and off-axis angle based on different failure criteria. The competition between the fracture modes of fragmentation and shearing was quantified by comparing their respective driving force and resistance on the interfacial plane. This study may aid the understanding on the mechanical behavior of nacre and nacre-inspired synthetic materials and promote a better replication of the underlying design principles of nacre in man-made systems.  相似文献   

16.
This study investigates the nature of deformation and differences in the mechanisms of fracture and properties of dentine where there has been a loss of moisture, as may occur with removal of the pulp in the endodontic treatment of teeth. Controlled fracture toughness testing was conducted on bovine teeth to determine the influence of hydration on the work of fracture of dentine. Significant differences (p<0.01) were observed between the fracture toughness of hydrated (554+/-27.7J/m2) and dehydrated (113+/-17.8J/m2) dentine. Observations of the crack tip region during crack extension revealed extensive ligament formation occurred behind the crack tip. These ligaments provide considerable stability to the crack by significantly increasing the work of fracture, thereby acting as a fracture-toughening mechanism. Micro-cracking, reported as a fracture-toughening mechanism in bone, is also clearly seen. A zone of in-elastic deformation may occur as hydrated specimens revealed upon crack extension, a region about the tip that appeared to suck water into the structure and to exude water behind the crack tip. In dehydrated dentine, no in-elastic zone was observed. Micro-cracking is present though the cracks are smaller, straighter and with less opening than hydrated dentine. Only limited ligament formation just behind the crack tip was observed. These differences resulted in a significantly lower work of fracture with unstable brittle fracture characteristics. Based on these results, several fracture-toughening mechanisms were identified in dentine, with micro-cracking not considered the most important. These findings may be relevant for bone, a similar mineralised hydrated tissue.  相似文献   

17.
To promote transungual permeation of nystatin (NYST), molecule with high molecular weight, no water-soluble, amphoteric by iontophoresis. The synergic effect of the combination of cetylpyridinium chloride, CPC, or polyoxyethylene (20) sorbitan monooleate, TW80, and iontophoresis was investigated. In vitro permeation experiments were carried out through bovine hoof slices using vertical diffusion cells. A low current density (0.2 mA/cm2) was applied by introducing Ag/AgCl electrodes in the donor (anode) and receptor (cathode) chambers. The donor phase consisted of a solution, a suspension, or gel-type vehicles containing NYST and surfactants in pH 5.6 HEPES buffer. The addition of CPC to NYST suspension (SOSP) produced a fivefold increase on the permeability of the bovine hoof membrane to the drug. The application of anodal iontophoresis further improved NYST flux. Conversely, NYST transungual permeation was not influenced by TW80 either in the passive diffusion or iontophoretic flux. Furthermore, the iontophoretic treatment does not appear to induce irreversible alterations to the hoof bovine membranes. The present work demonstrated the efficacy of iontophoresis as a treatment for different nail pathologies with large molecules very slightly soluble in water without irreversibly affecting the nail structure. A synergistic effect between CPC and iontophoresis was observed.  相似文献   

18.
19.
The behavioural sequence of the oviposition process can be quite distinct in herbivorous leaf beetles: eggs are either connected to the plant surface or laid into mesophyll tissue. Females of two beetle species were recorded with a digital camera in order to analyse their oviposition behaviour. The morphology of the plant-egg-interface was investigated in three species by histological studies and scanning electron microscopy. The lily leaf beetle, Lilioceris lilii, oviposits directly on the plant cuticle without damaging the plant tissue. Several eggs are released together with secretion and are laid in a row. The secretion sorbes in the plant cuticle. In the close relative, Lilioceris merdigera, the secretion can enter the leaf tissue via the stomata. The mustard leaf beetle, Phaedon cochleariae, gnaws a characteristic hole into the epidermis and part of the mesophyll. Into this cavity, it releases in an alternating sequence secretion, a single egg and again secretion. The egg, which is usually laid on plants growing in wetlands, is surrounded by an extrachorion that might possess a respiratory function. The potential eco-physiological relevance of the specific nature of the placement of eggs and secretion on or in the plant tissue is discussed.  相似文献   

20.
We extracted proteinase inhibitors from the nacre of the oyster Pinctada margaritifera with water. Mixing the nacre powder with water for 20 h led to a water-soluble fraction [0.24% (wt/wt) of nacre]. After dialysis of the water-soluble matrix through 6- to 8-kDa and 0.5-kDa membranes, the proteinase inhibitors were divided into low and high molecular weight fractions that contained inhibitors of papain, bovine cathepsin B, and human cathepsin L. We studied the heterogeneity of the inhibitors after separating the low molecular weight fraction according to charge and hydrophobicity. After multistep purification, mass spectrometry analysis revealed that a potent inhibitory fraction contained several molecules. This observation demonstrates the difficulties encountered in attempting to isolate individual metabolites from the complex mixture of molecules present in nacre matrix. Interestingly, the low molecular weight fraction contained specific inhibitors that could discern between cathepsin B and cathepsin L. The nacre organic inhibitors were active against several cysteine proteinases, yet they were more specific in relation to serine proteinases, because only proteinase K was inhibited. These results demonstrate, for the first time, the presence of active proteinase inhibitors in the mollusc shell, and it is possible that these inhibitors may play a role in either protection of proteins involved in shell formation or in defense against parasites, or both.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号