首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A two-layer membrane filtration (MF) medium (injury-mitigating MF [IM-MF]) and a procedure for the enumeration of injured fecal coliforms are described. These procedures included the addition of glycerol and acetate plus reducing agents to both layers of a two-layer medium and rinsing of the filter with a rich resuscitation medium. Some changes in incubation time and temperatures were used. This method was compared with the multiple-tube fermentation most-probable-number procedure and the one-step M-FC agar-membrane filter method (direct M-FC) in terms of fecal coliform recovery from various aquatic environments that cause bacterial injury. With chlorinated sewage effluents, results of the IM-MF technique were equal to or greater than the most probable number in 9 of 18 trials and were 1.3 to 19 times greater than the M-FC method. When sewage samples were chlorinated in the laboratory, fecal coliform counts with IM-MF equaled or exceeded the most probable number in 7 of 15 trials and always exceeded the M-FC. M-FC was exceeded by IM-MF in 30 of 33 trials with clean mountain stream water. Fecal coliform bacteria that were exposed to low levels of an iodophore in the laboratory produced IM-MF counts 3 to 10 times greater than those with M-FC. A biochemical rationale for the formation of the IM-MF medium is discussed.  相似文献   

2.
A two-layer membrane filtration (MF) medium (injury-mitigating MF [IM-MF]) and a procedure for the enumeration of injured fecal coliforms are described. These procedures included the addition of glycerol and acetate plus reducing agents to both layers of a two-layer medium and rinsing of the filter with a rich resuscitation medium. Some changes in incubation time and temperatures were used. This method was compared with the multiple-tube fermentation most-probable-number procedure and the one-step M-FC agar-membrane filter method (direct M-FC) in terms of fecal coliform recovery from various aquatic environments that cause bacterial injury. With chlorinated sewage effluents, results of the IM-MF technique were equal to or greater than the most probable number in 9 of 18 trials and were 1.3 to 19 times greater than the M-FC method. When sewage samples were chlorinated in the laboratory, fecal coliform counts with IM-MF equaled or exceeded the most probable number in 7 of 15 trials and always exceeded the M-FC. M-FC was exceeded by IM-MF in 30 of 33 trials with clean mountain stream water. Fecal coliform bacteria that were exposed to low levels of an iodophore in the laboratory produced IM-MF counts 3 to 10 times greater than those with M-FC. A biochemical rationale for the formation of the IM-MF medium is discussed.  相似文献   

3.
MacConkey agar, standard M-FC agar, M-FC agar without rosolic acid, M-FC agar with a resuscitation top layer, Teepol agar, and pads saturated with Teepol broth, were evaluated as growth media for membrane filtration counting of fecal coliform bacteria in water. In comparative tests on 312 samples of water from a wide variety of sources, including chlorinated effluents, M-FC agar without rosolic acid proved the medium of choice because it generally yielded the highest counts, was readily obtainable, easy to prepare and handle, and yielded clearly recognizable fecal coliform colonies. Identification of 1,139 fecal coliform isolates showed that fecal coliform tests cannot be used to enumerate Escherichia coli because the incidence of E. coli among fecal coliforms varied from an average of 51% for river water to 93% for an activated sludge effluent after chlorination. The incidence of Klebsiella pneumoniae among fecal coliforms varied from an average of 4% for the activated sludge effluent after chlorination to 32% for the river water. The advantages of a standard membrane filtration procedure for routine counting of fecal coliforms in water using M-FC agar without rosolic acid as growth medium, in the absence of preincubation or resuscitation steps, are outlined.  相似文献   

4.
Four membrane filter methods for the enumeration of fecal coliforms were compared for accuracy, specificity, and recovery. Water samples were taken several times from 13 marine, 1 estuarine, and 4 freshwater sites around Puerto Rico, from pristine waters and waters receiving treated and untreated sewage and effluent from a tuna cannery and a rum distillery. Differences of 1 to 3 orders of magnitude in the levels of fecal coliforms were observed in some samples by different recovery techniques. Marine water samples gave poorer results, in terms of specificity, selectivity, and comparability, than freshwater samples for all four fecal coliform methods used. The method using Difco m-FC agar with a resuscitation step gave the best overall results; however, even this method gave higher false-positive error, higher undetected-target error, lower selectivity, and higher recovery of nontarget organisms than the method using MacConkey membrane broth, the worst method for temperate waters. All methods tested were unacceptable for the enumeration of fecal coliforms in tropical fresh and marine waters. Thus, considering the high densities of fecal coliforms observed at most sites in Puerto Rico by all these methods, it would seem that these density estimates are, in many cases, grossly overestimating the degree of recent fecal contamination. Since Escherichia coli appears to be a normal inhabitant of tropical waters, fecal contamination may be indicated when none is present. Using fecal coliforms as an indicator is grossly inadequate for the detection of recent human fecal contamination and associated pathogens in both marine and fresh tropical waters.  相似文献   

5.
The hydrophobic-grid membrane filter (HGMF) has been proposed as an alternate method to the standard membrane filter (MF) procedure for the detection and enumeration of coliforms from water. Eight samples of nonchlorinated wastewater effluents were analyzed by the HGMF, standard MF, and tube fermentation most-probable-number methods for fecal coliforms, and eight samples each of polluted surface and dosed drinking waters were analyzed by the same methods for total coliforms. The drinking waters were dosed with coliforms and other heterotrophs concentrated from nonchlorinated domestic wastewater and treated with chlorine to reduce the numbers of organisms and simulate stress caused by chlorination. Statistical analyses determined that recoveries of fecal coliforms were significantly higher by the filtration methods for the nonchlorinated domestic wastewaters but not for the other waters. The results also indicated that recoveries of fecal and total coliforms did not differ significantly when either MFs or HGMFs were used. Total coliform results obtained with HGMFs having greater than 100 positive grid cells were significantly more precise than estimates obtained by the standard MF method only for polluted surface waters.  相似文献   

6.
The hydrophobic-grid membrane filter (HGMF) has been proposed as an alternate method to the standard membrane filter (MF) procedure for the detection and enumeration of coliforms from water. Eight samples of nonchlorinated wastewater effluents were analyzed by the HGMF, standard MF, and tube fermentation most-probable-number methods for fecal coliforms, and eight samples each of polluted surface and dosed drinking waters were analyzed by the same methods for total coliforms. The drinking waters were dosed with coliforms and other heterotrophs concentrated from nonchlorinated domestic wastewater and treated with chlorine to reduce the numbers of organisms and simulate stress caused by chlorination. Statistical analyses determined that recoveries of fecal coliforms were significantly higher by the filtration methods for the nonchlorinated domestic wastewaters but not for the other waters. The results also indicated that recoveries of fecal and total coliforms did not differ significantly when either MFs or HGMFs were used. Total coliform results obtained with HGMFs having greater than 100 positive grid cells were significantly more precise than estimates obtained by the standard MF method only for polluted surface waters.  相似文献   

7.
Four membrane filter methods fecal coliform enumeration were evaluated and compared in six laboratories based on determination of accuracy, specificity, upper counting limit, and recovery comparability. Recovery accuracy with pure cultures ranged from 89 to 100% for m-FC, mTEC (a procedure developed for thermotolerant Escherichia coli), and m-FC2 methods (the latter incorporating a 2-h, 35 degrees C resuscitation period), but was less than 60% for the MacConkey membrane broth method. These figures dropped by approximately 40 to 55% when the cultures were subjected to temperature (10 degrees C) stress. Close to 800 colonies were verified to determine specificity. False-positive colonies occurred most frequently with the m-FC2 method (18%), whereas false-negative colonies were most common on MacConkey membrane broth (26%). In counting range experiments using a variety of samples, the highest upper counting limit was 130 colonies per filter with the mTEC procedure. Recovery comparisons were based on over 130 samples including raw surface waters, raw sewage, and chlorinated and unchlorinated sewage effluents. In general, recoveries were significantly higher with the m-FC2 and mTEC methods; however, on m-FC2, growth of nontarget background organisms was also higher in most cases. Highest recoveries from chlorinated sewage effluents were obtained by the mTEC method, and the addition of a similar resuscitation period to the m-FC procedure (m-FC2) improved fecal coliform recovery from such samples. The best overall performance for fecal coliform enumeration was obtained with the mTEC method with high recovery and low levels of background colonies, good specificity and accuracy, and a high upper counting limit. This procedure also offers the advantage of enumerating E. coli within 24 h.  相似文献   

8.
m-T7 agar, designed to improve recoveries of injured total coliforms, was evaluated for its effectiveness as a fecal coliform medium. The time and temperature of preincubation were found to be crucial to the optimal recovery of fetal coliforms. Isolation rates for fecal coliforms on m-T7 agar from sewage effluents were the highest when plates were preincubated at 37 degrees C for 8 h before transfer to 44.5 degrees C for 12 h. The medium was found to produce consistently higher fecal coliform counts than all the other methods tested. Recoveries were 3.1 times greater than the standard m-FC method and 1.7 times greater than the two-layer enrichment, temperature acclimation procedure. Verification rates for fecal coliforms isolated on m-T7 agar averaged 89.0%, whereas verification rates for m-FC agar averaged only 82.8%. Both media isolated similar fecal coliform populations. The advantages of a single medium, highly effective for the isolation of both total and fecal coliforms, are discussed.  相似文献   

9.
Evaluation of m-T7 agar as a fecal coliform medium.   总被引:2,自引:2,他引:0       下载免费PDF全文
m-T7 agar, designed to improve recoveries of injured total coliforms, was evaluated for its effectiveness as a fecal coliform medium. The time and temperature of preincubation were found to be crucial to the optimal recovery of fetal coliforms. Isolation rates for fecal coliforms on m-T7 agar from sewage effluents were the highest when plates were preincubated at 37 degrees C for 8 h before transfer to 44.5 degrees C for 12 h. The medium was found to produce consistently higher fecal coliform counts than all the other methods tested. Recoveries were 3.1 times greater than the standard m-FC method and 1.7 times greater than the two-layer enrichment, temperature acclimation procedure. Verification rates for fecal coliforms isolated on m-T7 agar averaged 89.0%, whereas verification rates for m-FC agar averaged only 82.8%. Both media isolated similar fecal coliform populations. The advantages of a single medium, highly effective for the isolation of both total and fecal coliforms, are discussed.  相似文献   

10.
Delayed-Incubation Membrane-Filter Test for Fecal Coliforms   总被引:2,自引:2,他引:0       下载免费PDF全文
A delayed-incubation membrane-filter technique for fecal coliforms was developed and compared with the immediate fecal coliform test described in Standard Methods for the Examination of Water and Wastewater (13th ed., 1971). Laboratory and field evaluations demonstrated that the delayed-incubation test, with the use of the proposed vitamin-free Casitone holding medium, produces fecal coliform counts which very closely approximate those from the immediate test, regardless of the source or type of fresh-water sample. Limited testing indicated that the method is not as effective when used with saline waters. The delayed-incubation membrane-filter test will be especially useful in survey monitoring or emergency situations when the standard immediate fecal coliform test cannot be performed at or near the sample site or when time and temperature limitations for water sample storage cannot be met. The procedure can also be used for analyzing the bacterial quality of water or waste discharges by a standardized procedure in a central examining laboratory remote from the sample source.  相似文献   

11.
The repair detection procedure of Speck et al. (Appl. Microbiol. 29:549-550, 1975) was adapted for the enumeration of coliforms, fecal coliforms, and enterococci in seafood and environmental samples. Samples were pour plated with Trypticase soy agar, followed by a 1- to 2-h incubation to effect repair; the plates were then overlaid with the selective medium and incubated. Violet red bile agar and an incubation temperature of 45 degrees C were used as the selective conditions for fecal coliforms, and KF streptococcal agar was used for the enumeration of enterococci. The method was more efficient than the standard most-probable-number method for fecal coliform enumeration and also allowed enumeration of the injured cells, which might have remained undetected when selective medium in the most-probable-number method was used. The repair detection method effectively recovered the injured portion of the population of enterococci capable of growing on KF streptococcal agar. The repair enumeration method was not suitable for coliforms in marine samples because associative marine bacteria mimicked coliforms in violet red bile agar plates incubated at 35 degrees C. The marine bacteria did not grow at 45 degrees C and therefore did not interfere with fecal coliform enumeration.  相似文献   

12.
The repair detection procedure of Speck et al. (Appl. Microbiol. 29:549-550, 1975) was adapted for the enumeration of coliforms, fecal coliforms, and enterococci in seafood and environmental samples. Samples were pour plated with Trypticase soy agar, followed by a 1- to 2-h incubation to effect repair; the plates were then overlaid with the selective medium and incubated. Violet red bile agar and an incubation temperature of 45 degrees C were used as the selective conditions for fecal coliforms, and KF streptococcal agar was used for the enumeration of enterococci. The method was more efficient than the standard most-probable-number method for fecal coliform enumeration and also allowed enumeration of the injured cells, which might have remained undetected when selective medium in the most-probable-number method was used. The repair detection method effectively recovered the injured portion of the population of enterococci capable of growing on KF streptococcal agar. The repair enumeration method was not suitable for coliforms in marine samples because associative marine bacteria mimicked coliforms in violet red bile agar plates incubated at 35 degrees C. The marine bacteria did not grow at 45 degrees C and therefore did not interfere with fecal coliform enumeration.  相似文献   

13.
Reports indicate that the standard membrane filter (MF) technique for recovery of fecal coliform bacteria from chlorinated sewage effluents is less effective than the multiple-tube (or most-probable-number [MPN]) procedure. A modified MF method was developed that requires a preincubation period of 5 h at 35 degrees C followed by 18+/-1 h at 44.5 degrees C. This procedure was evaluated by using both laboratory- and plant-chlorinated primary and secondary effluents. Results obtained by the modified MF method compared favorably with those of the MPN technique for the enumeration of fecal coliforms from chlorinated effluent. Agreement between these two methods was greatest with samples from secondary treatment plants. The average recovery of fecal coliforms by the standard MF procedure was only 14% that of the MPN method, whereas with the modified technique recovery was increased to 68% of the MPN counts. Enhanced recovery resulting from a simple modification in the incubation schedule makes the MF method a valuable adjunct for enumerating fecal coliforms from chlorinated effluents.  相似文献   

14.
Reports indicate that the standard membrane filter (MF) technique for recovery of fecal coliform bacteria from chlorinated sewage effluents is less effective than the multiple-tube (or most-probable-number [MPN]) procedure. A modified MF method was developed that requires a preincubation period of 5 h at 35 degrees C followed by 18+/-1 h at 44.5 degrees C. This procedure was evaluated by using both laboratory- and plant-chlorinated primary and secondary effluents. Results obtained by the modified MF method compared favorably with those of the MPN technique for the enumeration of fecal coliforms from chlorinated effluent. Agreement between these two methods was greatest with samples from secondary treatment plants. The average recovery of fecal coliforms by the standard MF procedure was only 14% that of the MPN method, whereas with the modified technique recovery was increased to 68% of the MPN counts. Enhanced recovery resulting from a simple modification in the incubation schedule makes the MF method a valuable adjunct for enumerating fecal coliforms from chlorinated effluents.  相似文献   

15.
Three holding media, including the vitamin-free Casitone holding medium (m-VFC) recommended by Standard Methods for the Examination of Water and Wastewater for use with the delayed-incubation membrane filter procedure, were compared for their ability to maintain viability of fecal coliforms. Each medium was tested according to the procedure described in the above reference with 60 to 80 pure cultures of fecal coliforms and a variety of natural water samples containing fecal coliforms. Fecal coliform recovery with m-ST holding medium (containing ethanol, sulfanilamide, and Tris [pH 8.6] was significantly greater than recovery with m-VFC (containing vitamin-free casein hydrolysate, sodium benzoate, sulfanilamide, and ethanol). Recovery with m-VFC, was, in turn, significantly greater than with NSB medium (containing nutrient broth, boric acid, and NaCl as major ingredients). Fecal coliform counts obtained with m-ST by the delayed-incubation membrane filter procedure were higher than counts obtained by the standard immediate incubation. This result suggested that some of the sublethally injured fecal coliforms in natural water samples may have recovered during the incubation period. We propose that m-ST be used in place of m-VFC for the delayed-incubation membrane filter procedure.  相似文献   

16.
Three holding media, including the vitamin-free Casitone holding medium (m-VFC) recommended by Standard Methods for the Examination of Water and Wastewater for use with the delayed-incubation membrane filter procedure, were compared for their ability to maintain viability of fecal coliforms. Each medium was tested according to the procedure described in the above reference with 60 to 80 pure cultures of fecal coliforms and a variety of natural water samples containing fecal coliforms. Fecal coliform recovery with m-ST holding medium (containing ethanol, sulfanilamide, and Tris [pH 8.6] was significantly greater than recovery with m-VFC (containing vitamin-free casein hydrolysate, sodium benzoate, sulfanilamide, and ethanol). Recovery with m-VFC, was, in turn, significantly greater than with NSB medium (containing nutrient broth, boric acid, and NaCl as major ingredients). Fecal coliform counts obtained with m-ST by the delayed-incubation membrane filter procedure were higher than counts obtained by the standard immediate incubation. This result suggested that some of the sublethally injured fecal coliforms in natural water samples may have recovered during the incubation period. We propose that m-ST be used in place of m-VFC for the delayed-incubation membrane filter procedure.  相似文献   

17.
Tests of two leading brands of membrane filters used for enumerating fecal coliform bacteria showed that Gelman GN-6 filters recovered statistically more colonies of bacteria than did Millipore HAWG 047SO filters from pure cultures incubated at either 35 C (the optimal growth temperature) or 44.5 C (the standard temperature for the fecal coliform test). Standard membrane filter procedures with M-FC broth base were used to enumerate the organisms. Densities of colonies incubated on Gelman filters at 44.5 C averaged 2.3 times greater than those on Millipore filters. Plate counts of the bacteria at both temperatures indicated that incubation at 44.5 C did not inhibit propagation of fecal coliform bacteria. For the pour plates, M-FC broth base plus 1.5% agar was used. This modified medium compared favorably to plate count agar for enumerating Escherichia coli. At 35 and 44.5 C, colony counts on Gelman filters agreed closely with plate counts prepared concurrently, but Millipore counts were consistently lower than plate counts, especially at 44.5 C. Comparative analyses of river water for fecal coliform bacteria by the membrane filter technique gave results comparable to those for the pure cultures.  相似文献   

18.
Influence of Coliform Source on Evaluation of Membrane Filters   总被引:3,自引:3,他引:0       下载免费PDF全文
Four brands of membrane filters were examined for total and fecal coliform recovery performance by two experimental approaches. Using diluted EC broth cultures of water samples, Johns-Manville filters were superior to Sartorius filters for fecal coliform but equivalent for total coliform recovery. Using river water samples, Johns-Manville filters were superior to Sartorius filters for total coliform but equivalent for fecal coliform recovery. No differences were observed between Johns-Manville and Millipore or Millipore and Sartorius filters for total or fecal coliform recoveries using either approach, nor was any difference observed between Millipore and Gelman filters for fecal coliform recovery from river water samples. These results indicate that the source of the coliform bacteria has an important influence on the conclusions of membrane filter evaluation studies.  相似文献   

19.
The performance capabilities of two commercial 4-methylumbelliferyl-beta-D-glucuronide preparations were evaluated for the detection of Escherichia coli from water samples. Eighty-three water samples were collected from a treated water reservoir, and 32 samples were collected from untreated surface water. There was a statistically significant difference between the two commercial preparations compared with the Standard Methods membrane filtration fecal coliform (MFC) method for the detection of E. coli from treated water samples. However, there was no difference between the two methods and the MFC test for E. coli detection from the untreated surface water samples. The disagreement between the two commercial products and the MFC method was primarily due to the occurrence of false-negative results with the two commercial products. The data indicate that the occurrence of false-negative samples could be attributed to impaired substrate specificity and sensitivity of the two tests for E. coli detection. There was no apparent relationship between the occurrence of false-negative results and heterotrophic plate counts in samples.  相似文献   

20.
The standard one-step M-FC broth-membrane-filter procedure for recovery of fecal coliforms from chlorinated sewage effluents is much less effective than the multiple-tube (most-probable-number) technique. A two-step membrane-filter method, using a pre-enrichment technique with phenol red lactose broth and incubation at 35 degrees C for 4 h, followether 18+/-2 h, enhanced fecal coliform recovery from chlorinated effluents. The results of 126 comparisons using chlorinated effluents from five wastewater plants showed that fecal coliform recovery by using the two-step membrane-filter method is comparable to that using the multiple-tube procedure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号