首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The Streptococcus faecalis pheromone-dependent conjugative plasmid pAD1::Tn916 and the membrane filter-dependent conjugative plasmid pPD5::Tn916 were used to introduce Tn916 into Staphylococcus aureus by intergeneric protoplast fusions and intergeneric membrane-filter matings. In recombinants obtained by protoplast fusion where no plasmid DNA could be detected, tetracycline resistance resulted from transposition of Tn916 from pAD1 to the S. aureus chromosome. Transformation analyses showed that S. aureus Tn916 chromosomal insertions occurred near pig, ilv, uraA, tyrB, fus, ala, and the trp operon. DNA hybridization analyses of EcoRI- and HindIII-digested chromosomal DNAs confirmed the diversity of chromosomal sites involved and demonstrated that the inserts were Tn916 insertions rather than integrations of all or part of pAD1::Tn916. Both pAD1::Tn916 and pPD5::Tn916 were transferred to S. aureus by membrane-filter matings. These plasmids remained intact and expressed tetracycline resistance in S. aureus. S. aureus strains carrying pAD1::Tn916, but not a chromosomal insert of Tn916, and any one of several conjugal gentamicin-resistance plasmids lost their ability to serve as conjugal donors of the gentamicin-resistance plasmids.  相似文献   

2.
The conjugative plasmid pCF-10 (58 kb) of Streptococcus faecalis has been mapped with restriction enzymes. By restriction mapping and Southern hybridization analysis, a 16-kb segment of the plasmid was shown to resemble closely the conjugative tetracycline resistance transposon, Tn916. Mutagenesis of the plasmid with the erythromycin resistance transposon Tn917 was used to localize a tetracycline resistance determinant and several regions involved in conjugal transfer. Fifty Tn917 insertions (outside the region of the plasmid homologous to Tn916) affecting mating behavior and the ability of donor cells to respond to the sex pheromone cCF-10 were mapped to nine distinct segments, or tra regions. Insertions into tra regions 1-3 and 7-9 led to an enhanced transfer ability of mutant plasmids relative to the transfer frequency obtained for the wild-type plasmid. Cells carrying these mutant plasmids differed in colony morphology or growth in broth culture from cells carrying pCF-10. Insertions into tra regions 4-6 resulted in reduced plasmid transfer, or completely eliminated the mating potential of donor cells. Insertions generating transfer-defective plasmids could be grouped further according to the ability of strains harboring the mutant plasmids to respond to cCF-10. HindIII fragments of pCF-10 coding for transfer functions have been cloned into Escherichia coli.  相似文献   

3.
A method has been developed for the introduction of Tn5 into Escherichia coli plasmid chimeras containing Streptococcus faecalis DNA. Tn5 could be introduced via a lambda::Tn5 delivery vehicle. The system proved to be particularly efficient and facilitated insertions at numerous sites on DNA containing the 16-kilobase conjugative transposon Tn916. It was possible to introduce some of the resulting Tn916::Tn5 derivatives back into S. faecalis by using a recently developed protoplast transformation procedure. A presumed zygotic induction resulted in insertion of the Tn916 derivatives at multiple sites in the S. faecalis chromosome.  相似文献   

4.
A method has been developed for the introduction of Tn5 into Escherichia coli plasmid chimeras containing Streptococcus faecalis DNA. Tn5 could be introduced via a lambda::Tn5 delivery vehicle. The system proved to be particularly efficient and facilitated insertions at numerous sites on DNA containing the 16-kilobase conjugative transposon Tn916. It was possible to introduce some of the resulting Tn916::Tn5 derivatives back into S. faecalis by using a recently developed protoplast transformation procedure. A presumed zygotic induction resulted in insertion of the Tn916 derivatives at multiple sites in the S. faecalis chromosome.  相似文献   

5.
C E Rubens  L M Heggen 《Plasmid》1988,20(2):137-142
The tetracycline resistance gene encoded within the transposon Tn916 was replaced with the gene encoding erythromycin resistance from the plasmid pVA838. The derivative transposon of Tn916 was designated Tn916 delta E and was introduced into the Streptococcus faecalis chromosome by protoplast transformation. The conjugation/transposition functions of Tn916 delta E were similar to those observed for Tn916 in S. faecalis and Tn916 delta E was capable of self-conjugation at frequencies similar to those of other S. faecalis and Group B Streptococcus. This transposon will be useful for mutagenesis studies in gram-positive organisms, especially in those species where erythromycin resistance is a more desirable selectable marker.  相似文献   

6.
The conjugative Streptococcus faecalis transposon Tn916 was introduced into Bacillus thuringiensis subsp. israelensis by filter matings with S. faecalis. B. thuringiensis transconjugants resistant to tetracycline (Tetr) were detected at a frequency of approximately 7.0 X 10(-7) per recipient cell during filter matings, whereas transfer of Tn916 was not observed in broth matings. The Tetr phenotype in subsp. israelensis was stable in the absence of antibiotic selection. Southern hybridization analysis revealed that Tn916 had inserted into several different sites on the B. thuringiensis subsp. israelensis chromosome but insertion into plasmid DNA was not observed. Movement of Tn916 was demonstrated when Tetr B. thuringiensis transconjugants were mated with isogenic recipients. Southern hybridizations, however, showed that the resulting Tetr isolates contained Tn916 junction fragments that were nearly identical to the donor, suggesting that this movement resulted from transfer of chromosomal DNA from donor to recipient or from a fusion of mating cells, rather than conjugative transposition of the Tn element.  相似文献   

7.
Streptococcus faecalis RC73 was found to harbor a conjugative plasmid (pAM373) which confers a mating response to a sex pheromone (cAM373) excreted by plasmid-free members of the same species. The pheromone was also detected in culture filtrates of all of 23 Staphylococcus aureus strains but in only 2 of 22 coagulase negative staphylococcus strains. Streptococcus sanguis Challis and G9B also produced the activity, but 10 other Streptococcus sanguis strains did not. The activity was also produced by Streptococcus faecium 9790. A tetracycline resistance (Tc) determinant present in S. faecalis RC73 was not associated with pAM373 but served as a useful marker in efforts to identify pAM373 among other plasmids present in the strain. Analyses of the Tc determinant showed that it was located on a conjugative transposon very similar to Tn916. Designated Tn918, the transposon could insert into pAM373 as well as into two other hemolysin plasmids. Whereas pAM373 derivatives transferred very well between strains of Streptococcus faecalis, the plasmid would not establish in Staphylococcus aureus or Streptococcus sanguis. However, a derivative of pAM373 carrying Tn918 proved to be a useful delivery vehicle for generating transposon insertions into multiple sites on the staphylococcal chromosome.  相似文献   

8.
Tn3702, a conjugative transposon in Enterococcus faecalis   总被引:4,自引:0,他引:4  
Enterococcus faecalis strain D434 was found to carry on its chromosome a determinant encoding tetracycline-minocycline resistance (Tcr-Mnr) and to harbor both an R plasmid and a cryptic conjugative plasmid, pIP1141. The determinant coding for Tcr-Mnr was located on a conjugative transposon, designated Tn3702. The transposition of Tn3702 on to both pIP1141 and the hemolysin plasmid pIP964 yielded different derivatives each of which contained an 18.5-kilobase insert. The structure of Tn3702 is similar to that of the conjugative transposon Tn916.  相似文献   

9.
Members of the Tn916 family of conjugative transposons are able to insert themselves into Enterococcus faecalis hemolysin/bacteriocin plasmid pAD1 (and related elements) in such a way as to generate hyperexpression of the hemolysin/bacteriocin. To examine this phenomenon in more detail, E. faecalis (pAD1::Tn916) derivatives defective or altered in hemolysin expression were isolated and characterized with respect to production of the L (lytic) or A (activator) component (also known as CylA) and the specific location of the transposon. The mutants fell into five classes. Class 1 strains were nonhemolytic, and the related insertions mapped in a location known to affect expression of the L component. The other four classes varied from an inability to express hemolysin (class 2) to different degrees of hyperhemolytic expression (classes 3 to 5); the insertions in these classes mapped in a similar place within cylA, near the 3' end of the determinant. A previous study provided evidence that CylA is also necessary for bacteriocin immunity; however, these insertions did not destroy this function. (A Tn917 insertion in the 5' half of the determinant eliminates immunity.) In mutant classes 3 to 5, the presence of tetracycline enhanced hemolysin expression. In late-exponential-phase broth cultures, hemolysin could not be detected in supernatants of classes 2 to 5, in contrast to a wild-type control strain; however, different amounts of the L component could be detected, with the lowest in class 2 and greater-than-normal amounts in classes 3 to 5. Although nucleotide sequencing showed that the Tn916 insertions in classes 2 to 5 were at identical sites, the transposon junction sequences differed in some cases. The data indicated that cylA translation into the transposon would result in different truncation sites, and these differences were probably related to phenotype differences.  相似文献   

10.
As part of an effort to develop systems for genetic analysis of strains of Bacillus pumilus which are being used as a microbial hay preservative, we introduced the conjugative Enterococcus faecalis transposon Tn916 into B. pumilus ATCC 1 and two naturally occurring hay isolates of B. pumilus. B. pumilus transconjugants resistant to tetracycline were detected at a frequency of approximately 6.5 x 10(-7) per recipient after filter mating with E. faecalis CG110. Southern hybridization confirmed the insertion of Tn916 into several different sites in the B. pumilus chromosome. Transfer of Tn916 also was observed between strains of B. pumilus in filter matings, and one donor strain transferred tetracycline resistance to recipients in broth matings at high frequency (up to 3.4 x 10(-5) per recipient). Transfer from this donor strain in broth matings was DNase-resistant and was not mediated by culture filtrates. Transconjugants from these broth matings contained derivatives of a cryptic plasmid (pMGD302, approx 60 kb) from the donor strain with Tn916 inserted at various sites. The plasmids containing Tn916 insertions transferred to a B. pumilus recipient strain at frequencies of approx 5 x 10(-6) per recipient. This evidence suggests that pMGD302 can transfer by a process resembling conjugation between strains of B. pumilus.  相似文献   

11.
We have identified two 19-kb conjugative transposons (Tn5381 and Tn5383) in separate strains of multiply resistant Enterococcus faecalis. These transposons confer resistance to tetracycline and minocycline via a tetM gene, are capable of both chromosomal and plasmid integration in a Rec- environment, and transfer between strains in the absence of detectable plasmid DNA at frequencies ranging from < 1 x 10(-9) to 2 x 10(-5) per donor CFU, depending on the donor strain and the growth conditions. Hybridization studies indicate that these transposons are closely related to Tn916. We have identified bands of ca. 19 kb on agarose gel separations of alkaline lysis preparations from E. faecalis strains containing chromosomal copies of Tn5381, which we have confirmed to be a circularized form of this transposon. This phenomenon has previously been observed only when Tn916 has been cloned in Escherichia coli. Overnight growth of donor strains in the presence of subinhibitory concentrations of tetracycline results in an approximately 10-fold increase in transfer frequency of Tn5381 into enterococcal recipients and an increase in the amount of the circular form of Tn5381 as detectable by hybridization. These results suggest that Tn5381 is a Tn916-related conjugative transposon for which the appearance of a circular form and the conjugative-transfer frequency are regulated by a mechanism(s) affected by the presence of tetracycline in the growth medium.  相似文献   

12.
The tetracycline resistance plasmid pCF10 (58 kilobases [kb]) of Streptococcus faecalis possesses two separate conjugation systems. A 25-kb region of the plasmid (designated TRA) was shown previously to determine pheromone response and conjugation functions required for transfer of pCF10 between S. faecalis cells (P. J. Christie and G. M. Dunny, Plasmid 15:230-241, 1986). When S. faecalis cells were mixed with Bacillus subtilis in broth, tetracycline resistance was transferred from S. faecalis. The tetracycline-resistant B. subtilis cells contained a 16-kb region of pCF10 (distinct from TRA) that carried the tetracycline resistance determinant (Tetr). This Tetr element was found to transfer between S. faecalis and B. subtilis strains in the absence of plasmids. Genetic and molecular techniques were used to establish locations of the element at several different sites on the B. subtilis chromosome. The Tetr element could be transferred in filter matings from B. subtilis to S. faecalis strains and between recombination-proficient and -deficient S. faecalis strains in the absence of any plasmid DNA. The transfer required direct cell-to-cell contact and was not inhibited by DNase. The Tetr element was shown to transpose from the S. faecalis chromosome to various locations within the hemolysin plasmid pAD1. Together, the data indicate that the Tetr element, termed transposon Tn925, is very similar to the conjugative transposon Tn916 in both structure and function. A derivative of Tn925, containing transposon Tn917 inserted into a site approximately 3 kb from one end, exhibited elevated transfer frequencies and may provide a useful means for delivering Tn917 by conjugation into various gram-positive species.  相似文献   

13.
Transposon Tn916 is a 16.4-kb broad-host-range conjugative transposon originally detected in the chromosome of Enterococcus faecalis DS16. Transposition of Tn916 and related transposons involves excision of a free, nonreplicative, covalently closed circular intermediate that is substrate for integration. Excisive recombination requires two transposon-encoded proteins, Xis-Tn and Int-Tn, whereas the latter protein alone is sufficient for integration. Here we report that conjugative transposition of Tn916 requires the presence of a functional integrase in both donor and recipient strains. We have constructed a mutant, designated Tn916-int1, by replacing the gene directing synthesis of Int-Tn by an allele inactivated in vitro. In mating experiments, transfer of Tn916-int1 from Bacillus subtilis to E. faecalis was detected only when the transposon-encoded integrase was supplied by trans-complementation in both the donor and the recipient. These results suggest that conjugative transposition of Tn916 requires circularization of the element in the donor followed by transfer and integration of the nonreplicative intermediate in the recipient.  相似文献   

14.
In matings between Lactococcus lactis strains, the conjugative transposons Tn916 and Tn919 are found in the chromosome of the transconjugants in the same place as in the chromosome of the donor, indicating that no transposition has occurred. In agreement with this, the frequency of L. lactis transconjugants from intraspecies matings is the same whether the donor contains the wild-type form of the transposon or the mutant Tn916-int1, which has an insertion in the transposon's integrase gene. However, in intergeneric crosses with Bacillus subtilis or Enterococcus faecalis donors, Tn916 and Tn919 transpose to different locations on the chromosome of the L. lactis transconjugants. Moreover, Tn916 and Tn919 could not be transferred by conjugation from L. lactis and B. subtilis, E. faecalis or Streptococcus pyogenes. This suggests that excision of these elements does not occur in L. lactis. When cloned into E. coli with adjacent chromosomal DNA from L. lactis, the conjugative transposons were able to excise, transpose and promote conjugation. Therefore, the inability of these elements to excise in L. lactis is not caused by a permanent structural alteration in the transposon. We conclude that L. lactis lacks a factor required for excision of conjugative transposons.  相似文献   

15.
Few genetic systems for studying mycoplasmas exist, but transposon Tn916 has been shown to transpose into the genomes of some species and can be used as an insertional mutagen. In the current study, the ability of Enterococcus faecalis to serve as a donor for the conjugative transfer of transposon Tn916 into the genome of the avian pathogen Mycoplasma gallisepticum strain PG31 was examined. Transconjugants were obtained at a frequency of > or =6 x 10(-8) per recipient CFU. To determine the transposon insertion site, an oligonucleotide primer corresponding to the 3' end of Tn916 was designed for the purpose of directly sequencing genomic DNA without PCR amplification. Using the direct sequencing approach, Tn916 was shown to insert into any of numerous sites in the M. gallisepticum genome. This is the first report of conjugal transposition of Tn916 into the M. gallisepticum genome. The ability to determine transposon insertion sites in mycoplasmas by genomic sequencing has not been previously described and allows rapid sequence analysis of transposon-generated mutants.  相似文献   

16.
Streptococcus faecalis strain DS16 harbors the conjugative hemolysin-bacteriocin plasmid pAD1 (35 megadaltons) and the nonconjugative R-plasmid pAD2 determining resistance to streptomycin, kanamycin, and erythromycin; a tetracycline resistance (Tetr) determinant is located on the chromosome. When strain DS16 was mated (on membrane filters) with the plasmid-free strain JH2-2, Tetr transconjugants could be obtained at a frequency of about 10(-6) per recipient. Analyses of transconjugants showed that some contained the Tetr determinant linked to pAD1. Subsequent studies showed that the Tetr determinant was located on a 10-megaldalton transposon, designated Tn916, which could insert into two hemolysin plasmids: pAM gamma 1 and pOB1. In addition, derivatives of DS16 devoid of pAD1 were capable of transferring Tetr to recipient strains. Transconjugants (plasmid-free) from such matings could subsequently act as donors in the transfer of Tetr. Both transposition and transfer were found to be rec independent.  相似文献   

17.
Conjugative transposition of transposon Tn916 has been shown to proceed by excision of the transposon in the donor strain and insertion of this element in the recipient. This process requires the product of the transposon int gene. We report here the surprising finding that the int gene is required only in the donor during conjugative transposition. We find that Tn916 int-1, whose int gene has been inactivated by an insertion mutation, transposes when a complementing wild-type int gene is present only in the donor during mating. When the int+ gene is present in a plasmid and is expressed from the spac promoter, conjugative transposition is very inefficient. However, when the Int+ function is supplied from a coresident distantly linked Tn916 tra-641 mutant, which is defective in a function required for conjugation, efficient conjugative transposition of Tn916 int-1 occurs. This suggests either that Int is not required for integration of Tn916 in gram-positive bacteria or that the protein is transferred from the donor to the transconjugant during the mating event. When the nonconjugative plasmid pAT145 was present in the donor, it was rarely cotransferred with Tn916. This suggests that complete fusion of mating cells is not common during conjugative transposition.  相似文献   

18.
S A Showsh  R E Andrews 《Plasmid》1992,28(3):213-224
Pregrowth of the donor on medium containing tetracycline increased conjugative transposition of Tn916 and the transposon-dependent mobilization of pC194 19- to 119-fold in matings between Bacillus subtilis and Bacillus thuringiensis subsp. israelensis. Tn916 and pC194 transferred independently under these conditions. When Enterococcus faecalis was the donor and B. thuringiensis subsp. israelensis the recipient, pregrowth in tetracycline increased the conjugative transposition frequency by approximately 15-fold. Tetracycline-enhanced conjugation appeared during matings as short as 3 h in length. Pregrowth in tetracycline did not enhance conjugation in Bacillus sphaericus x B. thuringiensis subsp. israelensis or B. thuringiensis subsp. israelensis x B. subtilis matings. Incorporation of tetracycline into the mating medium, at concentrations that did not inhibit growth of the B. thuringiensis subsp. israelensis recipient, resulted in conjugation frequencies similar to those obtained by pregrowth of the B. subtilis donors in antibiotic-containing medium. The data suggest stimulation of donor function by tetracycline.  相似文献   

19.
A mutation to tetracycline sensitivity in a resistant strain of Streptococcus pneumoniae was shown by several criteria to be due to a point mutation in the conjugative omega (cat-tet) element found in the chromosomes of strains derived from BM6001, a clinical strain resistant to tetracycline and chloramphenicol. Strains carrying the mutation were transformed back to tetracycline resistance with the high efficiency of a point marker by donor deoxyribonucleic acids from its ancestral strain and from nine other clinical isolates of pneumococcus and by deoxyribonucleic acids from group D Streptococcus faecalis and group B Streptococcus agalactiae strains that also carry conjugative tet elements in their chromosomes. It was not transformed to resistance by tet plasmid deoxyribonucleic acids from either gram-negative or gram-positive species, except for one that carried transposon Tn916, the conjugative tet element present in the chromosomes of some S. faecalis strains. The results showed that the tet determinants in conjugative elements of several streptococcal species share a high degree of deoxyribonucleic acid sequence homology and suggested that they differ from other tet genes.  相似文献   

20.
Tn5253, carrying tetracycline and chloramphenicol resistance determinants, is a 65.5-kb conjugative transposon originally detected in the chromosome of Streptococcus pneumoniae BM6001. We have identified an 18-kb segment of DNA carrying the tet determinant within Tn5253 to be an independent conjugative transposon when removed from the context of the larger element. In vivo deletion of this DNA segment, now termed Tn5251, from within Tn5253 did not affect the conjugative transposition properties of the remaining sequences. Thus, Tn5253 is a composite element of two conjugative structures: Tn5252, constituting the sequences beyond Tn5251 within Tn5253, and Tn5251. The transfer properties of Tn5252 and Tn5251 suggest that these may belong to two different classes of mobile elements even though they were initially found associated. The notion that a tet-carrying transposon like Tn5251 may have been the ancestral element in the evolution of the larger streptococcal conjugative transposons must be reevaluated in the light of present observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号