首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Fifteen low-temperature conditional division mutants of Escherichia coli K-12 was isolated. They grew normally at 39 degrees C but formed filaments at 30 degrees C. All exhibited a coordinated burst of cell division when the filaments were shifted to the permissive temperature (39 degrees C). None of the various agents that stimulate cell division in other mutant systems (salt, sucrose, ethanol, and chloramphenicol) was very effective in restoring colony-forming ability at 25 degrees C or in stimulating cell division in broth. One of these mutants, strain JS10, was found to have an altered cell envelope as evidenced by increased sensitivity to deoxycholate and antibiotics, as well as leakage of ribonulcease I, a periplasmic enzyme. This mutant had normal rates of DNA synthesis, RNA synthesis, and phospholipid synthesis at both the nonpermissive and permissive temperatures. However, strain JS10 required new protein synthesis in the apparent absence of new RNA synthesis for division of filaments at the permissive temperature. The division of lesion in strain JS10 is cotransducible with malA, aroB, and glpD and maps within min 72 to 75 on the E. coli chromosome.  相似文献   

2.
Summary Concentrations of chloramphenicol and penicillin G which permit growth induce the formation of temporary filaments, morphologically and ultrastructurally identical to stable, chemically-induced filamentous mutants ofAgmenellum quadruplicatum strainBG-1. These induced filaments were propagated by serial transfers in the presence of inhibitor and underwent an immediate, synchronous reversion upon its removal. The reversion of penicillin-induced filaments was insensitive to inhibitors of DNA synthesis but sensitive to inhibitors of protein synthesis until the completion of the mucopolymer septum. Penicillin G blocked the early stages or initiation of cell division. Chloramphenicol blocked the terminal stages of cell division, the cleavage of the mucopolymer septum by the outer wall layers.  相似文献   

3.
Inhibition of DNA synthesis prevented the recovery of cell division in filaments of D-3R [ftsA3(Ts) recA56] returned to the permissive temperature. The FtsA protein may be a signal involved in the "TER" pathway, a series of events that coordinate cell division with DNA replication, that is independent of the SOS pathway.  相似文献   

4.
Summary Inactivation of the dna B or dna D gene product in Bacillus subtilis stimulates RNA and protein synthesis. Strains containing ts dna B and D mutations have been constructed by introducing the mutations by transformation into a thymine requiring strain which does not lyse during thymine starvation. The consequences of inactivation of these gene products have been assessed by comparing RNA and protein synthesis during thymine starvation at the restrictive temperature with the recipient strain. In the ts + strain, there is a doubling in rate of RNA synthesis during thymine starvation. In the ts dna B and D mutations at the restrictive temperature the rate of RNA synthesis increases four fold. By preincubating the mutants in the absence of thymine for one generation at the permissive temperature the two fold increase in rate of RNA synthesis associated with inactivation of the initiation complex can be demonstrated under conditions where the ts + strain shows a decrease in rate of RNA synthesis. The rate of protein synthesis observed largely reflects the rate of RNA synthesis in all strains. Completion of the chromosome at the restictive temperature has no significant effect on the rate of RNA synthesis. It is suggested that inactivation of the initiation complex after chromosome initiation could play an important role in control of RNA synthesis in relation to the cell cycle.  相似文献   

5.
The vaccinia virus D5 gene encodes a 90 kDa early protein that is essential for viral DNA replication. In this report we map and explore the phenotypes of the temperature sensitive mutants bearing lesions in this gene:ts17,ts24,ts69, (WR strain) andts6389 (IHD strain). Viral DNA synthesis was virtually undetectable during non-permissive infections performed withts17, and incorporation of3H-thymidine ceased rapidly when cultures were shifted to the non-permissive temperature in the midst of replication. The D5 protein may therefore be involved in DNA synthesis at the replication fork. The lesions of the four mutants were localized within the D5orf by marker rescue, and the single nucleotide changes responsible for thets phenotype of the three WR mutants were identified. Unexpectedly, the three alleles with N-terminal mutations were impaired in marker rescue when homologous recombination with small (<2 kb), intragenic DNA fragments at 39.5°C was required. This deficiency was not due to degradation of transfected DNA under non-permissive conditions. Efficient marker rescue could be restored by incubation at the permissive temperature for a brief period after transfection, suggesting a requirement for functional D5 in genome/plasmid recombination. Marker rescue under non-permissive conditions could alternatively be restored by co-transfection of unlinked but contiguous DNA sequences.  相似文献   

6.
Summary Two new mutantsdbf3 and4, are specifically defective in DNA synthesis. When synchronous cultures ofdbf4 were transferred from the permissive to restrictive temperature before the start of the S phase, no DNA synthesis occurred. However when switched after the beginning of DNA replication, the cells completed that round of synthesis.Dbf4 therefore resemblescdc7, a mutant believed to be required for initiation of DNA synthesis, and indeeddbf4 acts at a point in the cell cycle close tocdc7, namely betweencdc4 and the final requirement for protein synthesis before the S phase. Likedbf4, cultures ofdbf3 transferred to restrictive conditions before the start of S showed little DNA synthesis. However a small burst did occur at a time roughly corresponding to when normal initiation would be expected. Cultures switched after this time completed the ongoing round of DNA synthesis.  相似文献   

7.
C A Lark  J Riazi    K G Lark 《Journal of bacteriology》1978,136(3):1008-1017
Normally, bacteria cease DNA replication in the absence of protein synthesis. A variety of treatments, such as thymine starvation or a shift-up to rich medium, lead to continued DNA replication in the absence of protein synthesis. Mutants are described which always terminate replication under these conditions. These conditional lethal mutants, dnaT1 and dnaT2, contransduce with serB and dnaC. The mutation also affects cell division. All aspects of the mutant phenotype (obligatory termination of replication, temperature sensitivity of DNA replication and growth, and aberrant cell division at permissive growth temperatures) were transdominant to the wild-type phenotype. Episomes carrying the dnaT mutation appeared to be unstable. The existence of such a dominant mutation was predicted by a model of chromosome termination proposed by Kogoma and Lark (J. Mol. Biol. 94:243-256, 1975).  相似文献   

8.
Thermonsenstivie division mutants were derived from Bacillus subtilis Marburg 168 thy trp2 by means of membrane filtration after nitrosoguanidine mutagenesis. Among them, ts42 requiring uracil for normal growth at 48°C was investigated.

In the absence of uracil, the mutant cells grew normally at 37°C and stopped dividing after temperature shift to 48°C resulting in filaments of two to four times length of normal rods. The total cell number after temperature shift from 37 to 48°C, increased two to three fold in 90 min and remained constant thereafter. The viable count after the temperature shift to 48°C, increased 1.5 to 2 fold in initial 60 min and then decreased exponentially. A rapid restoration of colony forming ability was shown when the mutant cells were shifted back to the permissive temperature after 120 to 180 min of incubation at 48°C or when uracil was introduced to the culture at 48°C. This recovery of viability was partly observed even in the presence of chloramphenicol. The synthesis of RNA of this mutant was shown to decline 20 min after the temperature shift to 48°C whereas the syntheses of DNA and protein proceeded for more than 80 min at that temperature.

No newly isolated uracil requiring mutants formed filaments in the medium lacking uracil or showed growth pattern like ts42.  相似文献   

9.
Summary Twenty seven recessive temperature sensitive mutants have been isolated in Schizosaccharomyces pombe which are unable to complete the cell division cycle at the restrictive temperature. These mutants define 14 unlinked genes which are involved in DNA synthesis, nuclear division and cell plate formation. The products from most of these genes complete their function just before the cell cycle event in which they are involved. Physiological characterisation of the mutants has shown that DNA synthesis and nuclear division form a cycle of mutually dependent events which can operate in the absence of cell plate formation. Cell plate formation itself is usually dependent upon the completion of nuclear division.  相似文献   

10.
Summary S. typhimurium mutants with temperature-sensitive synthesis of DNA have been isolated. One of these mutants,dna-26, has been studied in detail. DNA synthesis is stopped indna-26 without any residual replication after shift to 42° though increase in cell mass is not inhibited. Mutantdna-26 shows increased sensitivity to deoxycholate, to nalidixic acid and rifampicin. This suggests a cell envelope defect. Inhibition of DNA synthesis at 42° can be phenotypically cured indna-26 by 0.25 M NaCl and KCl and 0.44 M sucrose but not by 0.44 M glycerol. This DNA synthesis induced by hypertonic medium proceeds at a slower rate than increase in cell mass but is predominantly due to normal sequential chromosome replication. The position of mutationdna-26 has been approximately mapped in thepurD region of the chromosome.  相似文献   

11.
The life cycle ofCryptochlora perforans is described under culture conditions, including the following stages: Naked and walled amoebae, cysts, coccoid, palmelloid and flagellate stages. Phagotrophy of living diatoms, movement and reproduction are documented. Amoebae ofCryptochlora are chemotactically attracted by damaged algal filaments, perforate and penetrate such filaments, and subsequently engulf part of their contents. A comparison is made with a culture ofChlorarachnion reptans Geitler, according to earlier and own observations. Chloroplast structure as well as zoospore morphology confirm close affinities betweenCryptochlora andChlorarachnion. Generic characters as well as possible phylogenetic affinities with amoeboidXanthophyta andProtozoa are discussed.  相似文献   

12.
Summary We have isolated a number of temperature conditional cell division cycle mutants of the unicellular plantChlamydomonas reinhardtii that are defective in single nuclear genes. Cells grow and divide normally at the permissive temperature (21 °C), but arrest in division at the restrictive temperature (33 °C). We have characterized these mutants using DNA probes and immunofluorescence techniques to localize cytoskeletal and microtubule organizing centre proteins. We describe here 3 broad classes of cell cycle mutation which result in cell cycle arrest with: unreplicated DNA (G1 arrest), duplicated DNA (G2 arrest) and multiple nuclei due to defective cytokinesis (cytokinesis arrest). The continuation of nuclear division in mutants blocked in cytokinesis provides support of an earlier hypothesis that stage specific events in theChlamydomonas cell cycle are arranged in separate dependent sequences. The mutants isolated in the present study provide insights into the role of cytoskeletal proteins in the coordination of plant cell division and the means to investigate the molecular mechanisms whereby division by multiple fission is controlled in the unicellular plantChlamydomonas.Abbreviations BB basal bodies - EMS ethylmethane sulphonate - MT microtubule - MTOC Microtubule organizing centre - NBBC nucleus-basal body connector - PAR photosynthetically active radiation  相似文献   

13.
Summary The presence of the histidine operator-constitutive mutationhis01242 increases UV-induced mutability within the histidine operon ofSalmonella typhimurium. The rate of reversion ofhisC andhisF ochre and frameshift mutants is increased 5- to 8-fold when these mutations are coupled withhis01242 which causes 15-fold derepression of the operon. The effect does not extend to the whole chromosome since the rate of UV-induced mutability at the unlinked streptomycin locus is the same in the strains carryinghis0 + orhis01242 alleles. The same phenomenon was observed in Hcr strains.  相似文献   

14.
Successful progression through the cell cycle requires the coupling of mitotic spindle formation to DNA replication. In this report we present evidence suggesting that, inSaccharomyces cerevisiae, theCDC40 gene product is required to regulate both DNA replication and mitotic spindle formation. The deduced amino acid sequence ofCDC40 (455 amino acids) contains four copies of a -transducin-like repeat. Cdc40p is essential only at elevated temperatures, as a complete deletion or a truncated protein (deletion of the C-terminal 217 amino acids in thecdc40-1 allele) results in normal vegetative growth at 23°C, and cell cycle arrest at 36°C. In the mitotic cell cycle Cdc40p is apparently required for at least two steps: (1) for entry into S phase (neither DNA synthesis, nor mitotic spindle formation occurs at 36°C and (2) for completion of S-phase (cdc40::LEU2 cells cannot complete the cell cycle when returned to the permissive temperature in the presence of hydroxyurea). The role of Cdc40p as a regulatory protein linking DNA synthesis, spindle assembly/maintenance, and maturation promoting factor (MPF) activity is discussed.  相似文献   

15.
Isogenic ftsZ, ftsQ, ftsA, pbpB, and ftsE cell division mutants of Escherichia coli were compared with their parent strain in temperature shift experiments. To improve detection of phenotypic differences in division behavior and cell shape, the strains were grown in glucose-minimal medium with a decreased osmolality (about 100 mosM). Already at the premissive temperature, all mutants, particularly the pbpB and ftsQ mutants, showed an increased average cell length and cell mass. The pbpB and ftsQ mutants also exhibited a prolonged duration of the constriction period. All strains, except ftsZ, continued to initiate new constrictions at 42 degrees C, suggesting the involvement of FtsZ in an early step of the constriction process. The new constrictions were blunt in ftsQ and more pronounced in ftsA and pbpB filaments, which also had elongated median constrictions. Whereas the latter strains showed a slow recovery of cell division after a shift back to the permissive temperature, ftsZ and ftsQ filaments recovered quickly. Recovery of filaments occurred in all strains by the separation of newborn cells with an average length of two times LO, the length of newborn cells at the permissive temperature. The increased size of the newborn cells could indicate that the cell division machinery recovers too slowly to create normal-sized cells. Our results indicate a phenotypic resemblance between ftsA and pbpB mutants and suggest that the cell division gene products function in the order FtsZ-FtsQ-FtsA, PBP3. The ftsE mutant continued to constrict and divide at 42 degrees C, forming short filaments, which recovered quickly after a shift back to the permissive temperature. After prolonged growth at 42 degree C, chains of cells, which eventually swelled up, were formed. Although the ftsE mutant produced filaments in broth medium at the restrictive temperature, it cannot be considered a cell division mutant under the presently applied conditions.  相似文献   

16.
In order to characterize the cell-division mechanism of coryneform bacteria, we tried to isolate cell-division mutants from Corynebacterium glutamicum after N-methyl-N'-nitro-N-nitrosoguanidine mutagenesis, such as Escherichia coli fts mutants, which form long filaments at the restrictive temperatures. At the non-permissive temperature, most of the mutants formed club-shaped or dumbbell-shaped, elongated rod cells, but no filament formers were isolated. Then we examined the effects of cell division inhibitors on this organism. Cephalexin and sparfloxacin, which are the inhibitors of septation and DNA synthesis respectively, and are known to cause cell filamentation in E. coli, did not cause filamentation in C. glutamicum but induced morphological changes that were similar to those observed with the temperature-sensitive ts mutants of C.␣glutamicum. These results suggest that C. glutamicum has a unique regulation mechanism, that is, the inhibition of cell division leads to cessation of cell elongation. Received: 5 February 1998 / Received revision: 6 April 1998 / Accepted: 27 April 1998  相似文献   

17.
Summary The capacity for initiation and subsequent chain elongation was examined in several DNA temperature sensitive mutants of Escherichia coli after the mutants had been held at nonpermissive temperature for approximately 1.5 generation equivalents and then returned to permissive temperature in the presence of chloramphenicol. The results obtained indicate that 4–5 sets of replication forks can be initiated after return to permissive temperature in the presence of chloramphenicol but the forks apparently become stalled and fail to complete chromosomal replication in the presence of chloramphenicol. In temperature reversible dnaA mutants, once the chloramphenicol is removed the forks appear to be able to resume replication at the nonpermissive temperature. The relationship between premature initiation and premature chain termination is discussed.  相似文献   

18.
Summary Each wild-typeChlamydomonas reinhardtii cell has one large chloroplast containing several nuclei (nucleoids). We used DNA insertional mutagenesis to isolate Chlamydomonas mutants which contain a single, large chloroplast (cp) nucleus and which we namedmoc (monokaryotic chloroplast). DAPI-fluorescence microscopy and microphotometry observations revealed thatmoc mutant cells only contain one cp-nucleus throughout the cell division cycle, and that unequal segregation of cpDNA occurred during cell division in themoc mutant. One cell with a large amount of cpDNA and another with a small amount of cpDNA were produced after the first cell division. Unequal segregation also occurred in the second cell division, producing one cell with a large amount (about 70 copies) of cpDNA and three other cells with a small amount (only 2–8 copies) of cpDNA. However, most individualmoc cells contained several dozen cpDNA copies 12 h after the completion of cell division, suggesting that cpDNA synthesis was activated immediately after chloroplast division. In contrast to the cpDNA, the mitochondrial (mt) DNA of themoc mutants was observed as tiny granules scattered throughout the entire cell. These segregated to each daughter cell equally during cell division. Electron-microscopic observation of the ultrastructure ofmoc mutants showed that a low-electron-density area, which was identified as the cp-nucleus by immunoelectron microscopy with anti-DNA antibody, existed near the pyrenoid. However, there were no other structural differences between the chloroplasts of wild-type cells andmoc mutants. The thylakoid membranes and pyrenoid were identical. Therefore, we propose that the novelmoc mutants are only defective in the dispersion and segregation of cpDNA. This strain should be useful to elucidate the mechanism for the segregation of cpDNA.Abbreviations DAPI 4,6-diamidino-2-phenylindole - VIMPCS video-intensified microscope photon-counting system  相似文献   

19.
Temperature-sensitive DNA polymerase mutants (dnaE) are protected from cell death on incubation at nonpermissive temperature by mutation in the cydA gene controlling cytochrome bd oxidase. Protection is observed in complex (Luria-Bertani [LB]) medium but not on minimal medium. The cydA mutation protects a thymine-deficient strain from death in the absence of thymine on LB but not on minimal medium. Both dnaE and Deltathy mutants filament under nonpermissive conditions. Filamentation per se is not the cause of cell death, because the dnaE cydA double mutant forms long filaments after 24 h of incubation in LB medium at nonpermissive temperature. These filaments have multiply dispersed nucleoids and produce colonies on return to permissive conditions. The protective effect of a deficiency of cydA at high temperature is itself suppressed by overexpression of cytochrome bo3, indicating that the phenomenon is related to energy metabolism rather than to a specific effect of the cydA protein. We propose that filamentation and cell death resulting from thymine deprivation or slowing of DNA synthesis are not sequential events but occur in response to the same or a similar signal which is modulated in complex medium by cytochrome bd oxidase. The events which follow inhibition of replication fork progression due to either polymerase inactivation, thymine deprivation, or hydroxyurea inhibition differ in detail from those following actual DNA damage.  相似文献   

20.
Extensive cell division after synchronization ofEscherichia coli 15 TAU by arginine and uracil starvation occurs only when DNA synthesis is permitted to proceed by at least a short pulse of thymine applied between 30 and 60 min after transfer of synchronized culture to thymine-free medium with arginine and uracil. The time schedule of synchronized cell division in dependence on the schedule of intervals of DNA synthesis and inhibition of DNA synthesis was determined. The termination of replication cycles which were not completed to the very end during arginine and uracil starvation seems to be the decisive event for subsequent cell division after synchronization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号