首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Sclerotinia sclerotiorum (Lib.) de Bary is a necrotrophic plant pathogen with a worldwide distribution. The sclerotia of S. sclerotiorum are pigmented multicellular structures formed from the aggregation of vegetative hyphae. These survival structures play a central role in the life and infection cycles of this pathogen. Here, we characterized an atypical forkhead (FKH)‐box‐containing protein, SsFKH1, involved in sclerotial development and virulence. To investigate the role of SsFkh1 in S. sclerotiorum, the partial sequence of SsFkh1 was cloned and RNA interference (RNAi)‐based gene silencing was employed to alter the expression of SsFkh1. RNA‐silenced mutants with significantly reduced SsFkh1 RNA levels exhibited slow hyphal growth and sclerotial developmental defects. In addition, the expression levels of a set of putative melanin biosynthesis‐related laccase genes and a polyketide synthase‐encoding gene were significantly down‐regulated in silenced strains. Disease assays demonstrated that pathogenicity in RNAi‐silenced strains was significantly compromised with the development of a smaller infection lesion on tomato leaves. Collectively, the results suggest that SsFkh1 is involved in hyphal growth, virulence and sclerotial formation in S. sclerotiorum.  相似文献   

2.
3.
The Ssp1 development-specific protein is the most abundant soluble protein in sclerotia and apothecia of Sclerotinia sclerotiorum. Although closely associated with these developmental stages, the functions of the Ssp1 protein and its paralog, Ssp2, are not known. In this study, protein structure prediction analysis revealed that Ssp1 and Ssp2 are structurally similar to fucose-specific lectins. In an effort to understand the function of these abundant, development-specific proteins, a homokaryotic ssp1 deletion mutant was generated. The resulting mutant (Δssp1) displays a wild-type growth and development phenotype in culture but produces approximately 50% fewer sclerotia in cultures supplemented with hygromycin. Genetic complementation with a wild-type copy of ssp1 restores normal sclerotium formation in the presence of hygromycin. This suggests that Ssp1 might play a role in resistance to glycoside-containing antibiotics encountered in the environment. Although a slight delay in carpogenic germination was observed, no additional effects of ssp1 loss-of-function were found in regards to apothecial morphology or fecundity. When the expression of ssp2 was examined in the Δssp1 mutant, it was found to be expressed earlier in sclerotial development and its encoded protein accumulated to higher levels in both sclerotia and apothecia. These findings suggest regulatory compensation for loss of Ssp1 coupled with potential functional redundancy among lectins accumulating in sclerotia and apothecia.  相似文献   

4.
Isolates ofTyphula incarnata, a snow mold fungus, were collected from four localities with different winter climates. Their ecological traits such as mycelial growth rate, sclerotium size, carpogenic germination of sclerotia, and aggressiveness were compared between populations in order to reveal infraspecific differentiation associated with climatic differences. Population variability was evident only in sclerotium germination: isolates from more snowy localities germinated faster than those from less snowy localities.T. incarnata is regarded as a versatile pathogen with no specialized forms in contrast withT. ishikariensis. The germination rate of sclerotia is considered very critical in the life history ofT. incarnata.  相似文献   

5.

Aims

Sclerotia of Sclerotinia sclerotiorum survive in soil and germinate to produce apothecia which release airborne ascospores. Current control methods rely predominantly on the use of fungicides to kill ascospores. The aim of this research was to identify potential biofumigation treatments which suppress sclerotial germination, providing a potential alternative and long-term approach to disease management.

Methods

Microcosm and in vitro experiments were conducted using dried and milled plant material from six different biofumigant crop plants to determine effects on carpogenic germination of sclerotia and mycelial growth of S. sclerotiorum.

Results

All biofumigant plants significantly reduced germination of S. sclerotiorum sclerotia in the microcosm experiments, but were less effective against larger sclerotia. In vitro experiments showed a direct effect of biofumigant volatiles on both the mycelial growth of S. sclerotiorum, and carpogenic germination of sclerotia, where the most effective treatment was B. juncea ‘Vittasso’.

Conclusions

It was clear from this study that biofumigant crop plants have potential as part of an integrated disease management system for control of S. sclerotiorum. The microcosm experiments described here provide a straightforward and reliable screening method for evaluating different biofumigants for activity.
  相似文献   

6.
Sclerotinia sclerotiorum, a pathogen of more than 600 host plants, secretes oxalic acid to regulate the ambient acidity and provide conducive environment for pathogenicity and reproduction. Few Aspergillus spp. were previously proposed as potential biocontrol agents for S. sclerotiorum as they deteriorate sclerotia and prevent pathogen's overwintering and initial infections. We studied the nature of physical and biochemical interactions between Aspergillus and Sclerotinia. Aspergillus species inhibited sclerotial germination as they colonized its rind layer. However, Aspergillus-infested sclerotia remain solid and viable for vegetative and carpogenic germination, indicating that Aspergillus infestation is superficial. Aspergillus spp. of section Nigri (Aspergillus japonicus and Aspergillus niger) were also capable of suppressing sclerotial formation by S. sclerotiorum on agar plates. Their culture filtrate contained high levels of oxalic, citric and glutaric acids comparing to the other Aspergillus spp. tested. Exogenous supplementation of oxalic acid altered growth and reproduction of S. sclerotiorum at low concentrations. Inhibitory concentrations of oxalic acid displayed lower pH values comparing to their parallel concentrations of other organic acids. Thus, S. sclerotiorum growth and reproduction are sensitive to the ambient oxalic acid fluctuations and the environmental acidity. Together, Aspergillus species parasitize colonies of Sclerotinia and prevent sclerotial formation through their acidic secretions.  相似文献   

7.
The inhibitory effects of essential oils (EOs) derived from coriander, lavender, geranium, thyme, savoury and eucalyptus were assessed against Sclerotinia sclerotiorum, the causal agent of carrot white mould. All EOs showed antifungal activity against the pathogen in vitro and in vivo. In addition, all EOs markedly increased 6‐methoxymellein in the treated carrots. The EOs of thyme and savoury were found to be more effective than other tested EOs. The enzymatic tests showed that thyme and savoury EOs were more able than lavender EO to significantly increase the level of chitinases, peroxidases, β‐1,3‐glucanases, polyphenol oxidase, peroxidase and phenylalanine ammonia‐lyase in the treated carrots, indicating that the EOs of thyme and savoury have potential to be considered as effective inducers of resistance against carrot white mould. In this study, all EOs inhibited myceliogenic and carpogenic germination of sclerotia at concentrations 1 and 10 µl/ml sterile distilled water, respectively. After gas chromatography/mass spectrometry, major component in the thyme EO was found to be thymol (39.15%) followed by p‐cymene (13.85%) and carvacrol (10.36%), while in savoury EO were carvacrol (41.9%), γ‐terpinene (17.38) and p‐cymene (11.25%).  相似文献   

8.
9.
THE MORPHOGENESIS AND POSSIBLE EVOLUTIONARY ORIGINS OF FUNGAL SCLEROTIA   总被引:2,自引:0,他引:2  
1. Fungal sclerotia are able to survive adverse conditions for long periods and they are formed by many important plant pathogens. An understanding of the factors involved in their initiation and development may lead to a method of repressing their formation in nature, thereby reducing the chances of survival of fungi that depend on them as persistent resting stages in their life-cycles. Also, data on sclerotial morphogenesis may be applicable to other multihyphal fungal structures. 2. There are three types of sclerotial development. The most primitive and least common is the loose type, which is illustrated by Rhizoctonia solani. The sclerotium forms by irregular branching of the mycelium followed by intercalary septation and hyphal swelling. When mature, it consists of loosely interwoven hyphae that are rich in food reserves and darkly pigmented. The main types of development are terminal and lateral. The former develops from the coalescence of initials that are produced by a well-defined pattern of branching at the tip of a hypha or tips of closely associated hyphae, e.g. Botrytis cinerea. Lateral sclerotia are formed by the interweaving of side branches of one or several main hyphae. When only one main hypha is involved the sclerotium is of the lateral, simple type, e.g. Sclerotinia gladioli. If several main hyphae give rise to a sclerotium, the term strand type has been used. Sclerotium rolfsii is the classical example. 3. There is a considerable literature on the effects of environmental conditions on the initiation, development and maturation of sclerotia but few attempts have been made to interpret the data. Phenolics and/or polyphenol oxidases have been found to be connected with morphogenesis of the protoperithecium of Neurospora crassa, the perithecium of Podospora anserina and of Hypomyces sp. and the basidiocarp of Schixophyllum commune. A close correlation has been shown between melanin synthesis and microsclerotial development by Verticillium but there appears to be no literature on the role of phenolics and polyphenol oxidases in the morphogenesis of sclerotia. Possibly these substances may inhibit growth of the apices of main hyphae by changing the permeability of the membrane, by inducing a thickening of the cell wall at the tip or by reducing the plasticity of the wall. Such a check in growth could trigger-off the formation of initials close to the margin of the colony or elsewhere in the culture. Sulphydryl groups and disulphide bonds are of great significance in morphogenesis of organisms and are probably involved in sclerotial initiation. The formation of a large number of hyphal branches is a prerequisite for sclerotial initiation and mycelial branching is possible only if there is plasticity of hyphal walls. The ability of the wall to be moulded is possibly related to changes in the sulphur linkages of the protein of the protein-carbohydrate complexes of the cell wall and could be influenced by sulphur availability or the activity of specific enzymes. 4. After a sclerotial primordium has been initiated, further increase in size will depend on the continued, active translocation of nutrients to the site of development. Movement of nutrients to sclerotia is through a few translocatory hyphae. Presumably, nutrients will continue to move into the young sclerotium as long as a concentration or pressure gradient is maintained. Energy and substances for the formation of new branches are supplied in this way and as the requirements for hyphal branches are reduced, excess nutrients become available for conversion to inactive or insoluble reserves and for exudation. The exudates are often complex, consisting of proteins, including enzymes, lipids and carbohydrates. Many sclerotia have a mucilaginous matrix in which the medullary hyphae are embedded. Sclerotium-forming, fungal species that are not regarded as having such a matrix appear to secrete a layer of mucilage over the surface of sclerotial hyphae. This mucilage could have a morphogenetic function and serve as an adhesive which loosely binds hyphae together. More permanent unions are by hyphal fusions or anastomoses. 5. The sclerotium matures within a few days of attaining its maximum size. The rind effectively seals off the medullary hyphae from the surroundings and the translocatory hyphae cease to function. Thus the sclerotium is isolated both physiologically and nutritionally. The endogenous reserves enable the structure to exist in the absence of exogenous nutrients and then, when conditions become suitable, to germinate. 6. The sclerotium appears to provide an example of convergent evolution whereby analogous structures, which have become adapted to resist adverse conditions, have evolved. Data are available mainly for Typhula spp. and ScZerotinia spp. Sclerotia may be degenerate sexual reproductive structures, hyphal aggregates that have developed from closely interwoven conidiophores and undifferentiated conidia or they may be modified vegetative structures.  相似文献   

10.
11.
Scanning electron microscopy showed that hyphae of Coniothyrium minitans produced appressorium-like swellings when they came in contact with Sclerotinia sclerotiorum in dual culture on PDA. The parasitized hyphae gradually skrank and collapsed, and hyphae of the mycoparasite were found inside the host hyphae. The mycoparasite hyphae grew inter- and intracellularly within the sclerotia of S. sclerotiorum. In the later stages of parasitism, hyphae of the mycoparasite proliferated extensively within the sclerotia and formed pycnidia near the sclerotial surface. At this stage, the sclerotia became flattened, soft and disintegrated. Sclerotia parasitized by C. minitans failed to germinate either myceliogenically or carpogenically.  相似文献   

12.
Fungal histidine kinases (HKs) are involved in osmotic and oxidative stress responses, hyphal development, fungicide sensitivity and virulence. Members of HK class III are known to signal through the high‐osmolarity glycerol mitogen‐activated protein kinase (HOG MAPK). In this study, we characterized the Shk1 gene (SS1G_12694.3), which encodes a putative class III HK, from the plant pathogen Sclerotinia sclerotiorum. Disruption of Shk1 resulted in resistance to phenylpyrrole and dicarboximide fungicides and increased sensitivity to hyperosmotic stress and H2O2‐induced oxidative stress. The Shk1 mutant showed a significant reduction in vegetative hyphal growth and was unable to produce sclerotia. Quantitative real‐time polymerase chain reaction (qRT‐PCR and glycerol determination assays showed that the expression of SsHOG1 (the last kinase of the Hog pathway) and glycerol accumulation were regulated by the Shk1 gene, but PAK (p21‐activated kinase) was not. In addition, the Shk1 mutant showed no change in virulence. All the defects were restored by genetic complementation of the Shk1 deletion mutant with the wild‐type Shk1 gene. These findings indicate that Shk1 is involved in vegetative differentiation, sclerotial formation, glycerol accumulation and adaption to hyperosmotic and oxidative stresses, and to fungicides, in S. sclerotiorum. Taken together, our results demonstrate, for the first time, the role of two‐component HKs in Sclerotinia.  相似文献   

13.
A study was conducted to determine water-assisted dissemination of conidia of Coniothyrium minitans (Cm), a mycoparasite of Sclerotinia sclerotiorum (Ss), in four soils (yellow–brown soil, red-clay soil, fluvo-aquic soil and black soil) and one sand. Conidial suspensions (1×107 conidia mL?1) of Cm were applied to sieved (2 mm screen) soil or sand in glass tubes to test vertical dissemination (VD) and in aluminum boxes to test horizontal dissemination (HD) of conidia. Results showed that conidia of Cm could be disseminated with water and spread in soil or sand for 16–20 cm vertically and for 5–10 cm horizontally. The conidial concentration of Cm was logarithmically reduced with the increase in depth of VD or the distance of HD. Dissemination of Cm conidia in sand was better than that in four soils. Potting experiments were done to further understand the potential of water-assisted dissemination of Cm conidia in suppression of Ss carpogenic germination. Results showed that more apothecia were produced by Ss sclerotia located at the soil surface than those at 5 and 10 cm in depth. The minimum Cm concentration for suppression of Ss carpogenic germination was 1000 conidia g?1 soil. Two-season field trials indicated that water-assisted application of Cm was an effective strategy used at the time for transplanting oilseed rape seedlings to suppress Ss carpogenic germination, thereby reducing the primary infection source for sclerotinia diseases of oilseed rape.  相似文献   

14.
15.
《Autophagy》2013,9(1):33-49
Autophagy is a tightly controlled degradation process involved in various developmental aspects of eukaryotes. However, its involvement in developmental processes of multicellular filamentous ascomycetes is largely unknown. Here, we analyzed the impact of the autophagic proteins SmATG8 and SmATG4 on the sexual and vegetative development of the filamentous ascomycete Sordaria macrospora. A Saccharomyces cerevisiae complementation assay demonstrated that the S. macrospora Smatg8 and Smatg4 genes can functionally replace the yeast homologs. By generating homokaryotic deletion mutants, we showed that the S. macrospora SmATG8 and SmATG4 orthologs were associated with autophagy-dependent processes. Smatg8 and Smatg4 deletions abolished fruiting-body formation and impaired vegetative growth and ascospore germination, but not hyphal fusion. We demonstrated that SmATG4 was capable of processing the SmATG8 precursor. SmATG8 was localized to autophagosomes, whereas SmATG4 was distributed throughout the cytoplasm of S. macrospora. Furthermore, we could show that Smatg8 and Smatg4 are not only required for nonselective macroautophagy, but for selective macropexophagy as well. Taken together, our results suggest that in S. macrospora, autophagy seems to be an essential and constitutively active process to sustain high energy levels for filamentous growth and multicellular development even under nonstarvation conditions.  相似文献   

16.
The devastating plant pathogen Sclerotinia sclerotiorum produces copious (up to 50 mM) amounts of oxalic acid, which, for over a quarter century, has been claimed as the pathogenicity determinant based on UV‐induced mutants that concomitantly lost oxalate production and pathogenicity. Such a claim was made without fulfilling the molecular Koch's postulates because the UV mutants are genetically undefined and harbour a developmental defect in sclerotial production. Here, we generated oxalate‐minus mutants of S. sclerotiorum using two independent mutagenesis techniques, and tested the resulting mutants for growth at different pHs and for pathogenicity on four host plants. The oxalate‐minus mutants accumulated fumaric acid, produced functional sclerotia and have reduced ability to acidify the environment. The oxalate‐minus mutants retained pathogenicity on plants, but their virulence varied depending on the pH and buffering capacity of host tissue. Acidifying the host tissue enhanced virulence of the oxalate‐minus mutants, whereas supplementing with oxalate did not. These results suggest that it is low pH, not oxalic acid itself, that establishes the optimum conditions for growth, reproduction, pathogenicity and virulence expression of S. sclerotiorum. Exonerating oxalic acid as the primary pathogenicity determinant will stimulate research into identifying additional candidates as pathogenicity factors towards better understanding and managing Sclerotinia diseases.  相似文献   

17.
【目的】对桑椹灾害性真菌病害——桑椹肥大性菌核病病原菌,即桑实杯盘菌(Ciboria shiraiana)的生物学特性进行研究,分析其流行性。【方法】采用人工接种、调查等研究方法,对C.shiraiana在无性生长阶段中菌丝侵染能力,菌核的休眠期,有性生长阶段中子囊孢子的结构、释放、数目以及萌发等进行研究,并对菌核萌发的物候期进行调查。【结果】C.shiraiana菌丝对桑雌花没有侵染能力;C.shiraiana菌核具有休眠期,低温处理6周以上的菌核才能萌发形成子囊盘;1个菌核可萌发1–15个子囊盘,直径为1.5 cm的子囊盘能产生高达(5.6–6.3)×10~7个子囊孢子;C.shiraiana子囊孢子在酸性环境中的萌发率明显高于在中性和碱性环境中的萌发率;C.shiraiana菌核萌发形成子囊盘产生子囊孢子的物候期,从1月下旬开始到4月中旬结束,其中在3月中旬萌发子囊盘的数目达到最高值。【结论】桑椹肥大性菌核病属于典型的流行性侵染病,在果桑栽培上容易造成毁灭性危害,生产上必须高度重视该病的防控。  相似文献   

18.
Sclerotia of Sclerotinia sclerotiorum were incubated on cultures of Trichoderma harzianum. Myceliogenic germination decreased by 50% within 1 day and continued to decrease over time. Quantitative PCR showed a decrease in Sclerotinia DNA for older sclerotia, but not fresh sclerotia. Trichoderma DNA increased and persisted inside older sclerotia but not fresh sclerotia.  相似文献   

19.
Rudolph , Emanuel D. (Ohio State U., Columbus.) The effect of some physiological and environmental factors on sclerotial Aspergilli. Amer. Jour. Bot. 49(1): 71–78. Illus. 1962.—The effect of varying conditions of carbon-nitrogen balance, temperature, pH, and light upon the formation of sclerotia by 6 species of Aspergillus (A. alliaceus, A. avenaceus, A. flavus, A. quercinus, A. sclerotiorum and A. wentii) was studied. On Czapek's agar, optimal growth as well as maximum production of sclerotia and conidia took place at high sucrose and nitrate concentrations. In general, fewer sclerotia were formed with glucose than with sucrose, and very poor growth took place with lactose. Sclerotia were formed best at temperatures that were optimal or below optimal for mycelial growth. The ranges of pH through which sclerotia were formed were narrower than those through which conidia and mycelia were formed. Light had no effect upon sclerotium formation. The formation of sclerotia in A. alliaceus was found to represent the strand-type development. A number of UV-induced strains and a spontaneous mutant strain of A. alliaceus showing varying amounts of sclerotium and conidium production are characterized. It is suggested that the sclerotia in Aspergillus are sterile stromata.  相似文献   

20.
Research has established that mutations in highly conserved amino acids of the succinate dehydrogenase (SDH) complex in various fungi confer SDH inhibitor (SDHI) resistance. For Sclerotinia sclerotiorum (Lib.) de Bary, a necrotrophic fungus with a broad host range and a worldwide distribution, boscalid resistance has been attributed to the mutation H132R in the highly conserved SdhD subunit protein of the SDH complex. In our previous study, however, only one point mutation, A11V in SdhB (GCA to GTA change in SdhB), was detected in S. sclerotiorum boscalid‐resistant (BR) mutants. In the current study, replacement of the SdhB gene in a boscalid‐sensitive (BS) S. sclerotiorum strain with the mutant SdhB gene conferred resistance. Compared with wild‐type strains, BR and GSM (SdhB gene in the wild‐type strain replaced by the mutant SdhB gene) mutants were more sensitive to osmotic stress, lacked the ability to produce sclerotia and exhibited lower expression of the pac1 gene. Importantly, the point mutation was not located in the highly conserved sequence of the iron–sulfur subunit of SDH. These results suggest that resistance based on non‐conserved vs. conserved protein domains differs in mechanism. In addition to increasing our understanding of boscalid resistance in S. sclerotiorum, the new information will be useful for the development of alternative antifungal drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号