共查询到20条相似文献,搜索用时 15 毫秒
1.
Lean (Fa/?) and obese (fa/fa) Zucker rats were adrenalectomized (ADX) in order to assess the contribution of adrenal hormones to insulin resistance of the obese Zucker rat. Glucose utilization was measured using an insulin suppression test. Sham-operated obese rats gained almost twice as much weight as sham-operated lean littermates. However, body weight gain of ADX animals was comparable in both genotypes. It was significantly less than that of the respective sham-operated controls. Body weight differences can be accounted for almost entirely by a marked loss of adipose tissue. Although insulin resistance may be attributable to obesity in part, steroid hormones are thought to be directly antagonistic to insulin for glucose metabolism. Adrenalectomy resulted in a decrease in serum glucose concentrations for both lean and obese Zucker rats compared with their respective sham-operated groups. Serum insulin concentration of lean ADX rats was 23% of sham-operated controls; in obese ADX rats, it was 9% of controls. Elevated levels of steady state serum glucose (SSSG) levels in sham-operated obese rats demonstrate a marked resistance to insulin induced glucose uptake compared with sham-operated lean animals. Adrenalectomy caused a marked improvement in insulin sensitivity of obese rats. The hyperglycemic SSSG levels of the obese rats were reduced 2.5 times by ADX. These results indicate that insulin resistance of Zucker obese rats can be ameliorated by ADX, suggesting adrenal hormones contribute to insulin resistance in these animals. 相似文献
2.
Javier Moral-Sanz Carmen Menendez Laura Moreno Enrique Moreno Angel Cogolludo Francisco Perez-Vizcaino 《Respiratory research》2011,12(1):51
Background
Insulin resistance and obesity are strongly associated with systemic cardiovascular diseases. Recent reports have also suggested a link between insulin resistance with pulmonary arterial hypertension. The aim of this study was to analyze pulmonary vascular function in the insulin resistant obese Zucker rat.Methods
Large and small pulmonary arteries from obese Zucker rat and their lean counterparts were mounted for isometric tension recording. mRNA and protein expression was measured by RT-PCR or Western blot, respectively. KV currents were recorded in isolated pulmonary artery smooth muscle cells using the patch clamp technique.Results
Right ventricular wall thickness was similar in obese and lean Zucker rats. Lung BMPR2, KV1.5 and 5-HT2A receptor mRNA and protein expression and KV current density were also similar in the two rat strains. In conductance and resistance pulmonary arteries, the similar relaxant responses to acetylcholine and nitroprusside and unchanged lung eNOS expression revealed a preserved endothelial function. However, in resistance (but not in conductance) pulmonary arteries from obese rats a reduced response to several vasoconstrictor agents (hypoxia, phenylephrine and 5-HT) was observed. The hyporesponsiveness to vasoconstrictors was reversed by L-NAME and prevented by the iNOS inhibitor 1400W.Conclusions
In contrast to rat models of type 1 diabetes or other mice models of insulin resistance, the obese Zucker rats did not show any of the characteristic features of pulmonary hypertension but rather a reduced vasoconstrictor response which could be prevented by inhibition of iNOS. 相似文献3.
4.
Sensory nerve inactivation by resiniferatoxin improves insulin sensitivity in male obese Zucker rats
Moesgaard SG Brand CL Sturis J Ahrén B Wilken M Fleckner J Carr RD Svendsen O Hansen AJ Gram DX 《American journal of physiology. Endocrinology and metabolism》2005,288(6):E1137-E1145
Recent studies have suggested that sensory nerves may influence insulin secretion and action. The present study investigated the effects of resiniferatoxin (RTX) inactivation of sensory nerves (desensitization) on oral glucose tolerance, insulin secretion and whole body insulin sensitivity in the glucose intolerant, hyperinsulinemic, and insulin-resistant obese Zucker rat. After RTX treatment (0.05 mg/kg RTX sc given at ages 8, 10, and 12 wk), fasting plasma insulin was reduced (P < 0.0005), and oral glucose tolerance was improved (P < 0.005). Pancreas perfusion showed that baseline insulin secretion (7 mM glucose) was lower in RTX-treated rats (P = 0.01). Insulin secretory responsiveness to 20 mM glucose was enhanced in the perfused pancreas of RTX-treated rats (P < 0.005) but unaffected in stimulated, isolated pancreatic islets. At the peak of spontaneous insulin resistance in the obese Zucker rat, insulin sensitivity was substantially improved after RTX treatment, as evidenced by higher glucose infusion rates (GIR) required to maintain euglycemia during a hyperinsulinemic euglycemic (5 mU.kg(-1).min(-1)) clamp (GIR(60-120min): 5.97 +/- 0.62 vs. 11.65 +/- 0.83 mg.kg(-1).min(-1) in RTX-treated rats, P = 0.003). In conclusion, RTX treatment and, hence, sensory nerve desensitization of adult male obese Zucker rats improved oral glucose tolerance by enhancing insulin secretion, and, in particular, by improving insulin sensitivity. 相似文献
5.
D G Baskin L J Stein H Ikeda S C Woods D P Figlewicz D Porte M R Greenwood D M Dorsa 《Life sciences》1985,36(7):627-633
The concentration of immunoreactive insulin (IRI) extracted from the olfactory bulb, hypothalamus, hippocampus, cerebral cortex, amygdala, midbrain, and hindbrain was significantly lower in obese (fa/fa) and heterozygous (Fa/fa) Zucker rats in comparison to lean (Fa/Fa) Zucker rats. This deficit in brain IRI content was most severe in the hypothalamus and olfactory bulb and was independent of severe obesity since the marked reduction of brain IRI content was also found in heterozygous rats which possessed only one copy of the fa allele. These results demonstrate that in the 2-3 month-old female Zucker rat, the fa allele is associated with defective regulation of insulin in the brain. 相似文献
6.
In the current study we investigated the effect of mu-opioid receptor activation on insulin sensitivity. In obese Zucker rats, an intravenous injection of loperamide (18 microg/kg, three times daily for 3 days) decreased plasma glucose levels and the glucose-insulin index. Both effects of loperamide were subsequently inhibited by the administration of 10 microg/kg of naloxone or 10 microg/kg of naloxonazine, doses sufficient to block mu-opioid receptors. Other metabolic defects characteristic of obese Zucker rats, such as defects in insulin signaling, the decreased expression of insulin receptor substrate (IRS)-1, the p85 regulatory subunit of phosphatidylinositol 3-kinase (PI3 kinase), and the glucose transporter subtype 4 (GLUT 4), and the reduction of phosphorylation in IRS-1 or Akt serine, were also studied. These defects were all reversed by loperamide treatment in a dose which overcame mu-opioid receptor blockade. Moreover, loss of tolbutamide-induced plasma glucose lowering action (10 mg/kg) in wild-type mice given a fructose-rich diet was markedly delayed by repeated treatment with loperamide; however, this delay induced by loperamide did not occur in mu-opioid receptor knockout mice. These results indicate an important role of peripheral mu-opioid receptors in the loperamide-induced improvement of insulin sensitivity. Our results suggest that activation of peripheral mu-opioid receptors can ameliorate insulin resistance in animals, and provide a new target for therapy of insulin resistance. 相似文献
7.
Adipose tissue (AT) inflammation is linked to the pathogenesis of diabetes in obesity. Here, we compare the AT inflammatory state of 2 animal models of obesity and obesity plus diabetes, respectively. Obese nondiabetic ZF rats exhibited a trend towards increased proportions of CD11b positive cells in the adipose tissue stroma vascular fraction suggesting a state of increased AT inflammation compared to their lean littermates, but no alterations in systemic inflammatory parameters. In contrast, obese diabetic ZDF rats exhibited systemic as well as local AT inflammation with elevated levels of circulating Regulated upon Activation, Normal T-cell Expressed and Secreted Protein (Rantes), interleukin 1β (IL-1β) and monocyte chemotactic protein 1 (MCP-1), and an increased infiltration of adipose tissue CD11b positive cells. Our data provide a novel phenotypic characterisation of 2 common metabolic animal models and suggest an association of obesity with local inflammation in adipose tissue, and an association of diabetes with local inflammation in adipose tissue plus systemic inflammation. AT inflammation in obesity might therefore initiate a process that above a certain limits finally results in systemic inflammation and diabetes. 相似文献
8.
Ren J Sowers JR Walsh MF Brown RA 《American journal of physiology. Heart and circulatory physiology》2000,279(4):H1708-H1714
Obesity plays a pivotal role in the pathophysiology of metabolic and cardiovascular diseases. Resistance to insulin is commonly seen in metabolic disorders such as obesity and diabetes. Insulin-like growth factor-I (IGF-I) mimics insulin in many tissues and has been shown to enhance cardiac contractile function and growth. Because IGF-I resistance often accompanies resistance to insulin, we sought to determine whether IGF-I-induced myocardial contractile was elevated and whether heart and kidney size were enlarged in obese compared with lean rats. The myocyte contraction profile in the obese rats showed a decreased peak shortening associated with prolonged relengthening and normal shortening duration, a pattern similar to that observed in diabetes. IGF-I (1-500 ng/ml) caused a dose-dependent increase in peak shortening in lean but not obese animals, but it did not alter the duration of shortening and relengthening. Consistent with contractile data, IGF-I induced a dose-dependent increase in Ca(2+) transients only in myocytes of lean rats. IGF-I receptor mRNA levels were significantly reduced in obese rat hearts. These results suggest that the IGF-I-induced cardiac contractile responses are attenuated in the Zucker model of obesity. The mechanisms underlying this alteration may be related to the decreased receptor number and/or changes in intracellular Ca(2+) handling in these animals. 相似文献
9.
R A Pederson R V Campos C B Chan A M Buchan M B Wheeler J C Brown 《Regulatory peptides》1989,24(2):131-142
In this study, gastrin release in the obese Zucker rat was investigated by in vivo and in vitro experiments. Obese rats exhibited normal plasma gastrin levels at 3 weeks (preobese), were moderately hypergastrinemic at 3 months and severely hypergastrinemic at 5 months, compared to lean littermates. Following oral peptone, plasma gastrin levels doubled in both lean and obese rats. Basal and vagally stimulated gastrin release from perfused stomachs was greater in obese compared to lean rats and atropine had no effect on basal gastrin release in either group. Basal somatostatin release from the perfused stomach was found not to differ in both groups of animals. Morphological studies revealed an increase in the number of gastrin-containing G-cells in adult obese rats compared to lean littermates, but not in 3-week-old pups compared to lean littermates, indicating a strong correlation between cell number and plasma gastrin levels. These data indicate that the obese Zucker rat exhibits fasting hypergastrinemia in vivo, a condition which appears after weaning and increases in severity with age. Gastrin hypersecretion persists from the vascularly perfused stomach preparation. The basal hypergastrinemia of the obese Zucker rat is independent of a hyperactive postganglionic cholinergic drive but is associated with and probably causally related to an increase in antral G-cell numbers. 相似文献
10.
Hepatocytes isolated from obese Zucker rats showed a significantly higher rate of both [U-14C]glucose and [U-14C]lactate incorporation into [14C]lipid than those from their lean counterparts. This was associated with a marked increase in the lipogenic rate measured by the incorporation of3H2O into the cell esterified fatty acids. Although there were no changes in the incorporation of the tracer into either [14C]glycogen or14CO2, the [14C] total uptake was significantly higher in the obese animals. The high rate of [14C]lipid synthesis from glucose was observed both at 15 and 30 mM substrate concentrations and was linked to an enhanced uptake of the tracer into the cell as measured using the decarboxilation of [1-14C]glucose in the presence of phenazine methosulphate. The presence of insulin in the incubation medium had no effect on the uptake of glucose by the liver cells. However, the large uptake of glucose by the hepatocytes from the obese animals was not related to an enhanced rate of transport as measured using 3-O-methyl[U-14C]glucose. The activity of glucose-6-phosphate dehydrogenase together with a higher [1-14C]glucose/[U-14C]glucose descarboxylation ratio indicate a predominant very active pentose phosphate pathway which may be responsible for the enhanced glucose uptake observed in the hepatocytes from the obese animals. 相似文献
11.
Exercise training improves muscle insulin resistance but not insulin receptor signaling in obese Zucker rats. 总被引:9,自引:0,他引:9
Christine Y Christ Desmond Hunt Joe Hancock Rebeca Garcia-Macedo Lawrence J Mandarino John L Ivy 《Journal of applied physiology》2002,92(2):736-744
Exercise training improves skeletal muscle insulin sensitivity in the obese Zucker rat. The purpose of this study was to investigate whether the improvement in insulin action in response to exercise training is associated with enhanced insulin receptor signaling. Obese Zucker rats were trained for 7 wk and studied by using the hindlimb-perfusion technique 24 h, 96 h, or 7 days after their last exercise training bout. Insulin-stimulated glucose uptake (traced with 2-deoxyglucose) was significantly reduced in untrained obese Zucker rats compared with lean controls (2.2 +/- 0.17 vs. 5.4 +/- 0.46 micromol x g(-1) x h(-1)). Glucose uptake was normalized 24 h after the last exercise bout (4.9 +/- 0.41 micromol x g(-1) x h(-1)) and remained significantly elevated above the untrained obese Zucker rats for 7 days. However, exercise training did not increase insulin receptor or insulin receptor substrate-1 (IRS-1) tyrosine phosphorylation, phosphatidylinositol 3-kinase (PI3-kinase) activity associated with IRS-1 or tyrosine phosphorylated immunoprecipitates, or Akt serine phosphorylation. These results are consistent with the hypothesis that, in obese Zucker rats, adaptations occur during training that lead to improved insulin-stimulated muscle glucose uptake without affecting insulin receptor signaling through the PI3-kinase pathway. 相似文献
12.
M M Grasa C Cabot J A Fernández-López X Remesar M Alemany 《Hormones et métabolisme》2001,33(7):407-411
Corticosterone-binding (CB) capacity was determined in periovarian and subcutaneous white adipose tissue (WAT), as well as in plasma of lean and obese Zucker rats. In lean rats, plasma CB was twice the level of obese rats. In lean rat WAT, dexamethasone binding accounted for only 0.05-0.09% of corticosterone binding, and aldosterone bound even less; in the obese rats, dexamethasone accounted for 0.2 - 0.3 % of corticosterone binding. Scatchard plots showed that KD for corticosterone was 3.1 nM (WAT) or 3.4 nM (plasma) in lean rats and 1.8 nM (WAT) or 1.5 nM (plasma) in obese rats. The total CB capacity in WAT was lower in the obese than in lean rats (47-50%). Plasma non-esterified fatty acid levels were higher in obese rats. The results suggest that CBG may limit the access of glucocorticoids to adipocytes more weakly in obese rats because of the lower CBG. Fatty acids may increase the affinity of CBG for corticosterone, which would make WAT cells less accessible to circulating glucocorticoids. The modulation of CBG by fatty acids may protect fat reserves by decreasing the sensitivity of WAT to glucocorticoids. 相似文献
13.
CCK-resistance in Zucker obese versus lean rats 总被引:4,自引:0,他引:4
Claus Niederau Kerstin Meereis-Schwanke Hanne Klonowski-Stumpe Lieselotte Herberg 《Regulatory peptides》1997,70(2-3):97-104
Obese Zucker rats are less sensitive to the satiety effect of CCK than lean litter mates. The present studies further characterised this CCK resistance. Subcutaneous injection of the CCK agonist caerulein dose-dependently decreased food intake in Zucker obese and lean rats whereas the CCK-B agonist gastrin-17 did not. Caerulein at 4 μg/kg, which resulted in CCK plasma bioactivity slightly above postprandial levels, decreased food intake in lean rats but not in obese rats. The decrease in food intake was also more marked at higher caerulein doses (20–100 μg/kg) in lean versus obese rats. In lean animals the satiety effects of the “near physiological” 4 μg/kg caerulein dose was abolished after blockade of vagal afferents with capsaicin, whereas the effects of higher caerulein doses were not. CCK-stimulated amylase secretion from pancreatic acini and binding capacity of 125I- labelled CCK-8 were decreased in obese versus lean rats. The CCK-A antagonist loxiglumide at 20 mg/kg, a dose which abolished the action of all caerulein doses on food intake, failed to alter the food intake either in obese or in lean rats when given without an agonist. The results suggest that the satiety effects of “near physiological” doses of caerulein in lean rats are mediated by vagal afferents whereas pharmacological doses act via non-vagal mechanisms. The differences in CCK's satiety effect between lean and obese rats may be due to differences in CCK-receptor binding and action at peripheral vagal sites. However, the failure of the CCK-A antagonist to increase food intake questions whether any of the effects of exogenous CCK are of physiological relevance. 相似文献
14.
Galinier A Carriere A Fernandez Y Caspar-Bauguil S Periquet B Periquet A Penicaud L Casteilla L 《FEBS letters》2006,580(27):6391-6398
Adipose tissues are differently involved in lipid metabolism and obesity according to their type and location. Increasing reports stress on the impact of redox metabolism on obesity and metabolic syndrome. The aim of this work is to investigate the site-specific redox metabolism in three different adipose tissues and its changes occurring in obesity. We analysed enzymatic and non-enzymatic parameters, and focused on the reduced/oxidized glutathione and coenzyme Q couples. In lean compared with obese non-diabetic Zucker rats, interscapular brown fat seems well protected against oxidative stress and epididymal adipose tissue shows a more reduced glutathione redox state, associated with a higher susceptibility to lipophilic oxidative stress than inguinal adipose tissue. Epididymal adipose tissue redox metabolism significantly differs from inguinal one by its limited redox metabolism adaptation. Our results demonstrate site-specific managements of reactive oxygen species metabolism in obese Zucker rats. These results are not consistent with the classic deciphering of inflammatory situation and produce a new conception of the redox parameters implication in the development of the metabolic syndrome. 相似文献
15.
Flamment M Arvier M Gallois Y Simard G Malthièry Y Ritz P Ducluzeau PH 《Biochimie》2008,90(9):1407-1413
The relationship between insulin resistance and mitochondrial function is of increasing interest. Studies looking for such interactions are usually made in muscle and only a few studies have been done in liver, which is known to be a crucial partner in whole body insulin action. Recent studies have revealed a similar mechanism to that of muscle for fat-induced insulin resistance in liver. However, the exact mechanism of lipid metabolites accumulation in liver leading to insulin resistance is far from being elucidated. One of the hypothetical mechanisms for liver steatosis development is an impairment of mitochondrial function. We examined mitochondrial function in fatty liver and insulin resistance state using isolated mitochondria from obese Zucker rats. We determined the relationship between ATP synthesis and oxygen consumption as well as the relationship between mitochondrial membrane potential and oxygen consumption. In order to evaluate the quantity of mitochondria and the oxidative capacity we measured citrate synthase and cytochrome c oxidase activities. Results showed that despite significant fatty liver and hyperinsulinemia, isolated liver mitochondria from obese Zucker rats display no difference in oxygen consumption, ATP synthesis, and membrane potential compared with lean Zucker rats. There was no difference in citrate synthase and cytochrome c oxidase activities between obese and lean Zucker rats in isolated mitochondria as well as in liver homogenate, indicating a similar relative amount of hepatic mitochondria and a similar oxidative capacity. Adiponectin, which is involved in bioenergetic homeostasis, was increased two-fold in obese Zucker rats despite insulin resistance. In conclusion, isolated liver mitochondria from lean and obese insulin-resistant Zucker rats showed strictly the same mitochondrial function. It remains to be elucidated whether adiponectin increase is involved in these results. 相似文献
16.
H Koubi C Duchamp A Gélo?n A Fréminet Y Minaire 《Canadian journal of physiology and pharmacology》1991,69(6):841-845
Glycogen stores (liver and carcass) have been studied in lean and obese Zucker rats. The animals were submitted to one of three feeding conditions: ad libitum, a 48-h fast, or a 48-h fast and food ad libitum for 24 h, and to two environmental conditions, either thermoneutrality or an acute cold exposure (2 days at 4-7 degrees C). After a 2-day fast at 25 degrees C, the liver glycogen store was reduced by 45 times in the lean rats, while it was decreased by only 3 times in the obese rats. Under these conditions, the liver glycogen store was 45 times higher in the obese than in the lean rats. After 2 days in the cold, liver glycogen store was 4.4 times higher in obese rats than in lean rats. After a 2-day fast in the cold, the liver glycogen store in the obese rats was 30 times higher than in the lean rats. In comparison to fasting at thermoneutrality, fasting in the cold did not lead to a further reduction in hepatic glycogen in obese Zucker rats. The differences observed in the mobilization of the hepatic glycogen store between obese and lean rats have not been found in the mobilization of the carcass glycogen store. Drastic conditions, such as a 2-day fast in the cold, did not exhaust the glycogen store in obese Zucker rats. The present observations point out that obese Zucker rats cannot mobilize the entire hepatic glycogen store, as seen in lean control rats. The role of this abnormality in the high hyperlipogenesis that maintains the obese state is still to be evaluated. 相似文献
17.
Essential hypertension is associated with an increased incidence of insulin resistance of skeletal muscle glucose transport. The present study determined if celiprolol, an antihypertensive agent with selective beta1-adrenoceptor antagonist and additional beta2-agonistic properties, administered by gavage either acutely (3 hr) or chronically (14 d), had a direct effect on improving glucose tolerance and insulin-stimulated glucose transport activity (using 2-deoxyglucose (2-DG) uptake) in isolated epitrochlearis muscles of the insulin-resistant obese Zucker rat. The effects of a selective beta1-blocker, metoprolol, were also assessed. Acute administration of celiprolol, but not metoprolol, increased insulin-stimulated 2-DG uptake in muscle by 22% (p<0.05). Chronic celiprolol treatment significantly lowered fasting plasma insulin (22%) and free fatty acids (40%) in comparison to obese control values. Moreover, chronic celiprolol administration decreased the glucose-insulin index (calculated as the product of the glucose and insulin areas under the curve during an oral glucose tolerance test), by 32% (p<0.05) compared to obese controls, indicating that peripheral insulin action was increased. Indeed, insulin-stimulated skeletal muscle 2-DG uptake was enhanced by 49% (p<0.05) in these celiprolol-treated obese animals. Metoprolol was without significant effect on any of these variables following chronic administration. These findings indicate that, in this animal model of insulin resistance, the beta1-antagonist/beta2-agonist celiprolol has a specific effect of improving insulin-stimulated skeletal muscle glucose transport that is independent of any hemodynamic alterations. 相似文献
18.
Adipose triglyceride lipase (ATGL) hydrolyzes triacylglycerols to diacylglycerols in the first step of lipolysis, providing substrates for hormone-sensitive lipase (HSL). Here we studied whether ATGL messenger RNA (mRNA) and protein levels were affected by 24-h cold exposure in different white adipose tissue depots and in interscapular brown adipose tissue of lean and obese Zucker rats submitted to feeding and 14-h fasting conditions. HSL mRNA expression was also studied in selected depots. In both lean and obese rats, as a general trend, cold exposure increased ATGL mRNA and protein levels in the different adipose depots, except in the brown adipose tissue of lean animals, where a decrease was observed. In lean rats, cold exposure strongly improved fasting up-regulation of ATGL expression in all the adipose depots. Moreover, in response to fasting, in cold-exposed lean rats, there was a stronger positive correlation between circulating nonesterified fatty acids (NEFA) and ATGL mRNA levels in the adipose depots and a higher percentage increase of circulating NEFA in comparison with control animals not exposed to cold. In obese rats, fasting-induced up-regulation of ATGL was impaired and was not improved by cold. The effects of obesity and cold exposure on HSL mRNA expression were similar to those observed for ATGL, suggesting common regulatory mechanisms for both proteins. Thus, cold exposure increases ATGL expression and improves its fasting-up-regulation in adipose tissue of lean rats. In obese rats, cold exposure also increases ATGL expression but fails to improve its regulation by fasting, which could contribute to the increased difficulty for mobilizing lipids in these animals. 相似文献
19.
Frisbee JC 《American journal of physiology. Regulatory, integrative and comparative physiology》2003,285(5):R1124-R1134
Skeletal muscle arterioles from obese Zucker rats (OZR) exhibit oxidant stress-based alterations in reactivity, enhanced alpha-adrenergic constriction, and reduced distensibility vs. microvessels of lean Zucker rats (LZR). The present study determined the impact of these alterations for perfusion and performance of in situ skeletal muscle during periods of elevated metabolic demand. During bouts of isometric tetanic contractions, fatigue of in situ gastrocnemius muscle of OZR was increased vs. LZR; this was associated with impaired active hyperemia. In OZR, vasoactive responses of skeletal muscle arterioles from the contralateral gracilis muscle were impaired, due in part to elevated oxidant tone; reactivity was improved after treatment with polyethylene glycol-superoxide dismutase (PEGSOD). Arterioles of OZR also exhibited increased alpha-adrenergic sensitivity, which was abolished by treatment with phentolamine (10-5 M). Intravenous infusion of phentolamine (10 mg/kg) or PEG-SOD (2,000 U/kg) in OZR altered neither fatigue rates nor active hyperemia from untreated levels; however, combined infusion improved performance and hyperemia, although not to levels in LZR. Microvessel density in the contralateral gastrocnemius muscle, determined via histological analyses, was reduced by approximately 25% in OZR vs. LZR, while individual arterioles from the contralateral gracilis muscle demonstrated reduced distensibility. These data suggest that altered arteriolar reactivity contributes to reduced muscle performance and active hyperemia in OZR. Further, despite pharmacological improvements in arteriolar reactivity, reduced skeletal muscle microvessel density and arteriolar distensibility also contribute substantially to reduced active hyperemia and potentially to impaired muscle performance. 相似文献
20.
Lipoprotein secretion in lean and obese Zucker female rats in vivo and in a single-pass-perfused liver preparation 总被引:1,自引:0,他引:1
D Petit S R Wang G Renaud R Infante 《Archives internationales de physiologie et de biochimie》1988,96(1):51-62
The plasma lipoprotein composition as well as lipoprotein synthesis and secretion were studied in vivo and in a single-pass-perfused liver preparation in lean and obese Zucker rats. Compared with their lean littermates the levels in the plasma of very low density lipoprotein (VLDL), intermediate density lipoprotein (IDL) + low density lipoprotein (LDL) and high density lipoprotein (HDL) were increased 4-, 2- and 2.5 fold, respectively, in obese rats. In these rats both VLDL and IDL + LDL were enriched in triglycerides, while the HDL were enriched in cholesterol. Although the VLDL and IDL + LDL protein concentrations were the same in lean and obese rats, the HDL protein concentration was 3-fold greater in the obese rats. Both the lean and obese rats incorporated similar amounts of [14C]leucine into total liver protein. However, obese rats incorporated 2.5-fold and 6-fold more [14C]leucine into VLDL and HDL in vivo, 2.7-fold and 1.7 fold more [35S]methionine in VLDL and HDL present in the perfusate, than did lean rats. The perfusate [35S]S-labelled apoproteins (apo-B100, B48; apo-E, apo-AI, apo-AIV and apo-C) were separated by gel electrophoresis and identified by autoradiography. Incorporation of [3H]glycerol into liver, VLDL, IDL + LDL and HDL triglycerides was 2-, 48-, 13- and 1.5-fold higher in obese than in lean rats, respectively. The [3H]-labelled triglycerides in VLDL and IDL + LDL present in the perfusate was 5.4-fold and 4.4-fold more in obese rat. There was no difference in the incorporation of [3H]glycerol into triglycerides of perfusate HDL between the two genotypes of rats. Thus, the hypertriglyceridaemia observed in obese Zucker rats results from very high synthetic rates of both the lipid and protein moieties of plasma lipoproteins. Before this study, no report of the simultaneous triglycerides and protein synthesis in vivo and in a single-pass-perfused liver preparations had been reported. 相似文献