首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Methylation analysis of and partial hydrolysis studies on the Klebsiella K7 capsular polysaccharide and its carboxyl-reduced derivative indicated the recurrence of D-glucopyranuronic acid, D-mannopyranose, and D-glucopyranose residues, linearly linked in a specific manner, in the molecular structure. D-Galactopyranose and pyruvic acid residues are linked to the main chain on the D-mannose residues (at O-3) and the D-glucose residues (at O-4 and O-6), respectively; the simplest interpretation of this evidence is that nine sugar residues and pyruvic acid constitute a repeating unit. The sequence →3)-β-D-GlcAp-(1→2)-α-D-Manp-(1→2)-α-D-Manp-(1→3)-D-Glcp→ was demonstrated by the isolation from the polysaccharide of an aldotetraouronic acid of this structure.  相似文献   

2.
Dissociated cells separated from a natural colony of Nostoc flagelliforme were cultivated heterotrophically in the darkness on glucose under fed-batch culture conditions. The effects of carbon sources (glucose, fructose, xylose, and sucrose) and concentrations on cell growth and extracellular polysaccharide (EPS) production were investigated. At harvest, the culture contained 1.325 g L?1 of biomass and 117.2 mg L?1 of EPS, respectively. The gravimetric EPS production rate was 16.7 mg g?1 cell dry weight day?1, which was 2.1 times higher than previously reported. Using sigmoid model, batch fermentation of N. flagelliforme was kinetically simulated to obtain equations including substrate consumption, biomass growth, and EPS accumulation. Results from a simulation correlated well with the experimental ones, indicating that this method could be useful in studying EPS production from batch and fed-batch cultures.  相似文献   

3.
The effects of trace elements on ammonium degradation performance and extracellular polymeric substances (EPS) secretion of Acinetobacter harbinensis HITLi7T at low temperature were investigated. Response surface methodology (RSM) was applied to obtain the optimal composition of trace elements and analyze their correlation. In this study, the results indicated that the ammonium removal performance could be enhanced by the presence of 0.1 mg L?1 Fe, Mn, or B in pure cultivation. When the concentrations of Fe and Mn were 0.2 mg L?1, the ammonium removal rates of the novel strain HITLi7T were 0.49 ± 0.01 mg L?1·h?1 and 0.58 ± 0.01 mg L?1·h?1, respectively, while it was the low concentration of 0.05 mg L?1 B that showed the maximum ammonium removal rate (0.56 ± 0.02 mg L?1·h?1) of strain HITLi7T. The regression model was obtained and the optimal formulation of trace elements was: B 0.064 mg L?1, Fe 0.12 mg L?1, and Mn 0.1 mg L?1. Based on these values, the experimental ammonium removal rate could reach 0.59 mg L?1·h?1, which matched well with the predicted response. The study also found that the addition of trace elements, causing high ammonium removal rates, resulted in a high polysaccharide (PS) ratio in the EPS secreted by Acinetobacter harbinensis HITLi7T. Especially under the optimal conditions, the PS ratio reached the highest value of 49.9%.  相似文献   

4.
Botryococcus braunii is a colonial green microalga with recognized potential to synthesize lipids and hydrocarbons for biofuel production. Besides this ability, this microalga also produces exopolysaccharides (EPS). Nevertheless, there are few reports about their biotechnological aspects and industrial applications. In this study, the effect of the nutritional conditions was examined by using two different culture media (BG11 and D medium). To our knowledge, the latter has not been reported before for culturing B. braunii. After 49 days of incubation, the final production of EPS was found to be statistically higher (P < 0.05) in the D medium (0.549?±?0.044 g L?1) than in BG11 (0.336?±?0.009 g L?1). On the contrary, the biomass production was found to be higher in BG11 (1.019?±?0.051 g L?1) than in the D medium (0.953?±?0.056 g L?1). However, this difference was not statistically significant. The difference in salinity and nitrogen concentration between both media is suggested as the main factor involved in the EPS and biomass results. FTIR spectra of B. braunii EPS from both media revealed presence of uronic acids and absence of amino and sulfate groups. Despite the similarity between both spectra, there were some different signals (at 1,921.52 and 720.60 cm?1) which may mean a difference in glycosyl composition.  相似文献   

5.
Two extracellular polysaccharides, designated as WPA and WPB, were isolated from the fungus Aspergillus aculeatus using Q-Sepharose fast flow and Sephacryl S-300 column chromatography. WPA composed of mannose and galactose in a molar ratio of 3.9:1.0, and WPB mainly contained mannose. The molecular weight of WPA and WPB was about 28.1 kDa and 21.0 kDa, respectively. On the basis of methylation and NMR analysis, the possible main chain of WPA was [→5)-β-D-Galf-(1 → 2,6)-α-D-Manp(1→], and WPB was mainly [→2,6)-α-D-Manp(1→], both with [α-D-Manp(1 → 2)-α-D-Manp(1 → 2)-α-D-Manp(1→] substituted at C-2 of [→2,6)-α-D-Manp(1→]. Meanwhile, WPA displayed a stronger anti-proliferative effect than WPB on HeLa, MCF-7 and MGC-803 cells in vitro. WPA and WPB could arrest HeLa cells in G2/M phase and induce HeLa cells apoptosis. Thus, our study provides evidence that WPA and WPB may be taken as potential candidates for treating cervical carcinoma.  相似文献   

6.
Netrium digitus is a representative of the species-rich class Zygnematophyceae (Streptophyta). Its intensive extracellular polysaccharide (EPS) production makes this alga interesting for biotechnological applications with a focus on cosmetics and food additives. Quantitative data on growth and EPS production in suspension and, for the first time, in immobilized culture using lab-scale porous substrate bioreactors, so-called Twin-Layer (TL) systems, is presented. It is shown that the cell as well as the EPS dry weight content is increased at least sixfold in immobilized compared to suspension culture. Due to the high amount of EPS, the biofilms reach a thickness of more than 8 mm after 27 days at 70 μmol photons m?2 s?1 and with 1.5% CO2 supply. Frequent exchange of the growth medium results in a linear cell biomass increase of 2.02?±?0.09 g m?2 growth area day?1 compared to 2.99?±?0.09 g m?2 day?1, when the medium is not exchanged. Under this mode of cultivation, the EPS production is lower and a final concentration of 12.18?±?1.25 g m?2 compared to 20.76?±?0.85 g m?2, when medium was exchanged, is reached. It is clearly demonstrated that the relatively slow growing, but excessively EPS producing, microalgal species N. digitus can be grown in porous substrate bioreactors and that this culturing technique is a promising alternative to suspension culture for the Zygnematophyceae.  相似文献   

7.
In this study, Dendrobium officinale polysaccharide (named DOPS-1) was isolated from the stems of Dendrobium officinale by hot-water extraction and purified by using Sephadex G-150 column chromatography. The structural characterization, antioxidant and cytotoxic activity were carried out. Based on the results of HPLC, GC, Congo red experiment, together with periodate oxidation, Smith degradation, SEM, FT-IR, and NMR spectral analysis, it expressed that DOPS-1 was largely composed of mannose, glucose and galacturonic acid in a molar ratio of 3.2 : 1.3 : 1. The molecular weight of DOPS-1 was 1530 kDa and the main chain was composed of (1→4)-β-D-Glcp, (1→4)-β-D-Manp and 2-O-acetyl-(1→4)-β-D-Manp. The measurement results of antioxidant activity showed that DOPS-1 had the strong scavenging activities on hydroxyl radicals, DPPH radicals and superoxide radicals and the high reducing ability in vitro. Moreover, DOPS-1 was cytotoxic to all three human cancer cells of MDA-MB-231, A549 and HepG2.  相似文献   

8.
In this study, callus and cell suspension were induced from seedlings of licorice (G. uralensis). In addition, it was revealed that the appropriate concentration of sucrose could promote the callus growth and increase the content of polysaccharide. The methyl jasmonate (MJ) and phenylalanine (PHE) could enhance the callus growth and content of flavonoids for G. uralensis. For producing more flavonoids and polysaccharide, two-stage cultivation was performed. In the first step, 30 g L?1 sucrose was fed into a 5-L balloon-type bubble bioreactor on 8th day of culture to enhance cell production and metabolite production. In a two-stage cultivation process, PHE (2 mM) and MJ (5 mg L?1) were added into a 5-L balloon-type bubble bioreactor after 10 days of culture. Using a fed-batch cultivation strategy (30 g L?1 sucrose was fed into a 5-L balloon-type bubble bioreactor on 8th day), polysaccharide production was enhanced to 1.19 g L?1, which was 2.12-fold greater than that in batch cultivation. The flavonoids yield (55.42 mg L?1) which was about 22 % higher than that in batch cultivation was obtained on 21st day. In a two-stage cultivation process, the polysaccharide content was increased by 1.14- and 2.12-fold compared with fed-batch cultivation and batch cultivation on 15th day. Meanwhile, total flavonoids yield (132.36 mg L?1) on 15th day, was increased by 2.26- and 2.67-fold compared with fed-batch cultivation and batch cultivation. In conclusion, two-stage cultivation process combined with the sucrose and elicitor treatment could promote both the callus growth and the secondary metabolites accumulation.  相似文献   

9.
We studied interaction of the lectin from the bark of Golden Rain shrub (Laburnum anagyroides, LABA) with a number of basic fucose-containing carbohydrate antigens by changes in its tryptophan fluorescence. The strongest LABA binding was observed for the trisaccharide H of type 6 [α-L-Fucp-(1-2)-β-D-Galp-(1-4)-D-Glc, K a = 4.2 × 103 M?1]. The following antigens were bound with a weaker affinity: H-disaccharide α-L-Fucp-(1-2)-D-Gal, a glucoanalogue of tetrasaccharide Ley α-L-Fucp-(1-2)-β-D-Galp-(1-4)-[α-L-Fucp-(1-3)]-D-Glc, and 6-fucosyl-N-acetylglucosamine, a fragment of core of the N-glycans family (K a 1.1?1.7 × 103 M?1). The lowest binding was observed for L-fucose (K a = 2.7 × 102 M?1) and trisaccharide Lea, (β-Galp-(1-3)-[α-L-Fucp-(1-4)]-GlcNAc (K a = 6.4 × 102 M?1). The Led, Lea, and Lex pentasaccharides and Leb hexasaccharide were not bound to LABA.  相似文献   

10.
The effects of organic carbon sources on cell growth and exopolysaccharide (EPS) production of dissociated Nostoc flagelliforme cells under mixotrophic batch culture were investigated. After 7?days of cultivation, glycerol, acetate, sucrose, and glucose increased the final cell density and final EPS concentrations, and mixotrophic growth achieved higher biomass concentrations. The increase in cell growth was particularly high when glucose was added as the sole carbon source. On the other hand, EPS production per dry cell weight was significantly enhanced by adding acetate. For more effective EPS production, the effects of the mixture of glucose and acetate were investigated. Increasing the ratio of glucose to acetate resulted in higher growth rate with BG-11 medium and higher EPS productivity with BG-110 medium (without NaNO3). When the medium was supplemented with a mixture of glucose (4.0?g?L?1) and acetate (2.0?g?L?1), 1.79?g?L?1 biomass with BG-11 medium and 879.6?mg?L?1 of EPS production with BG-110 medium were achieved. Adopting this optimal ratio of glucose to acetate established in flask culture, the culture was also conducted in a 20-L photobioreactor with BG-11 medium for 7?days. A maximum biomass of 2.32?g?L?1 was achieved, and the EPS production was 634.6?mg?L?1.  相似文献   

11.
Three probiotic Lactobacillus strains, Lactobacillus acidophilus, Lactobacillus plantarum, and Lactobacillus delbrueckii, were tested for their ability to assimilate and metabolize glycerol. Biodiesel-derived glycerol was used as the main carbon and energy source in batch microaerobic growth. Here, we show that the tested strains were able to assimilate glycerol, consuming between 38 and 48 % in approximately 24 h. L. acidophilus and L. delbrueckii showed a similar growth, higher than L. plantarum. The highest biomass reached was 2.11 g?L?1 for L. acidophilus, with a cell mass yield (Y X/S) of 0.37 g?g?1. L. delbrueckii and L. plantarum reached a biomass of 2.06 and 1.36 g?L?1. All strains catabolize glycerol mainly through glycerol kinase (EC 2.7.1.30). For these lactobacillus species, kinetic parameters for glycerol kinase showed Michaelis–Menten constant (K m) ranging from 1.2 to 3.8 mM. The specific activities for glycerol kinase in these strains were in the range of 0.18 to 0.58 U?mg?protein?1, with L. acidophilus ATCC 4356 showing the maximum specific activity after 24 h of cultivation. Glycerol dehydrogenase activity was also detected in all strains studied but only for the reduction of glyceraldehyde with NADPH (K m for DL-glyceraldehyde ranging from 12.8 to 32.3 mM). This enzyme shows a very low oxidative activity with glycerol and NADP+ and, most likely, under physiological conditions, the oxidative reaction does not occur, supporting the assumption that the main metabolic flux concerning glycerol metabolism is through the glycerol kinase pathway.  相似文献   

12.
Two polysaccharides were isolated from Escherichia coli O12, the major being identified as the O12-antigen and the minor as the K5-antigen. The polysaccharides were studied by sugar analysis, Smith degradation, and one- and twodimensional 1H and 13C NMR spectroscopy. As a result, the following structure of the O12-polysaccharide was elucidated, which, to our knowledge, has not been hitherto found in bacterial carbohydrates: →2)-β-D-Glcp-(1→6)-α-D-GlcpNAc(1→3)-α-L-FucpNAc-(1→3)-β-D-GlcpNAc-(1→. The →4)-β-D-GlcpA-(1→4)-α-D-GlcpNAc-(1→ structure established for the K5-polysaccharide (heparosan) is previously known. Functions of genes in the O-antigen biosynthesis gene cluster of E. coli O12 were assigned by comparison with sequences in the available databases and found to be consistent with the O12-polysaccharide structure.  相似文献   

13.
The microalga Nannochloropsis sp. was cultured under different initial population densities (IPDs) ranging from 0.11 to 9.09 g L?1. The IPD affected the biomass and lipid accumulation significantly. The algal cultured with higher IPD resulted higher biomass concentration (up to 13.07 g L?1) in 10 days growth. The biomass productivity with 0.98 g L?1 IPD was 0.75 g L?1 d?1 which was higher than that of other IPDs. For IPDs ranging from 0.11 to 0.98 g L?1, with the increase of IPD, the biomass productivity increased, while for IPD over 0.98 g L?1, the biomass productivity decreased. Lipid content of the algal culture started with 0.11 g L?1 IPD reached to 42 % of dry weight. But with the increase of IPD, the lipid content decreased. Lipid composition was analyzed using thin layer chromatography coupled with flame ionization detection (TLC/FID). Seven lipid classes were identified and quantified. The main reserve lipid, triacylglyceride (TAG), accumulated under all different IPD conditions. However, with the increasing IPD values, TAG content decreased from 59.1 to 23.5 % of the total lipids. Based on these results, to obtain the maximal biomass productivity and lipid productivity of Nannochloropsis sp. in mass cultivation systems, it is necessary to select an appropriate IPD.  相似文献   

14.
A rotational reciprocating plate impeller prototype, designed to improve the mixing homogeneity of viscous non-Newtonian fermentation broth, has been tested in pullulan fermentations. With this new impeller, the operating levels of several factors were investigated to improve pullulan production with Aureobasidium pullulans ATCC 42023 in a 22-L bioreactor using experimental designs. Because both high molecular weight (MW) and high concentration of pullulan were desired; the exopolysaccharide (EPS) concentration and the broth viscosity were used as optimization objective functions to be maximized. A 6-run uniform design was used to investigate five factors. Under the best operating conditions among the six runs, 29.0 g L?1 EPS was produced at 102 h. This condition was used as the starting point for further investigation on the two statistically significant factors, the pH and the agitation speed. An 8-run 3-level custom design that investigates up to second-order effects was used in the second stage. An optimal zone of operating conditions for large quantity of high MW pullulan production was identified. A concentration of 23.3 g L?1 EPS was produced at 78 h. This is equivalent to an EPS productivity of 0.30 g L?1 h?1. The corresponding apparent viscosity of the broth was 0.38 Pa s at the shear rate of 10 s?1.  相似文献   

15.
Dendrocalamus sinicus, which is the largest bamboo species in the world, has broad prospects in the fields of bioenergy and biorefinery application. In this study, dewaxed D. sinicus samples were sequentially treated with 80 % ethanol containing 0.025 M HCl, 80 % ethanol containing 0.5 % NaOH, and aqueous alkaline solutions (containing 2.0, 5.0, and 8.0 % NaOH, respectively) at 75 °C for 4 h, in which 9.63, 8.71, 21.83, 21.09, and 13.09 % of the original lignin were isolated, respectively. The lignin fractions obtained were comparatively characterized by chemical composition, molecular weights, and structural features by wet chemical and instrumental analysis methods. It was found that the bamboo lignin fractions isolated by ethanol had lower weight-average molecular weights (1,360–1,380 g?mol?1) and contained much higher amounts of associated hemicelluloses, while the lignin fractions isolated by aqueous alkaline solutions had higher weight-average molecular weights (5,300–6,040 g?mol?1) and contained lower amounts of associated hemicelluloses. Spectroscopy analyses indicated that the bamboo lignin was a typical grass lignin, consisting of p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) units. A small percentage of the lignin side-chain was found to be acetylated at the γ-carbon, predominantly at syringyl units. The major interunit linkages present in the bamboo lignin obtained were β-O-4′ aryl ether linkages, together with lower amounts of β-β′, β-5′, and β-1′ linkages.  相似文献   

16.
The efficiency of batch and continuous systems of copper removal by Sargassum sinicola was studied. The effects of flow rate, initial metal concentration, and bed density on the capacity of the continuous system were also recorded. In batch systems, the maximum biosorption capacity was calculated as 49.63?±?0.88 mg g?1; in the continuous system, under the following conditions: flow rate of 10 mL min?1, initial solution of 200 mg Cu L?1, bed density of 150 g L?1, and higher copper removal of 62.39?±?1.91 mg g?1 was achieved. The Thomas model can be used to predict the breakthrough curves, but it underestimated breakthrough time.  相似文献   

17.
Gordonia polyisoprenivorans CCT 7137 was isolated from groundwater contaminated with leachate in an old controlled landfill (São Paulo, Brazil), and cultured in GYM medium at different concentrations of sugarcane molasses (2%, 6%, and 10%). The strain growth was analyzed by monitoring the viable cell counts (c.f.u. mL?1) and optical density and EPS production was evaluated at the end of the exponential phase and 24 h after it. The analysis of the viable cell counts showed that the medium that most favored bacterial growth was not the one that favored EPS production. The control medium (GYM) was the one that most favored the strain growth, at the maximum specific growth rate of 0.232 h?1. Differences in bacterial growth when cultured at three different concentrations of molasses were not observed. Production of EPS, in all culture media used, began during the exponential phase and continued during the growth stationary phase. The highest total EPS production, after 24 h of stationary phase, was observed in 6% molasses medium (172.86 g L?1) and 10% (139.47 g L?1) and the specific total EPS production was higher in 10% molasses medium (39.03 × 10?11 g c.f.u.?1). After the exponential phase, in 2%, 6%, and 10% molasses media, a higher percentage of free exopolysaccharides (EPS) was observed, representing 88.4%, 62.4%, and 64.2% of the total, respectively. A different result was observed in pattern medium, which presented EPS made up of higher percentage of capsular EPS (66.4% of the total). This work is the first study on EPS production by G. polyisoprenivorans strain in GYM medium and in medium utilizing sugarcane molasses as the sole nutrient source and suggests its potential use for EPS production by G. polyisoprenivorans CCT 7137 aiming at application in biotechnological processes.  相似文献   

18.
There has been considerable interest in cultivation of green microalgae (Chlorophyta) as a source of lipid that can alternatively be converted to biodiesel. However, almost all mass cultures of algae are carbon-limited. Therefore, to reach a high biomass and oil productivities, the ideal selected microalgae will most likely need a source of inorganic carbon. Here, growth and lipid productivities of Tetraselmis suecica CS-187 and Chlorella sp were tested under various ranges of pH and different sources of inorganic carbon (untreated flue gas from coal-fired power plant, pure industrial CO2, pH-adjusted using HCl and sodium bicarbonate). Biomass and lipid productivities were highest at pH 7.5 (320?±?29.9 mg biomass L?1 day?1and 92?±?13.1 mg lipid L?1 day?1) and pH 7 (407?±?5.5 mg biomass L?1 day?1 and 99?±?17.2 mg lipid L?1 day?1) for T. suecica CS-187 and Chlorella sp, respectively. In general, biomass and lipid productivities were pH 7.5?>?pH 7?>?pH 8?>?pH 6.5 and pH 7?>?pH 7.5?=?pH 8?>?pH 6.5?>?pH 6?>?pH 5.5 for T. suecica CS-187 and Chlorella sp, respectively. The effect of various inorganic carbon on growth and productivities of T. suecica (regulated at pH?=?7.5) and Chlorella sp (regulated at pH?=?7) grown in bag photobioreactors was also examined outdoor at the International Power Hazelwood, Gippsland, Victoria, Australia. The highest biomass and lipid productivities of T. suecica (51.45?±?2.67 mg biomass L?1 day?1 and 14.8?±?2.46 mg lipid L?1 day?1) and Chlorella sp (60.00?±?2.4 mg biomass L?1 day?1 and 13.70?±?1.35 mg lipid L?1 day?1) were achieved when grown using CO2 as inorganic carbon source. No significant differences were found between CO2 and flue gas biomass and lipid productivities. While grown using CO2 and flue gas, biomass productivities were 10, 13 and 18 %, and 7, 14 and 19 % higher than NaHCO3, HCl and unregulated pH for T. suecica and Chlorella sp, respectively. Addition of inorganic carbon increased specific growth rate and lipid content but reduced biomass yield and cell weight of T. suecica. Addition of inorganic carbon increased yield but did not change specific growth rate, cell weight or content of the cell weight of Chlorella sp. Both strains showed significantly higher maximum quantum yield (Fv/Fm) when grown under optimum pH.  相似文献   

19.
The crystal structure of α-D-Manp-(1→3)-β-D-Manp-(1→4)-α-D-GlcNAcp has been determined by the direct method using the multi-solution, tangent formula, and “magic integer” procedures. The space group is P22, and 2 molecules are in the unit cell with a  9.894 (5), b  10.372 (6), c  11.816 (6) Å, and β  95.03° (6). The structure was refined to R 0.059 for 2099 reflections measured with Mo Kα radiation. Difference synthesis showed all the hydrogen atoms, and indicated a partial (~30%) substitution of the α-anomer molecules by the β-anomer molecules. The D-mannopyranose and the D-glucopyranose have the normal 4C1 conformation; an intramolecular hydrogen-bond O-3″-H.....O-5′ (2.703 Å) stabilises the GlcNAc in relation to β-D-mannopyranose.  相似文献   

20.
Using periodate oxidation, methylation analysis, the characterization of oligosaccharides obtained by partial acid hydrolysis, p.m.r. spectroscopy, and analytical ultracentrifugation, the structure of the (mildly alkali-treated) Klebsiella serotype 11 capsular polysaccharide has been elucidated. The tetrasaccharide repeating-unit comprises the sequence ?3)-β-D-Glcp-(1?3)-β-D-GlcUAp-(1?3)-α-D-Galp-(1→ with a 4,6-O-(1-car?yethylidene)-α-D-galactosyl residue linked to O-4 of the glucuronic acid residue. The structural basis for some serological cross-reactions of the Klebsiella K11 antigen is discussed, and it is shown that rabbit antisera against the Klebsiella K11 test-strain predominantly contain K agglutinins specific for branch-terminal 4,6-O-(1-car?yethylidene)-D-galactose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号