首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
DNA polymerase epsilon (Pol epsilon) is believed to play an essential catalytic role during eukaryotic DNA replication and is thought to participate in recombination and DNA repair. That Pol epsilon is essential for progression through S phase and for viability in budding and fission yeasts is a central element of support for that view. We show that the amino-terminal portion of budding yeast Pol epsilon (Pol2) containing all known DNA polymerase and exonuclease motifs is dispensable for DNA replication, DNA repair, and viability. However, the carboxy-terminal portion of Pol2 is both necessary and sufficient for viability. Finally, the viability of cells lacking Pol2 catalytic function does not require intact DNA replication or damage checkpoints.  相似文献   

2.
DNA polymerase epsilon (Pol ε) synthesizes the leading strands, following the CMG (Cdc45, Mcm2-7, and GINS [Go-Ichi-Nii-San]) helicase that translocates on the leading-strand template at eukaryotic replication forks. Although Pol ε is essential for the viability of fission and budding yeasts, the N-terminal polymerase domain of the catalytic subunit, Cdc20/Pol2, is dispensable for viability, leaving the following question: what is the essential role(s) of Pol ε? In this study, we investigated the essential roles of Pol ε using a temperature-sensitive mutant and a recently developed protein-depletion (off-aid) system in fission yeast. In cdc20-ct1 cells carrying mutations in the C-terminal domain of Cdc20, the CMG components, RPA, Pol α, and Pol δ were loaded onto replication origins, but Cdc45 did not translocate from the origins, suggesting that Pol ε is required for CMG helicase progression. In contrast, depletion of Cdc20 abolished the loading of GINS and Cdc45 onto origins, indicating that Pol ε is essential for assembly of the CMG complex. These results demonstrate that Pol ε plays essential roles in both the assembly and progression of CMG helicase.  相似文献   

3.
Genetic evidence suggests that DNA polymerase epsilon (Pol epsilon) has a noncatalytic essential role during the early stages of DNA replication initiation. Herein, we report the cloning and characterization of the second largest subunit of Pol epsilon in fission yeast, called Dpb2. We demonstrate that Dpb2 is essential for cell viability and that a temperature-sensitive mutant of dpb2 arrests with a 1C DNA content, suggesting that Dpb2 is required for initiation of DNA replication. Using a chromatin immunoprecipitation assay, we show that Dpb2, binds preferentially to origin DNA at the beginning of S phase. We also show that the C terminus of Pol epsilon associates with origin DNA at the same time as Dpb2. We conclude that Dpb2 is an essential protein required for an early step in DNA replication. We propose that the primary function of Dpb2 is to facilitate assembly of the replicative complex at the start of S phase. These conclusions are based on the novel cell cycle arrest phenotype of the dpb2 mutant, on the previously uncharacterized binding of Dpb2 to replication origins, and on the observation that the essential function of Pol epsilon is not dependent on its DNA synthesis activity.  相似文献   

4.
Yeast Mrc1, ortholog of metazoan Claspin, is both a central component of normal DNA replication forks and a mediator of the S phase checkpoint. We report that Mrc1 interacts with Pol2, the catalytic subunit of DNA polymerase epsilon, essential for leading-strand DNA replication and for the checkpoint. In unperturbed cells, Mrc1 interacts independently with both the N-terminal and C-terminal halves of Pol2 (Pol2N and Pol2C). Strikingly, phosphorylation of Mrc1 during the S phase checkpoint abolishes Pol2N binding, but not Pol2C interaction. Mrc1 is required to stabilize Pol2 at replication forks stalled in HU. The bimodal Mrc1/Pol2 interaction may be an additional step in regulating the S phase checkpoint response to DNA damage on the leading strand. We propose that Mrc1, which also interacts with the MCMs, may modulate coupling of polymerization and unwinding at the replication fork.  相似文献   

5.
DNA polymerase epsilon (pol epsilon) is a multiple subunit complex consisting of at least four proteins, including catalytic Pol2p, Dpb2p, Dpb3p, and Dpb4p. Pol epsilon has been shown to play essential roles in chromosomal DNA replication. Here, we report reconstitution of the yeast pol epsilon complex, which was expressed and purified from baculovirus-infected insect cells. During the purification, we were able to resolve the pol epsilon complex and truncated Pol2p (140 kDa), as was observed initially with the pol epsilon purified from yeast. Biochemical characterization of subunit stoichiometry, salt sensitivity, processivity, and stimulation by proliferating cell nuclear antigen indicates that the reconstituted pol epsilon is functionally identical to native pol epsilon purified from yeast and is therefore useful for biochemical characterization of the interactions of pol epsilon with other replication, recombination, and repair proteins. Identification and characterization of a proliferating cell nuclear antigen consensus interaction domain on Pol2p indicates that the motif is dispensable for DNA replication but is important for methyl methanesulfonate damage-induced DNA repair. Analysis of the putative zinc finger domain of Pol2p for zinc binding capacity demonstrates that it binds zinc. Mutations of the conserved cysteines in the putative zinc finger domain reduced zinc binding, indicating that cysteine ligands are directly involved in binding zinc.  相似文献   

6.
Monoclonal antibodies raised against the N-terminal half of human DNA polymerase epsilon bind both to a large > 200 kDa form of DNA polymerase epsilon from HeLa cells and to a small 140 kDa form (DNA polymerase epsilon*) from calf thymus, while antibody against the C-terminal half binds to DNA polymerase epsilon but does not bind to DNA polymerase epsilon*. These results indicate that the two enzymes have common structural motifs in their N-terminal halves, and that DNA polymerase epsilon* is very likely derived from DNA polymerase epsilon by removal of its C-terminal half. DNA polymerase epsilon as well as DNA polymerase epsilon* was detected in extracts from cells of numerous eukaryotic species from yeast to human. The results indicate that DNA polymerase epsilon and its tendency to occur in a smaller form, DNA polymerase epsilon*, are evolutionarily highly conserved and that DNA polymerase epsilon may occur universally in proliferating eukaryotic cells.  相似文献   

7.
Current eukaryotic replication models postulate that leading and lagging DNA strands are replicated predominantly by dedicated DNA polymerases. The catalytic subunit of the leading strand DNA polymerase ε, Pol2, consists of two halves made of two different ancestral B-family DNA polymerases. Counterintuitively, the catalytically active N-terminal half is dispensable, while the inactive C-terminal part is required for viability. Despite extensive studies of yeast Saccharomyces cerevisiae strains lacking the active N-terminal half, it is still unclear how these strains survive and recover. We designed a robust method for constructing mutants with only the C-terminal part of Pol2. Strains without the active polymerase part show severe growth defects, sensitivity to replication inhibitors, chromosomal instability, and elevated spontaneous mutagenesis. Intriguingly, the slow-growing mutant strains rapidly accumulate fast-growing clones. Analysis of genomic DNA sequences of these clones revealed that the adaptation to the loss of the catalytic N-terminal part of Pol2 occurs by a positive selection of mutants with improved growth. Elevated mutation rates help generate sufficient numbers of these variants. Single nucleotide changes in the cell cycle-dependent kinase gene, CDC28, improve the growth of strains lacking the N-terminal part of Pol2, and rescue their sensitivity to replication inhibitors and, in parallel, lower mutation rates. Our study predicts that changes in mammalian homologs of cyclin-dependent kinases may contribute to cellular responses to the leading strand polymerase defects.  相似文献   

8.
The Escherichia coli dnaQ gene encodes the 3'-->5' exonucleolytic proofreading (epsilon) subunit of DNA polymerase III (Pol III). Genetic analysis of dnaQ mutants has suggested that epsilon might consist of two domains, an N-terminal domain containing the exonuclease and a C-terminal domain essential for binding the polymerase (alpha) subunit. We have created truncated forms of dnaQ resulting in epsilon subunits that contain either the N-terminal or the C-terminal domain. Using the yeast two-hybrid system, we analyzed the interactions of the single-domain epsilon subunits with the alpha and theta subunits of the Pol III core. The DnaQ991 protein, consisting of the N-terminal 186 amino acids, was defective in binding to the alpha subunit while retaining normal binding to the theta subunit. In contrast, the NDelta186 protein, consisting of the C-terminal 57 amino acids, exhibited normal binding to the alpha subunit but was defective in binding to the theta subunit. A strain carrying the dnaQ991 allele exhibited a strong, recessive mutator phenotype, as expected from a defective alpha binding mutant. The data are consistent with the existence of two functional domains in epsilon, with the C-terminal domain responsible for polymerase binding.  相似文献   

9.
The isolation of DNA polymerase (Pol) epsilon from extracts of HeLa cells is described. The final fractions contained two major subunits of 210 and 50 kDa which cosedimented with Pol epsilon activity, similar to those described previously (Syvaoja, J., and Linn, S. (1989) J. Biol. Chem. 264, 2489-2497). The properties of the human Pol epsilon and the yeast Pol epsilon were compared. Both enzymes elongated singly primed single-stranded circular DNA templates. Yeast Pol epsilon required the presence of a DNA binding protein (SSB) whereas human Pol epsilon required the addition of SSB, Activator 1 and proliferating cell nuclear antigen (PCNA) for maximal activity. Both enzymes were totally unable to elongate primed DNA templates in the presence of salt; however, activity could be restored by the addition of Activator 1 and PCNA. Like Pol delta, Pol epsilon formed complexes with SSB-coated primed DNA templates in the presence of Activator 1 and PCNA which could be isolated by filtration through Bio-Gel A-5m columns. Unlike Pol delta, Pol epsilon bound to SSB-coated primed DNA in the absence of the auxiliary factors. In the presence of salt, Pol epsilon complexes were less stable than they were in the absence of salt. In the in vitro simian virus 40 (SV40) T antigen-dependent synthesis of DNA containing the SV40 origin of replication, yeast Pol epsilon but not human Pol epsilon could substitute for yeast or human Pol delta in the generation of long DNA products. However, human Pol epsilon did increase slightly the length of DNA chains formed by the DNA polymerase alpha-primase complex in SV40 DNA synthesis. The bearing of this observation on the requirement for a PCNA-dependent DNA polymerase in the synthesis and maturation of Okazaki fragments is discussed. However, no unique role for human Pol epsilon in the in vitro SV40 DNA replication system was detected.  相似文献   

10.
BACKGROUND: Members of the Pol II family of DNA polymerases are responsible for chromosomal replication in eukaryotes, and carry out highly processive DNA replication when attached to ring-shaped processivity clamps. The sequences of Pol II polymerases are distinct from those of members of the well-studied Pol I family of DNA polymerases. The DNA polymerase from the archaebacterium Desulfurococcus strain Tok (D. Tok Pol) is a member of the Pol II family that retains catalytic activity at elevated temperatures. RESULTS: The crystal structure of D. Tok Pol has been determined at 2.4 A resolution. The architecture of this Pol II type DNA polymerase resembles that of the DNA polymerase from the bacteriophage RB69, with which it shares less than approximately 20% sequence identity. As in RB69, the central catalytic region of the DNA polymerase is located within the 'palm' subdomain and is strikingly similar in structure to the corresponding regions of Pol I type DNA polymerases. The structural scaffold that surrounds the catalytic core in D. Tok Pol is unrelated in structure to that of Pol I type polymerases. The 3'-5' proofreading exonuclease domain of D. Tok Pol resembles the corresponding domains of RB69 Pol and Pol I type DNA polymerases. The exonuclease domain in D. Tok Pol is located in the same position relative to the polymerase domain as seen in RB69, and on the opposite side of the palm subdomain compared to its location in Pol I type polymerases. The N-terminal domain of D. Tok Pol has structural similarity to RNA-binding domains. Sequence alignments suggest that this domain is conserved in the eukaryotic DNA polymerases delta and epsilon. CONCLUSIONS: The structure of D. Tok Pol confirms that the modes of binding of the template and extrusion of newly synthesized duplex DNA are likely to be similar in both Pol II and Pol I type DNA polymerases. However, the mechanism by which the newly synthesized product transits in and out of the proofreading exonuclease domain has to be quite different. The discovery of a domain that seems to be an RNA-binding module raises the possibility that Pol II family members interact with RNA.  相似文献   

11.
GINS is a protein complex found in eukaryotic cells that is composed of Sld5p, Psf1p, Psf2p, and Psf3p. GINS polypeptides are highly conserved in eukaryotes, and the GINS complex is required for chromosomal DNA replication in yeasts and Xenopus egg. This study reports purification and biochemical characterization of GINS from Saccharomyces cerevisiae. The results presented here demonstrate that GINS forms a 1:1 complex with DNA polymerase epsilon (Pol epsilon) holoenzyme and greatly stimulates its catalytic activity in vitro. In the presence of GINS, Pol epsilon is more processive and dissociates more readily from replicated DNA, while under identical conditions, proliferating cell nuclear antigen slightly stimulates Pol epsilon in vitro. These results strongly suggest that GINS is a Pol epsilon accessory protein during chromosomal DNA replication in budding yeast. Based on these results, we propose a model for molecular dynamics at eukaryotic chromosomal replication fork.  相似文献   

12.
The structure of the multisubunit yeast DNA polymerase epsilon (Pol epsilon) was determined to 20-A resolution using cryo-EM and single-particle image analysis. A globular domain comprising the catalytic Pol2 subunit is flexibly connected to an extended structure formed by subunits Dpb2, Dpb3 and Dpb4. Consistent with the reported involvement of the latter in interaction with nucleic acids, the Dpb portion of the structure directly faces a single cleft in the Pol2 subunit that seems wide enough to accommodate double-stranded DNA. Primer-extension experiments reveal that Pol epsilon processivity requires a minimum length of primer-template duplex that corresponds to the dimensions of the extended Dpb structure. Together, these observations suggest a mechanism for interaction of Pol epsilon with DNA that might explain how the structure of the enzyme contributes to its intrinsic processivity.  相似文献   

13.
14.
Saccharomyces cerevisiae POL2 encodes the catalytic subunit of DNA polymerase epsilon. This study investigates the cellular functions performed by the polymerase domain of Pol2p and its role in DNA metabolism. The pol2-16 mutation has a deletion in the catalytic domain of DNA polymerase epsilon that eliminates its polymerase and exonuclease activities. It is a viable mutant, which displays temperature sensitivity for growth and a defect in elongation step of chromosomal DNA replication even at permissive temperatures. This mutation is synthetic lethal in combination with temperature-sensitive mutants or the 3'- to 5'-exonuclease-deficient mutant of DNA polymerase delta in a haploid cell. These results suggest that the catalytic activity of DNA polymerase epsilon participates in the same pathway as DNA polymerase delta, and this is consistent with the observation that DNA polymerases delta and epsilon colocalize in some punctate foci on yeast chromatids during S phase. The pol2-16 mutant senesces more rapidly than wild type strain and also has shorter telomeres. These results indicate that the DNA polymerase domain of Pol2p is required for rapid, efficient, and highly accurate chromosomal DNA replication in yeast.  相似文献   

15.
The large subunit of Saccharomyces cerevisiae DNA polymerase epsilon, Pol2, comprises two essential functions. The N terminus has essential DNA polymerase activity. The C terminus is also essential, but its function is unknown. We report here that the C-terminal domain of Pol2 interacts with polymerase sigma (Pol sigma), a recently identified, essential nuclear nucleotidyl transferase encoded by two redundant genes, TRF4 and TRF5. This interaction is functional, since Pol sigma stimulates the polymerase activity of the Pol epsilon holoenzyme significantly. Since Trf4 is required for sister chromatid cohesion as well as for completion of S phase and repair, the interaction suggested that Pol epsilon, like Pol sigma, might form a link between the replication apparatus and sister chromatid cohesion and/or repair machinery. We present evidence that pol2 mutants are defective in sister chromatid cohesion. In addition, Pol2 interacts with SMC1, a subunit of the cohesin complex, and with ECO1/CTF7, required for establishing sister chromatid cohesion; and pol2 mutations act synergistically with smc1 and scc1. We also show that trf5 Delta mutants, like trf4 Delta mutants, are defective in DNA repair and sister chromatid cohesion.  相似文献   

16.
17.
Saccharomyces cerevisiae DNA polymerase epsilon (pol epsilon) is essential for chromosomal replication. A major form of pol epsilon purified from yeast consists of at least four subunits: Pol2p, Dpb2p, Dpb3p, and Dpb4p. We have investigated the protein/protein interactions between these polypeptides by using expression of individual subunits in baculovirus-infected Sf9 insect cells and by using the yeast two-hybrid assay. The essential subunits, Pol2p and Dpb2p, interact directly in the absence of the other two subunits, and the C-terminal half of POL2, the only essential portion of Pol2p, is sufficient for interaction with Dpb2p. Dpb3p and Dpb4p, non-essential subunits, also interact directly with each other in the absence of the other two subunits. We propose that Pol2p.Dpb2p and Dpb3p.Dpb4p complexes interact with each other and document several interactions between individual members of the two respective complexes. We present biochemical evidence to support the proposal that pol epsilon may be dimeric in vivo. Gel filtration of the Pol2p.Dpb2p complexes reveals a novel heterotetrameric form, consisting of two heterodimers of Pol2p.Dpb2p. Dpb2p, but not Pol2p, exists as a homodimer, and thus the Pol2p dimerization may be mediated by Dpb2p. The pol2-E and pol2-F mutations that cause replication defects in vivo weaken the interaction between Pol2p and Dpb2p and also reduce dimerization of Pol2p. This suggests, but does not prove, that dimerization may also occur in vivo and be essential for DNA replication.  相似文献   

18.
DNA polymerase epsilon is a mammalian polymerase that has a tightly associated 3'----5' exonuclease activity. Because of this readily detectable exonuclease activity, the enzyme has been regarded as a form of DNA polymerase delta, an enzyme which, together with DNA polymerase alpha, is in all probability required for the replication of chromosomal DNA. Recently, it was discovered that DNA polymerase epsilon is both catalytically and structurally distinct from DNA polymerase delta. The most striking difference between the two DNA polymerases is that processive DNA synthesis by DNA polymerase delta is dependent on proliferating cell nuclear antigen (PCNA), a replication factor, while DNA polymerase epsilon is inherently processive. DNA polymerase epsilon is required at least for the repair synthesis of UV-damaged DNA. DNA polymerases are highly conserved in eukaryotic cells. Mammalian DNA polymerases alpha, delta and epsilon are counterparts of yeast DNA polymerases I, III and II, respectively. Like DNA polymerases I and III, DNA polymerase II is also essential for the viability of cells, which suggests that DNA polymerase II (and epsilon) may play a role in DNA replication.  相似文献   

19.
Specialized chromatin exists at centromeres and must be precisely transmitted during DNA replication. The mechanisms involved in the propagation of these structures remain elusive. Fission yeast centromeres are composed of two chromatin domains: the central CENP-A(Cnp1) kinetochore domain and flanking heterochromatin domains. Here we show that fission yeast Mcl1, a DNA polymerase alpha (Pol alpha) accessory protein, is critical for maintenance of centromeric chromatin. In a screen for mutants that alleviate both central domain and outer repeat silencing, we isolated several cos mutants, of which cos1 is allelic to mcl1. The mcl1-101 mutation causes reduced CENP-A(Cnp1) in the central domain and an aberrant increase in histone acetylation in both domains. These phenotypes are also observed in a mutant of swi7(+), which encodes a catalytic subunit of Pol alpha. Mcl1 forms S-phase-specific nuclear foci, which colocalize with those of PCNA and Pol alpha. These results suggest that Mcl1 and Pol alpha are required for propagation of centromere chromatin structures during DNA replication.  相似文献   

20.
The current model of eukaryotic DNA replication involves the two DNA polymerases delta and alpha as the leading and lagging strand enzymes, respectively. A DNA polymerase first discovered in yeast has now been found in all eukaryotic cells and is termed DNA polymerase epsilon. In yeast, the gene for DNA polymerase epsilon has recently been found to be essential for viability, raising new questions about its functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号