首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proteolytic enzymes, such as gelatinase/type IV collagenase, play a pivotal role in cancer invasion and metastasis. Invasive human fibrosarcoma cells (HT1080) secrete two species of gelatinase/type IV collagenase, 68-72 kDa and 92 kDa enzymes. The purpose of this study is to elucidate which species of gelatinase/type IV collagenase plays a more important role in invasion. We have found that HT1080 x human fibroblast hybrids have reduced ability to invade a reconstituted basement membrane (Matrigel) in vitro compared to HT1080 cells, and abundantly secrete only the 68-72 kDa gelatinase/type IV collagenase. These data suggest that the 92 kDa gelatinase/type IV collagenase may be more important in HT1080 cell invasion. We next transfected HT1080 genomic DNA into non-invasive mouse C3H/10T1/2 fibroblast cells, which secrete only 68-72 kDa gelatinase/type IV collagenase. Four invasive transfectants were established. These invasive transfectants secreted the 92 kDa gelatinase/type IV collagenase in addition to the 68-72 kDa gelatinase/type IV collagenase, whereas non-invasive control DNA transfectants did not secrete the 92 kDa gelatinase/type IV collagenase. These results suggest that the induction of the 92 kDa gelatinase/type IV collagenase is important in the invasive phenotype.  相似文献   

2.
H-ras-transformed human bronchial epithelial cells (TBE-1) secrete a single major extracellular matrix metalloprotease which is not found in the normal parental cells. The enzyme is secreted in a latent form of 72 kDa, which can be activated to catalyze the cleavage of the basement membrane macromolecule type IV collagen. The substrates in their order of preference are: gelatin, type IV collagen, type V collagen, fibronectin, and type VII collagen; but the enzyme does not cleave the interstitial collagens or laminin. This protease is identical to gelatinase isolated from normal human skin explants, normal human skin fibroblasts, and SV40-transformed human lung fibroblasts. Based on its ability to initiate the degradation of type IV collagen in a pepsin-resistant portion of the molecule, it will be referred to as type IV collagenase. This enzyme is most likely the human analog of type IV collagenase detected in several rodent tumors, which has the same molecular mass and has been linked to their metastatic potential. Type IV collagenase consists of three domains. Two of them, the amino-terminal domain and the carboxyl-terminal domain, are homologous to interstitial collagenase and human and rat stromelysin. The middle domain, of 175 residues, is organized into three 58-residue head-to-tail repeats which are homologous to the type II motif of the collagen-binding domain of fibronectin. Type IV collagenase represents the third member of a newly recognized gene family coding for secreted extracellular matrix metalloproteases, which includes interstitial fibroblast collagenase and stromelysin.  相似文献   

3.
We investigated the role of tumor cell-derived GM-CSF in recruitment and tumoricidal activation of tissue macrophages. Transfection of the murine GM-CSF gene into KM12SM human colon cancer cells decreased the tumorigenicity of transfected cells and nontransfected bystander colon cancer cells in nude mice. Sequential tissue sections from sites injected with high GM-CSF-producing tumor cells (but not from nontransfected or low GM-CSF-producing cells) demonstrated a dense infiltration of polymorphonuclear cells (PMN), followed by infiltration of macrophages, which correlated with expression of the macrophage-inflammatory protein-1alpha and the monocyte chemoattractant protein-1 (MCP-1) in mouse PMN and macrophages. GM-CSF-producing KM12SM cells were highly sensitive to lysis by mouse macrophages and also increased macrophage-mediated lysis of bystander nontransfected KM12SM cells. The incubation of macrophages with GM-CSF induced expression of the CD11b surface adhesion molecule, which was associated with increased attachment to tumor cells. All KM12SM cells were sensitive to macrophage-mediated lysis in the presence of rGM-CSF and recombinant MCP-1. Collectively, the results demonstrate that tumor cell-derived GM-CSF stimulates PMN and macrophages to secrete macrophage-inflammatory protein-1alpha and MCP-1, which triggers recruitment of mononuclear cells, induces expression of adhesion molecules on macrophages, and enhances contact-dependent cytolysis of tumor cells.  相似文献   

4.
A few models have been established to study cancer cells in vitro. However, the cellular interactions have rarely been studied specifically using bioengineered cancer constructs combining human carcinoma cells and tumor-associated fibroblasts. We developed an in vitro model of tridimensional bioengineered cancer tissue constructs (bCTC) by seeding mammary epithelial cancer cells or normal keratinocytes over a mesenchymal layer containing tumor-derived fibroblastic cells or normal skin fibroblasts. After the introduction of epithelial cells, each construct was cultured for another 10 d. Histologic analyses showed that carcinoma cell lines could invade the subjacent mesenchymal layer and that the capacity to migrate was related to the invasive potential of cancer cells and the type of fibroblasts used, while noninvasive populations did not. Of the tested epithelial cells, MDA-MB-231 and, to a lesser degree, HDQ-P1 cell lines were invasive, and the invasion was deeper into the mesenchymal component containing tumor-derived fibroblasts. However, with normal skin fibroblasts, the mesenchymal layer was degraded twice faster than with tumor-derived fibroblastic cells. MDA-MB-231 cells and normal keratinocytes induced the highest level of gelatinase B, and the level was lowest with the MCF-7 cell line. The activated form of gelatinase B was, however, induced to the highest levels in the keratinocyte-seeded bCTC containing tumor-derived but not normal fibroblasts. MDA-MB-231 was the only epithelial cancer cell line whose activity of gelatinase A was reduced when cocultured with tumor-derived fibroblasts but not under normal fibroblast stimulation. Finally, a 50/48-kDa gelatinase band has been observed in bCTCs with noninvasive epithelial cells only. Our study demonstrates the selective secretion of gelatinases according to the phenotype of the cells seeded in the various bCTCs.  相似文献   

5.
Production of a 92-kDa gelatinase/type IV collagenase and tissue inhibitor of metalloproteinases (TIMP) was investigated with human sarcoma cell lines. Among the cytokines and growth factors examined, only human recombinant tumor necrosis factor alpha (TNF alpha) induced and stimulated the proteinase with concomitant increase in TIMP expression, but matrix metalloproteinase 2 (72-kDa gelatinase/type IV collagenase) expression was unchanged. These data suggest that gene expression of the two metalloproteinases is regulated in a different fashion and TNF alpha may be important to allow cancer cells to be more invasive and metastatic.  相似文献   

6.
In order to gain insight into the biological significance of a collagenase inhibitor secreted by human skin fibroblasts, we examined various human connective tissues and body fluids for such a protein. The inhibitors found in these tissues were compared immunologically to skin fibroblast inhibitor by Ouchterlony analysis and by the development of a highly specific enzyme-linked immunosorbent assay (ELISA). Using this ELISA, cell cultures of human skin fibroblasts, corneal fibroblasts, gingival fibroblasts, and adult and fetal lung fibroblasts secreted similar amounts of immunoreactive inhibitor protein. Each culture medium displayed a reaction of immunologic identity with skin fibroblast inhibitor when examined in Ouchterlony gel diffusion. In testing for functional inhibitory activity, the same 1:1 stoichiometry of collagenase inhibition was observed in each culture medium that characterizes the human skin inhibitor. Other mesodermally derived human cell types, including human fetal osteoblasts, uterine smooth muscle cells, fibrosarcoma cells, and explants of tendon and articular cartilage behaved in the same manner as the fibroblast cultures. Because collagenase inhibitors with biochemical similarities to skin fibroblast inhibitor have been described in serum and in amniotic fluid, we also examined these sources of inhibitory proteins. The data indicate that both serum and amniotic fluid contain collagenase inhibitors which are immunologically and functionally identical with the skin fibroblast inhibitor. The concentration of inhibitor in serum, as measured by ELISA assay, is 1.03 +/- 0.27 micrograms/ml. The results suggest that collagenase inhibitors which are functionally equivalent and immunologically identical with human skin fibroblast collagenase inhibitor are synthesized by many, if not all, fetal and adult mesodermal tissues in the human organism. The inhibitor apparently gains access to certain body fluids such as serum and amniotic fluid. This inhibitor protein may, therefore, function in the regulation of collagen degradation in most human connective tissues.  相似文献   

7.
The secretion of a type IV collagen-specific proteinase is stimulated in cultured human skin fibroblasts by the phorbol ester tumor promoter 12-O-tetradecanoyl phorbol 13-acetate (TPA) and during cell proliferation. Exposure of the cells at the late log phase of growth to 10(-9) to 10(-6) M TPA resulted in the secretion of type IV collagenase activity to the medium, this effect being reversible. Incubation of intact type IV procollagen with TPA-induced fibroblast medium protein produced six peptides, four of which corresponded in size to the fragments produced by a type IV collagen-specific collagenase (Fessler, L., Duncan, K., Fessler, J., Salo, T., and Tryggvason (1984) J. Biol. Chem. 259, 9783-9789). The TPA-induced type IV collagen-degrading enzyme could be activated by trypsin, was inhibited by EDTA, but was not affected by soybean trypsin inhibitor, N-ethylmaleimide, aprotinin, or cysteine. Therefore, in human skin fibroblasts, TPA can induce a type IV collagen-specific, metal-dependent collagenase as was previously described in some invasive tumor cells. Furthermore, another metalloprotease is apparently secreted under the same conditions of TPA exposure. The production of metal-dependent, type IV collagen-degrading activity was also studied at different stages of cellular proliferation. In early log phase, a significant amount of enzyme activity was observed in the control cell medium; this activity disappeared during both late log and stationary growth phases. This activity could be markedly increased by the addition of 10(-8) M TPA to the culture medium. The production of matrix-degrading proteinases is therefore likely to be associated with rapid cell proliferation in both transformed and untransformed cells.  相似文献   

8.
We studied the effect of two members of the epidermal growth factor (EGF) family--amphiregulin and heparin-binding EGF-like growth factor (HB-EGF)-on cell proliferation, growth factor and growth factor receptor expression, and cell differentiation in two human colon cell lines of varying liver-colonizing potential. The effect of amphiregulin and HB-EGF was assessed both in cells grown on plastic, as well as on cells grown on hepatocyte-derived extracellular matrix (ECM). We found that both colon cell lines were sensitive to HB-EGF stimulation of cell proliferation. Amphiregulin inhibited cell proliferation in KM12 cells and stimulated the strongly metastatic cell line KM12SM to a slight extent. When the cells were cultured on hepatocyte-derived ECM, amphiregulin inhibited the weakly metastatic KM12 and stimulated the growth of KM12SM. HB-EGF synergistically acted with hepatocyte-derived ECM to enhance cell proliferation in both colon cell lines. Expression of ligands of the EGF family, such as transforming growth factor-alpha (TGF-alpha) and amphiregulin, was decreased in both cell lines when cultured on ECM. Hepatocyte-derived ECM decreased expression of cripto in KM12 and increased it in KM12SM cells. Neither cripto nor TGF-alpha mRNA levels was affected by growing the cells in the presence of amphiregulin. However, amphiregulin increased expression of its own mRNA in the weakly metastatic KM12 and decreased it in the strongly metastatic KM12SM when the cells were cultured on plastic. Amphiregulin and HB-EGF stimulated expression of erb-B2 in both cell lines cultured on plastic. Surprisingly, when the cells were grown on hepatocyte-derived ECM, amphiregulin inhibited erb-B2 expression in both cell lines. We observed no effect of amphiregulin on cell differentiation as assessed by alkaline phosphatase expression. Our studies demonstrate one mechanism that could play a role in site-specific metastasis. We found an inhibitory response to an autocrine growth factor in the context of hepatocyte-derived ECM in a weakly metastatic cell and a stimulatory effect of the same growth factor when strongly metastatic cells were cultured on the same ECM.  相似文献   

9.
Collagenase production by human skin fibroblasts.   总被引:28,自引:0,他引:28  
Normal human skin fibroblasts, when cultured in serum free medium, produce collagenase in an inactive form. The enzyme in the crude medium can be activated by a brief preincubation with trypsin or by autoactivation. Once activated, the fibroblast collagenase is identical in its mechanism of action to human skin collagenase obtained from organ cultures. In addition, an inhibitor of collagenase is also present in the medium of fibroblast cultures. The inhibitor appears to be produced by the cells and its molecular weight is slightly higher than that of the enzyme. The presence of this inhibitor may account for previous inability to detect collagenase in human skin fibroblast cultures. It is also possible that some of the inactive enzyme exists in the medium in the form of a proenzyme.  相似文献   

10.
Human gingival fibroblast gelatinase (type IV collagenase) has been purified to homogeneity using a combination of ion exchange chromatography, gel filtration and affinity chromatography. The purified proenzyme electrophoresed under reducing conditions as a single band of 72 kDa which could be activated to a species of 65 kDa. Gelatinase was activated by organomercurials by a process apparently initiated by a conformational change and involving self-cleavage. It was not activated by trypsin or plasmin unlike the other family members, collagenase and stromelysin. Gelatinase otherwise exhibited properties typical of the metalloproteinases: it was inhibited by metal chelating agents and by the specific inhibitor TIMP (tissue inhibitor of metalloproteinases). Its major substrate was shown to be denatured collagen although it was also able to degrade native type IV and V collagens. A polyclonal antibody was raised in a sheep using the purified enzyme as antigen. The antiserum recognised and specifically inhibited the 72-kDa gelatinase but not a 95-kDa gelatinase from pig leukocytes. It was used in immunolocalisation studies on human fibroblasts to investigate the regulation of the production of the two Mr forms of gelatinase. These studies clearly demonstrate that human fibroblasts constitutively synthesize and secrete 72-kDa gelatinase but that 95-kDa gelatinase was inducible by agents such as cytokines. The significance of these results in relation to the likely in vivo r?le of gelatinases is discussed.  相似文献   

11.
The synthesis and secretion of type IV procollagen, in addition to that of procollagen types I and III, was detected in cells derived from human embryonic lung (WI-38) by immunofluorescence, metabolic labeling, immunoprecipitation, collagenase digestion and the characteristic polypeptide sizes of both intact procollagen type IV chains and their initial pepsin-resistant fragments as determined by polyacrylamide gel electrophoresis. Locally obtained human embryonic lung cells secreted the same procollagens, but neither embryonic nor adult human skin fibroblasts were found to secrete type IV procollagen in amounts detectable by the same methods.  相似文献   

12.
We studied the effect of two members of the epidermal growth factor (EGF) family—amphiregulin and heparin‐binding EGF‐like growth factor (HB‐EGF)—on cell proliferation, growth factor and growth factor receptor expression, and cell differentiation in two human colon cell lines of varying liver‐colonizing potential. The effect of amphiregulin and HB‐EGF was assessed both in cells grown on plastic, as well as on cells grown on hepatocyte‐derived extracellular matrix (ECM). We found that both colon cell lines were sensitive to HB‐EGF stimulation of cell proliferation. Amphiregulin inhibited cell proliferation in KM12 cells and stimulated the strongly metastatic cell line KM12SM to a slight extent. When the cells were cultured on hepatocyte‐derived ECM, amphiregulin inhibited the weakly metastatic KM12 and stimulated the growth of KM12SM. HB‐EGF synergistically acted with hepatocyte‐derived ECM to enhance cell proliferation in both colon cell lines. Expression of ligands of the EGF family, such as transforming growth factor‐α (TGF‐α) and amphiregulin, was decreased in both cell lines when cultured on ECM. Hepatocyte‐derived ECM decreased expression of cripto in KM12 and increased it in KM12SM cells. Neither cripto nor TGF‐α mRNA levels was affected by growing the cells in the presence of amphiregulin. However, amphiregulin increased expression of its own mRNA in the weakly metastatic KM12 and decreased it in the strongly metastatic KM12SM when the cells were cultured on plastic. Amphiregulin and HB‐EGF stimulated expression of erb‐B2 in both cell lines cultured on plastic. Surprisingly, when the cells were grown on hepatocyte‐derived ECM, amphiregulin inhibited erb‐B2 expression in both cell lines. We observed no effect of amphiregulin on cell differentiation as assessed by alkaline phosphatase expression. Our studies demonstrate one mechanism that could play a role in site‐specific metastasis. We found an inhibitory response to an autocrine growth factor in the context of hepatocyte‐derived ECM in a weakly metastatic cell and a stimulatory effect of the same growth factor when strongly metastatic cells were cultured on the same ECM. J. Cell. Biochem. 76:332–340, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

13.
《The Journal of cell biology》1994,124(6):1091-1102
cDNA clones for murine 92 kD type IV collagenase (gelatinase B) were generated for the determination of its primary structure and for analysis of temporal and spatial expression in vivo. The mouse enzyme has 72% sequence identity with the human counterpart, the major difference being the presence of a 16-residue segment absent from the human enzyme. In situ hybridization analyses of embryonic and postnatal mouse tissues revealed intense signals in cells of the osteoclast cell lineage. Clear expression above background was not observed in macrophages, polymorphonuclear leukocytes, monocytes, or epithelial cells which have been shown to express the gene in vitro in cell cultures. Expression of the gene was first observed at early stage of cartilage and tooth development at E13, where signals were seen transiently in surrounding mesenchymal cells. At later developmental stages and postnatally strong expression was seen in large cells at the surface of bones. These cells were presumably osteoclasts as their location correlated with that of TRAP positive cells. Signals above background were not observed in a number of other tissues studied. The results represent the first demonstration of a highly osteoclast specific extracellular proteinase. The results suggest that during normal development of embryonic organs the 92-kD type IV collagenase does not have a major role in basement membrane degradation, but is rather mainly used for the turnover of bone matrix, possibly as a gelatinase required for the removal of denatured collagen fragments (gelatin) generated by interstitial collagenase.  相似文献   

14.
The effect of linoleic acid hydroperoxide on in vitro production of matrix metalloproteinases (MMPs) by human skin fibroblasts was studied. The addition of linoleic acid hydroperoxide significantly increased the production of MMP-1 (tissue collagenase) and MMP-3 (stromelysin), while it rather decreased that of MMP-2 (gelatinase of 72 kDa; so-called "type IV collagenase"). The effect of lipid peroxides to alter collagen metabolism was discussed from pathogenic points of view.  相似文献   

15.
When cultured on plastic and treated with transforming growth factor alpha (TGF alpha), human keratinocytes exhibit an increase in proliferation at the colony periphery, apparently as a consequence of enhanced cell migration (Barrandon and Green, 1987). To investigate the effects of TGF alpha on a differentiating stratified squamous epithelium and to begin to examine the molecular basis mediating this influence, we cultured human epidermal cells on a gelled lattice of collagen and fibroblasts, floating on the air-liquid interface. Under these conditions, raft cultures differentiate and exhibit morphological and biochemical features of human skin in vivo (Asselineau et al., 1986; Kopan et al., 1987). When 3-wk-old raft cultures were treated with TGF alpha, basal cells showed a marked increase in cell proliferation. At elevated concentrations of TGF alpha, the organization of cells within the artificial tissue changed and islands of basal cells entered the collagen matrix. Biochemical analysis of the response revealed that type I collagenase and gelatinase were induced by keratinocytes within 12 h after TGF alpha treatment. In contrast, invasion of basal cells into the collagen matrix was not significant until 48-72 h post-treatment, suggesting that collagenase and gelatinase production may be a prerequisite to this phenomenon. These results have important implications for the possible role of TGF alpha in squamous cell carcinoma and tumor invasion.  相似文献   

16.
Culture of human dermal fibroblasts within a three-dimensional matrix composed of native type I collagen fibrils is widely used to study the cellular responses to the extracellular matrix. Upon contact with native type I collagen fibrils human skin fibroblasts activate latent 72-kDa type IV collagenase/ gelatinase (MMP-2) to its active 59- and 62-kDa forms. This activation did not occur when cells were cultured on plastic dishes coated with monomeric type I collagen or its denatured form, gelatin. Activation could be inhibited by antibodies against MT1-MMP, by the addition of TIMP-2 and by prevention of MT1-MMP processing. MT1-MMP protein was detected at low levels as active protein in fibroblasts cultured as monolayers. In collagen gel cultures, an increase of the active, 60-kDa MT1-MMP and an additional 63-kDa protein corresponding to inactive MT1-MMP was detected. Incubation of medium containing latent MMP-2 with cell membranes isolated from fibroblasts grown in collagen gels caused activation of the enzyme. Furthermore, regulation of MT1-MMP expression in collagen cultures seems to be mediated by alpha2beta1 integrins. These studies suggest that activation of the proMMP-2 is regulated at the cell surface by a mechanism which is sensitive to cell culture in contact with physiologically relevant matrices and which depends on the ratio of proenzyme and the specific inhibitor TIMP-2.  相似文献   

17.
The proform of chick gelatinase (type IV collagenase) was isolated and purified to a high specific activity of 12,071 U/mg from cultured embryonic skin fibroblasts stimulated with cytochalasin-B. The enzyme was activated in the presence of 4-aminophenylmercuric acetate with a fall in molecular weight from 66,000-58,000 on non-reducing polyacrylamide gel electrophoresis and was active over the pH range of 6.0-8.9 against a number of substrates. Further biochemical characterisation showed that the organomercurial activated form of the enzyme behaved like a typical mammalian gelatinase, actively degrading gelatin, soluble type I collagen, collagenase generated type I fragments, type IV collagen (producing 3/4 and 1/4 fragments) and type V collagen, whilst having little effect on laminin. The enzyme was inhibited by metal chelators such as EDTA and 1,10-phenanthroline, but not by inhibitors is suggested that this may be TIMP-2. An antiserum was raised to the proenzyme and was found to localise intra- and extra-cellularly in both tissue sections and cell cultures.  相似文献   

18.
It was documented that type IV collagenase with two subtypes of 72 ku/MMP-2 and 92 ku/MMP-9 plays an important role in tumor invasion and metastasis. The endoplasmic reticulum (ER)- retained, single chain Fv antibody fragment (scFv) was used to inhibit the function of type IV collagenase. For expression in mammalian cells, the assembled scFv M97 gene with ER retention signal encoding 6 additional amino acids (SEKDEL) was reamplified by PCR. The amplified fragments were cloned into the pcDNA3.1 vector. The resulting plasmid was sequenced and then introduced into PG cells, a highly metastatic human lung cancer cell line, by lipofectAMINE method. The result of intrabody gene therapy showed that type IV collegenase expression was down regulated significantly as measured by ELISA. The biological behavior of PG cell, such as the ability of in vitro invasion through Matrigel, colony formation on soft agar, was also inhibited by scFv M97 transfection. Animal experiments in a xenograft model of human lung cancer showed that scFv M97 transfection significantly prolonged the survival time of nude mice. The results indicate that intracellular antibody technology represents a novel and efficient way to abrogate selectively the activity of type IV collagenase.  相似文献   

19.
In order for T cells to exit the circulatory system, traverse the endothelial basement membrane, and arrive in target tissues, these cells must attach to and degrade basement membrane proteins. 12-O-tetradecanoylphorbol-13-acetate (TPA) has been shown to stimulate lymphoid cell adhesion to basement membrane components. We have used TPA to study the ability of human lymphoid cells to secrete type IV collagenases, enzymes capable of degrading basement membrane proteins. Here, we found that human primary T cells and H-9 lymphoid cells synthesize the 92 kDa type IV collagenase (gelatinase B) and TPA stimulates the synthesis and secretion of this protease. Peak TPA-stimulated gelatinase B secretion and mRNA accumulation were observed 9 hours after TPA treatment, while the peak adhesion to type IV collagen was observed only 3 hours after TPA treatment. The protein kinase C inhibitor, H-7, inhibited TPA-stimulated gelatinase B secretion. Both the primary T cells and H-9 lymphoid cells also expressed the mRNA for the tissue inhibitor of metalloproteinase-1 (TIMP-1). These data demonstrate that TPA - stimulated lymphoid cells adhere to type IV collagen and subsequently synthesize and secrete gelatinase B and TIMP-1. We conclude that lymphoid cell extravasation may involve cellular employment of adhesion mechanisms prior to degradation of the matrix, which is similar to the process of extravasation used by metastatic cells. © 1993 Wiley-Liss, Inc.  相似文献   

20.
It was documented that type IV collagenase with two subtypes of 72 ku/MMP-2 and 92 ku/MMP-9 plays an important role in tumor invasion and metastasis. The endoplasmic reticulum (ER)- retained, single chain Fv antibody fragment (scFv) was used to inhibit the function of type IV collagenase. For expression in mammalian cells, the assembled scFv M97 gene with ER retention signal encoding 6 additional amino acids (SEKDEL) was reamplified by PCR. The amplified fragments were cloned into the pcDNA3.1 vector. The resulting plasmid was sequenced and then introduced into PG cells, a highly metastatic human lung cancer cell line, by lipofectAMINE method. The result of intrabody gene therapy showed that type IV collegenase expression was down regulated significantly as measured by ELISA. The biological behavior of PG cell, such as the ability of in vitro invasion through Matrigel, colony formation on soft agar, was also inhibited by scFv M97 transfection. Animal experiments in a xenograft model of human lung cancer  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号