首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Nitrogen and phosphorous exchange at the water–sediment interface is controlled both by complex physico-chemical factors and biological processes. Zoobenthos excretion is one of the most important processes in the mineralization of sedimented organic mater. In polluted freshwaters, tubificid worms are among the dominant components of the benthic community. Rates of ammonium and inorganic phosphate excretion by tubificids were experimentally assessed. They were related to the tubificid abundance in a stream ecosystem polluted with municipal and industrial wastewater. The relationship between these rates and temperature were investigated within the range of 4–23 °C. Relatively constant excretion rates were obtained for both nutrients in the first 8 h of excretion, ranging between 0.076 and 0.226 μg N mg d.w.−1 h−1 and 0.0065–0.01 μg P mg d.w.−1 h−1, respectively. Q10 values of 2.52 for ammonium and 1.31 for phosphate were calculated. If we presume that all excreta eventually enters the water column, then we can calculate that these invertebrates potentially add 39.17 mg N m−2 day−1 and 0.49 mg P m−2 day−1. These values accounts for 17.16 and 7.56% of the nutrient load in the river water, respectively.  相似文献   

2.
This investigation represents the first integrated study of primary production, nutrient dynamics and mineralisation in a northeastern fjord of Greenland. The data presented represent conditions and activities during the early summer thaw (first 2 weeks of July). Primary production (5.3 mmol C m−2 d−2) and chlorophylla (4.1 μg 1−1) values were found to be comparable with measurements from other Arctic regions. Water column N-fixation rates were low (<0.02 μmol N m−1 d−1), but comparable with other estuarine systems. Despite a constant low temperature in the bottom waters (-1.0 to -1.8°C), a high sedimentary O2 uptake (740 μmol m−2 h−2) was observed and was primarily caused by the presence of benthic infauna. Bioturbation by benthic infauna was reflected in both homogeneous210Pb and137Cs profiles in the upper 4 cm of the sediment. Permanent accumulation within Young Sound was measured to 0.12 cm/year corresponding to 153 mmol C m−2 year−1 and 15 mmol N m−2 year−1. Rates of nitrification (22 μmol m−2 h−1) and denitrification (9 μmol m−2 h−1) were comparable with rates reported for other sediments with much higher environmental temperatures. Suphate reduction rates integrated over the upper 12 cm of the sediment were calculated to be 44 μmol m−2h−1.  相似文献   

3.
4.
In the Cerrado region of Brazil conventional soybean monoculture is since the 1980s being replaced by direct seeding mulch-based cropping (DMC) with two crops per year and absence of tillage practices. The objective of this study was to assess the long-term impact of DMC on soil organic matter accumulation and nitrogen (N) mineralization. Measurements of soil organic carbon (C) content, soil total N content and soil N mineralization, both under laboratory conditions using disturbed soil samples and under field conditions using intact soil cores were conducted on a chronosequence of 2-, 6-, 9- and 14-year-old DMC fields (DMC-2, DMC-6, DMC-9 and DMC-14, respectively). The average increase of organic C in the 0–30 cm topsoil layer under DMC was 1.91 Mg C ha−1 year−1. Soil total N increased with 103 kg N ha−1 year−1 (0–30 cm). The potential N mineralization rate under laboratory conditions (28°C, 75% of soil moisture at field capacity) was 0.27, 0.28, 0.39 and 0.36 mg N kg soil−1 day−1 for, respectively, the DMC-2, DMC-6, DMC-9 and DMC-14 soils. The corresponding specific N mineralization rates were 0.16, 0.15, 0.22 and 0.17 mg N g N−1 day−1. There was no obvious explanation for the higher specific N mineralization rate of soils under DMC-9, given the similar soil conditions and land-use history before DMC was introduced. Results from the in situ N incubation experiments were in good agreement with those from the laboratory incubations. We estimated that soil N mineralization increases with about 2.0 kg N ha−1 year−1 under DMC. The increase was mainly attributed to the larger soil total N content. These results indicate that even in the medium term (10 years), continuous DMC cropping has limited implications for N fertilization recommendations, since the extra soil N supply represents less than 20% of the common N fertilization dose for maize in the region.  相似文献   

5.
We conducted a 4-year study of juvenile Pinus ponderosa fine root (≤2 mm) responses to atmospheric CO2 and N-fertilization. Seedlings were grown in open-top chambers at three CO2 levels (ambient, ambient+175 μmol/mol, ambient+350 μmol/mol) and three N-fertilization levels (0, 10, 20 g m−2 year−1). Length and width of individual roots were measured from minirhizotron video images bimonthly over 4 years starting when the seedlings were 1.5 years old. Neither CO2 nor N-fertilization treatments affected the seasonal patterns of root production or mortality. Yearly values of fine-root length standing crop (m m−2), production (m m−2 year−1), and mortality (m m−2 year−1) were consistently higher in elevated CO2 treatments throughout the study, except for mortality in the first year; however, the only statistically significant CO2 effects were in the fine-root length standing crop (m m−2) in the second and third years, and production and mortality (m m−2 year−1) in the third year. Higher mortality (m m−2 year−1) in elevated CO2 was due to greater standing crop rather than shorter life span, as fine roots lived longer in elevated CO2. No significant N effects were noted for annual cumulative production, cumulative mortality, or mean standing crop. N availability did not significantly affect responses of fine-root standing crop, production, or mortality to elevated CO2. Multi-year studies at all life stages of trees are important to characterize belowground responses to factors such as atmospheric CO2 and N-fertilization. This study showed the potential for juvenile ponderosa pine to increase fine-root C pools and C fluxes through root mortality in response to elevated CO2.  相似文献   

6.
The dynamics of carbon and nitrogen in carbonate mud were examined in the lagoons of Arlington and Sudbury Reefs, Great Barrier Reef. Most (89–93%) of the organic carbon and total nitrogen depositing to the carbonate mud zones was mineralized over a sediment depth of 1 m, with ∼50% of CO2 produced during microbial decomposition involved in carbonate precipitation/dissolution reactions. There was proportionally little burial of organic carbon (10–11%) or nitrogen (7–10%). Nitrogen budgets suggest rapid turnover of porewater inorganic N pools on the order of hours to a few days. Incubation experiments indicate carbonate dissolution in surface deposits (≤20 cm depth) and carbonate precipitation in deeper sediments. Depth-integrated reaction rates indicate net carbonate precipitation of 7–10 mol CaCO3 m2 year−1 over a depth of 1 m. Budget calculations at the whole-reef scale imply that deposition of CaCO3 in the mud zones of both lagoons may equate to 50–90% of total reef carbonate production, with organic carbon fluxes equating to nearly all net primary production on each reef. These biogeochemical estimates point to the functional importance of carbonate mud zones in the lagoons of the shelf reefs of the Great Barrier Reef.  相似文献   

7.
The effects of temperature, irradiance, and daylength on Sargassum horneri growth were examined at the germling and adult stages to discern their physiological differences. Temperature–irradiance (10, 15, 20, 25, 30°C × 20, 40, 80 μmol photons m−2s−1) and daylength (8, 12, 16, 24 h) experiments were carried out. The germlings and blades of S. horneri grew over a wide range of temperatures (10–25°C), irradiances (20–80 μmol photons m−2s−1), and daylengths (8–24 h). At the optimal growth conditions, the relative growth rates (RGR) of the germlings were 21% day−1 (25°C, 20 μmol photons m−2s−1) and 13% day−1 (8 h daylength). In contrast, the RGRs of the blade weights were 4% day−1 (15°C, 20 μmol photons m−2s−1) and 5% day−1 (12 h daylength). Negative growth rates were found at 20 μmol photons m−2s−1 of 20°C and 25°C treatments after 12 days. This phenomenon coincides with the necrosis of S. horneri blades in field populations. In conclusion, we found physiological differences between S. horneri germlings and adults with respect to daylength and temperature optima. The growth of S. horneri germlings could be enhanced at 25°C, 20 μmol photons m−2s−1, and 8 h daylength for construction of Sargassum beds and restoration of barren areas.  相似文献   

8.
Although sea urchins are critical for controlling macroalgae on heavily fished coral reefs, high densities threaten reefs, as urchins are also prodigous bioeroders. This study examined urchin population characteristics, bioerosion rates, their fish predators (Labridae), and potential competitors (Scaridae) on unprotected reefs and a reef within a marine protected area (MPA) in the lagoonal regions off Belize. Urchin density (<1 m−2) and bioerosion rates (∼0.2 kg CaCO3 m−2 year−1) were lowest and members of the Labridae were the highest (∼20 fish 200 m−3) within the MPA, while several unprotected reefs had higher (∼18–40 m−2) urchin densities, lower Labridae abundances (1–3 fish 200 m−3), and bioerosion rates ranging from ∼0.3–2.6 kg CaCO3 m−2 year−1. Urchin abundances were inversely related to Labridae (wrasses and hogfish) densities; however, on reef ridges, low algal cover (∼15%), small urchin size (∼14 mm), and low proportion of organic material in urchin guts suggested food limitation. Both top–down (predation) and bottom–up factors (food limitation) likely contribute to the control of urchins, predominantly Echinometra viridis, off Belize, thereby potentially diminishing the negative impacts of bioerosion activities by urchins.  相似文献   

9.
Denitrification activity and oxygen dynamics in Arctic sea ice   总被引:1,自引:0,他引:1  
Denitrification and oxygen dynamics were investigated in the sea ice of Franklin Bay (70°N), Canada. These investigations were complemented with measurements of denitrification rates in sea ice from different parts of the Arctic (69°N–85°N). Potential for bacterial denitrification activity (5–194 μmol N m−2 day−1) and anammox activity (3–5 μmol N m−2 day−1) in melt water from both first-year and multi-year sea ice was found. These values correspond to 27 and 7%, respectively, of the benthic denitrification and anammox activities in Arctic sediments. Although we report only potential denitrification and anammox rates, we present several indications that active denitrification in sea ice may occur in Franklin Bay (and elsewhere): (1) despite sea ice-algal primary production in the lower sea ice layers, heterotrophic activity resulted in net oxygen consumption in the sea ice of 1–3 μmol l−1 sea ice per day at in situ light conditions, suggesting that O2 depletion may occur prior to the spring bloom. (2) The ample organic carbon (DOC) and NO3 present in sea ice may support an active denitrification population. (3) Measurements of O2 conditions in melted sea ice cores showed very low bulk concentrations, and in some cases anoxic conditions prevailed. (4) Laboratory studies using planar optodes for measuring the high-resolution two-dimensional O2 distributions in sea ice confirmed the very dynamic and heterogeneous O2 distribution in sea ice, displaying a mosaic of microsites of high and low O2 concentrations. Brine enclosures and channels were strongly O2 depleted in actively melting sea ice, and anoxic conditions in parts of the brine system would favour anaerobic processes.  相似文献   

10.
The rates of photosynthesis and dark CO2 fixation were determined in 12 soda lakes of the Kulunda steppe. Characterization of the phototrophic communities was given, and the cell numbers of anoxygenic phototrophic bacteria (APB) were determined. The photosynthetic production in different lakes was substantially different, constituting from 0.01 to 1.32 g C m−2 day−1. The main part of carbon dioxide was assimilated in the process of oxygenic photosynthesis. Anoxygenic photosynthesis was recorded only in 5 of the 12 lakes studied. Its values varied between 0.06 and 0.42 g C m−2 day−1, constituting from 8 to 34% of the total photosynthetic activity. Anoxygenic photosynthesis was revealed in the lakes where the number of APB reached 107–109 CFU cm−3. Dark CO2 fixation constituted 0.01–0.15 g C m−2 day−1. Positive correlation was observed between the primary production value and water alkalinity. No relationship between productivity and water mineralization was revealed in the 30–200 g l−1 range, whereas an increase in salinity above 200 g l−1 suppressed the photosynthetic activity. The mechanisms of influence of the environmental factors on the rate of photosynthesis are discussed.  相似文献   

11.
Aline T 《Microbial ecology》2008,55(4):569-580
Spatial and temporal variabilities in species composition, abundance, distribution, and bioeroding activity of euendolithic microorganisms were investigated in experimental blocks of the massive coral Porites along an inshore–offshore transect across the northern Great Barrier Reef (Australia) over a 3-year period. Inshore reefs showed turbid and eutrophic waters, whereas the offshore reefs were characterized by oligotrophic waters. The euendolithic microorganisms and their ecological characteristics were studied using techniques of microscopy, petrographic sections, and image analysis. Results showed that euendolithic communities found in blocks of coral were mature. These communities were dominated by the chlorophyte Ostreobium quekettii, the cyanobacterium Plectonema terebrans, and fungi. O. quekettii was found to be the principal agent of microbioerosion, responsible for 70–90% of carbonate removal. In the offshore reefs, this oligophotic chlorophyte showed extensive systems of filaments that penetrated deep inside coral skeletons (up to 4.1 mm) eroding as much as 1 kg CaCO3 eroded m−2 year−1. The percentage of colonization by euendolithic filaments at the surface of blocks did not vary significantly among sites, while their depths of penetration, especially that of O. quekettii (0.6–4.1 mm), increased significantly and gradually with the distance from the shore. Rates of microbioerosion (0.1–1.4 kg m−2 after 1 year and 0.2–1.3 kg m−2 after 3 years of exposure) showed a pattern similar to the one found for the depth of penetration of O. quekettii filaments. Accordingly, oligotrophic reefs had the highest rates of microbioerosion of up to 1.3 kg m−2 year−1, whereas the development of euendolithic communities in inshore reefs appeared to be limited by turbidity, high sedimentation rates, and low grazing pressure (rates <0.5 kg m−2 after 3 years). Those results suggest that boring microorganisms, including O. quekettii, have a significant impact on the overall calcium carbonate budget of coral reef ecosystems, which varies according to environmental conditions.  相似文献   

12.
Gross rates of N mineralization and nitrification, and soil–atmosphere fluxes of N2O, NO and NO2 were measured at differently grazed and ungrazed steppe grassland sites in the Xilin river catchment, Inner Mongolia, P. R. China, during the 2004 and 2005 growing season. The experimental sites were a plot ungrazed since 1979 (UG79), a plot ungrazed since 1999 (UG99), a plot moderately grazed in winter (WG), and an overgrazed plot (OG), all in close vicinity to each other. Gross rates of N mineralization and nitrification determined at in situ soil moisture and soil temperature conditions were in a range of 0.5–4.1 mg N kg−1 soil dry weight day−1. In 2005, gross N turnover rates were significantly higher at the UG79 plot than at the UG99 plot, which in turn had significantly higher gross N turnover rates than the WG and OG plots. The WG and the OG plot were not significantly different in gross ammonification and in gross nitrification rates. Site differences in SOC content, bulk density and texture could explain only less than 15% of the observed site differences in gross N turnover rates. N2O and NO x flux rates were very low during both growing seasons. No significant differences in N trace gas fluxes were found between plots. Mean values of N2O fluxes varied between 0.39 and 1.60 μg N2O-N m−2 h−1, equivalent to 0.03–0.14 kg N2O-N ha−1 y−1, and were considerably lower than previously reported for the same region. NO x flux rates ranged between 0.16 and 0.48 μg NO x -N m−2 h−1, equivalent to 0.01–0.04 kg NO x -N ha−1 y−1, respectively. N2O fluxes were significantly correlated with soil temperature and soil moisture. The correlations, however, explained only less than 20% of the flux variance.  相似文献   

13.
The ability of photoautotrophic picoplankton Synechococcus to degrade urea was examined in the euphotic zone of Lake Biwa. Samples were divided into pico (0.2–2.0 μm) and larger (>2.0 μm) size fractions by filtration. The rates of urea degradation (the sum of the rates of incorporation of carbon into phytoplankton cells and of liberation of CO2 into water) measured by radiocarbon urea were 8 and 17 μmol urea m−3 day−1 in June and July, respectively, for the picophytoplankton in the surface water, and 196 and 96 μmol urea m−3 day−1, respectively for the larger phytoplankton. The rates decreased with depth, somewhat similar to the vertical profiles of the photosynthetic rate. The urea degradation rates were obviously high under light conditions. In daylight, urea was degraded into two phases, carbon incorporation and CO2 liberation, whereas in the dark it was degraded only into the CO2 liberation phase. The contribution of picophytoplankton to total phytoplankton in urea degradation was high in the subsurface to lower euphotic layer. Urea degradation activity was higher in the picophytoplankton fraction than in the larger phytoplankton fraction. Shorter residence times of urea were obtained in the upper euphotic zone. The contribution of picophytoplankton to urea cycling was 4% to 35%. The present results suggest that the picophytoplankton Synechococcus is able to degrade urea and effectively makes use of regenerated urea as a nitrogen source in the euphotic layer, and that picophytoplankton play an important role in the biogeochemical nitrogen cycle in Lake Biwa. Received: June 25, 1998 / Accepted: February 10, 1999  相似文献   

14.
Photosynthetic Response of Carrots to Varying Irradiances   总被引:7,自引:3,他引:4  
Kyei-Boahen  S.  Lada  R.  Astatkie  T.  Gordon  R.  Caldwell  C. 《Photosynthetica》2003,41(2):301-305
Response to irradiance of leaf net photosynthetic rates (P N) of four carrot cultivars: Cascade, Caro Choice (CC), Oranza, and Red Core Chantenay (RCC) were examined in a controlled environment. Gas exchange measurements were conducted at photosynthetic active radiation (PAR) from 100 to 1 000 μmol m−2 s−1 at 20 °C and 350 μmol (CO2) mol−1(air). The values of P N were fitted to a rectangular hyperbolic nonlinear regression model. P N for all cultivars increased similarly with increasing PAR but Cascade and Oranza generally had higher P N than CC. None of the cultivars reached saturation at 1 000 μmol m−2 s−1. The predicted P N at saturation (P Nmax) for Cascade, CC, Oranza, and RCC were 19.78, 16.40, 19.79, and 18.11 μmol (CO2) m−2 s−1, respectively. The compensation irradiance (I c) occurred at 54 μmol m−2 s−1 for Cascade, 36 μmol m−2 s−1 for CC, 45 μmol m−2 s−1 for Oranza, and 25 μmol m−2 s−1 for RCC. The quantum yield among the cultivars ranged between 0.057–0.033 mol(CO2) mol−1(PAR) and did not differ. Dark respiration varied from 2.66 μmol m−2 s−1 for Cascade to 0.85 μmol m−2 s−1 for RCC. As P N increased with PAR, intercellular CO2 decreased in a non-linear manner. Increasing PAR increased stomatal conductance and transpiration rate to a peak between 600 and 800 μmol m−2 s−1 followed by a steep decline resulting in sharp increases in water use efficiency. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
Photosynthetic photon flux density (PPFD) at 15 cm above the ground was measured at 20 microsites in gaps and grass patches within aMiscanthus sinensis Anderss community at 10 s intervals during 5 days every month from May to September 1989. Microsite light availability, which was characterized by daily total PPFD, sunfleck PPFD (PPFD above a threshold value of 50 or 400 μmol m−2 s−1) and the diffuse site factor, showed evident seasonal changes, with a marked reduction between June and July due to the rapid growth of the grass canopy. The monthly median value of daily total PPFD among the microsites decreased from 10.3 mol m−2 day−1 in May to 0.77 mol m−2 day−1 in September, with a reduction in the diffuse site factor from 31 to 4%. During the summer, the median value of the total time of sunflecks exceeding 50 μmol m−2 s−1 contributed 7–18% of measurement time, but the contribution of these sunflecks to daily total PPFD ranged from 29 to 59%. There was considerable microsite variation in light availability throughout the measurement period. Rank correlation analysis revealed that some microsites, such as those in gaps, consistently received more total PPFD, more sunfleck PPFD and had a higher diffuse site factor than those in grass patches. The diffuse site factor had a linearly positive relationship with daily total PPFD and total sunfleck PPFD for the 20 microsites during the measurement period, confirming that the diffuse site factor is a useful index for microsite light availability withinM. sinensis canopies.  相似文献   

16.
Overgrazing and soil carbon dynamics in eastern Inner Mongolia of China   总被引:1,自引:0,他引:1  
Eastern Inner Mongolia of China is a typical ecotone between sandy forests and steppe. Little is known about the effect of overgrazing on carbon loss from soil in semiarid steppe and sandy forests of the north of China. The soil carbon parameters were measured in a 10,000 ha natural reserve in eastern Inner Mongolia of China (43°30′–43°36′N, 117°06′–117°16′E). Three situations were compared: primary protected (PP), moderately protected (MP) and highly degraded (HD). Soil and litter samples were recovered in spring and summer. Soil organic carbon (SOC) and CO2–C values decreased from the PP (9.23 kg m−2 and 157 g m−2) to the HD (1.69 kg m−2 and 57 g m−2) sites whereas the C mineralization rate increased toward the less restored sites (1.06–2.37). Surface-litter C was different in both sites under protection (PP 648 and MP 408 g m−2), an was low at the HD site (17 g m−2). Leaves from woody species dominated the surface litter at the PP site, whereas grass material was predominant at the MP site. During summer, both CO2–C and SOC decreased, whereas the C mineralization rate increased. We calculated that C loss since the introduction of cattle into the forest was 77 M g ha−1, reaching a total of 1.1×1015 g for eastern Inner Mongolia. These values are higher than those caused by the conversion of steppe and other ecosystems into agriculture or cultivated pastures. The amount of C fixed at the PP site (650 g ha−1year−1) indicates that the sandy soils have a significant potential as atmospheric carbon sinks. Foundation item: The National Natural Science Foundation of China (No. 39900019, 30070129).  相似文献   

17.
Metabolic hotspots at land–water interfaces are important in supporting biogeochemical processes. Here we confirm the generality of land–aquatic interfaces as biogeochemical hot spots by extending this concept to marine beach cast materials. In situ atmospheric pCO2, from a respiration chamber (10 cm in diameter and 20 cm high) inserted into wrack deposits, was determined using a high-precision (±1 ppm) non-dispersive infrared gas analyzer (EGM-4, PP-systems) at 1 minute recording intervals. The wrack deposits supported high metabolic activities, with CO2 fluxes averaging (±SE) 6.62 ± 0.88 μmol C m−2 s−1, compared to median value of 0.98 μmol C m−2 s−1 (mean 2.21 ± 1.25 μmol C m−2 s−1) for bare sand adjacent to deposits. Wrack metabolic rates ranged 40-fold across beaches, from a minimum of 0.57 ± 0.22 μmol C m−2 s−1 to a maximum of 20.8 ± 5.04 μmol C m−2 s−1, both derived from beaches with deposits dominated by Sargassum. Rates tended to increase significantly (F test, P < 0.05) from the shoreline to reach maximum rates at about 10 m from the shoreline, declining sharply further from the shoreline, and increased with increasing thickness of the deposits (maximum about 10 cm deep), declining for thicker deposits. Wrack differing in composition had similar metabolic rates, although deposits consisting of a mixture of seagrass and algae tended to show somewhat higher rates. Our results show a meter square of wrack deposit supports a metabolic rate equivalent to that supported by 3 m2 of living seagrass or macroalgal habitat. In wrack, the marine environment provides organic material and moisture and the land environment provides oxygen to render wrack ecosystems an efficient metabolic reactor. Intense wrack metabolism should also be conducive to organismal growth by supporting the development of a cryptic, but diverse wrack-based food web.  相似文献   

18.
The branching zooxanthellate soft coral Sinularia flexibillis releases antimicrobial and toxic compounds with potential pharmaceutical importance. As photosynthesis by the symbiotic algae is vital to the host, the light-dependency of the coral, including its specific growth rate (μ day−1) and the physiological response to a range of light intensities (10–1,000 μmol quanta m−2 s−1) was studied for 12 weeks. Although a range of irradiances from 100 to 400 μmol quanta m−2 s−1 was favorable for S. flexibilis, based on chlorophyll content, a light intensity around 100 μmol quanta m−2 s−1 was found to be optimal. The contents of both zooxanthellae and chlorophyll a were highest at 100 μmol quanta m−2 s−1. The specific budding rate showed almost the same pattern as the specific growth rate. The concentration of the terpene flexibilide, produced by this species, increased at high light intensities (200–600 μmol quanta m−2 s−1).  相似文献   

19.
Leaf carbon gain simulation was performed forQuercus serrata seedlings with previously reported 6 day photosynthetic photon flux density (PPFD) histograms from 20 understorey microsites of a pine forest (Washitani & Tang 1991). This simulation was performed with or without an assumption of the acclimatization of photosynthetic capacity (Pmax) to microsite light availability. A constant ratio of respiration rate to Pmax, within, the range of 0.07–0.1, was assumed as a constraint. In relatively well illuminated microsites with a diffuse site factor above 0.1, predicted optimal Pmax was about 5 μmol m−2 s−1, with the predicted mean daily net carbon gain being about 50 mmol m−2 day−1. Each of the predicted optimal Pmax and the simulated mean daily net carbon gains with a constant Pmax (5 μmol m−2 s−1) or the predicted optimal Pmax was linearly related to the microsite light availability index, diffuse site factor. Simulated net carbon gain was negative at diffuse site factors below 0.04, if the constant of Pmax was assumed. The predicted linear relationship between net carbon gain and diffuse site factor could provide an ecophysiological basis for the observed linear dependency of the relative growth rate of biomass ofQ. serrata seedlings on the microsite diffuse site factor (Washitani & Tang 1991).  相似文献   

20.
This work describes the long-term acclimation of the halotolerant microalga Dunaliella viridis to different photon irradiance, ranging from darkness to 1500 μmol m−2 s−1. In order to assess the effects of long-term photoinhibition, changes in oxygen production rate, pigment composition, xanthophyll cycle and in vivo chlorophyll fluorescence using the saturating pulse method were measured. Growth rate was maximal at intermediate irradiance (250 and 700 μmol m−2 s−1). The increase in growth irradiance from 700 to 1500 μmol m−2 s−1 did not lead to further significant changes in pigment composition or EPS, indicating saturation in the pigment response to high light. Changes in Photosystem II optimum quantum yield (Fv/Fm) evidenced photoinhibition at 700 and especially at 1500 μmol m−2 s−1. The relation between photosynthetic electron flow rate and photosyntetic O2 evolution was linear for cultures in darkness shifting to curvilinear as growth irradiance increased, suggesting the interference of the energy dissipation processes in oxygen evolution. Carbon assimilation efficiencies were studied in relation to changes in growth rate, internal carbon and nitrogen composition, and organic carbon released to the external medium. All illuminated cultures showed a high capability to maintain a C:N ratio between 6 and 7. The percentage of organic carbon released to the external medium increased to its maximum under high irradiance (1500 μmol m−2 s−1). These results suggest that the release of organic carbon could act as a secondary dissipation process when the xanthophyll cycle is saturated. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号