首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Over the past decade it was discovered that, over-and-above multiple regulatory functions, nitric oxide (NO) is responsible for the modulation of cell respiration by inhibiting cytochrome c oxidase (CcOX). As assessed at different integration levels (from the purified enzyme in detergent solution to intact cells), CcOX can react with NO following two alternative reaction pathways, both leading to an effective, fully reversible inhibition of respiration. A crucial finding is that the rate of electron flux through the respiratory chain controls the mechanism of inhibition by NO, leading to either a "nitrosyl" or a "nitrite" derivative. The two mechanisms can be discriminated on the basis of the differential photosensitivity of the inhibited state. Of relevance to cell pathophysiology, the pathway involving the nitrite derivative leads to oxidative degradation of NO, thereby protecting the cell from NO toxicity. The aim of this work is to review the information available on these two mechanisms of inhibition of respiration.  相似文献   

2.
Three complexes of NO with cytochrome c oxidase are described which are all photodissociable at low temperatures as measured by EPR. The EPR parameters of the cytochrome a2+(3)-NO complex are the same both in the fully reduced enzyme and in the mixed-valence enzyme. The kinetics of photodissociation of cytochrome a2+(3)-NO and recombination of NO with cytochrome a2+(3) (in the 30-70 K region) revealed no differences in structure between cytochrome a2+(3) in the fully reduced and the mixed-valence states. The action spectrum of the photodissociation of cytochrome a2+(3)-NO as measured by EPR has maxima at 595, 560 and 430 nm, and corresponds to the absorbance spectrum of cytochrome a2+(3)-NO. Photodissociation of cytochrome a2+(3)-NO in the mixed-valence enzyme changes the EPR intensity at g 3.03, due to electron transfer from cytochrome a2+(3) to cytochrome a3+. The extent of electron transfer was found to be temperature dependent. This suggests that a conformational change is coupled to this electron transfer. The complex of NO with oxidized cytochrome c oxidase shows a photodissociation reaction and recombination of NO (in the 20-40 K region) which differ completely from those observed in cytochrome a2+(3)-NO. The observed recombination occurs at a temperature 15 K lower than that found for the cytochrome a2+(3)-NO complex. The action spectrum of the oxidized complex shows a novel spectrum with maxima at 640 and below 400 nm; it is assigned to a Cu2+B-NO compound. The triplet species with delta ms = 2 EPR signals at g 4 and delta ms = 1 signals at g 2.69 and 1.67, that is observed in partially reduced cytochrome c oxidase treated with azide and NO, can also be photodissociated.  相似文献   

3.
The dissimilatory nitrite reductase (cytochrome c,d1) from Pseudomonas aeruginosa was observed at pH 7.5 to catalyze nitrosyl transfer (nitrosation) between [15N]nitrite and several N-nucleophiles or H2 18O, with rate enhancement of the order of 10(8) relative to analogous chemical reactions. The reducing system (ascorbate, N,N,N',N'-tetramethylphenylenediamine) could reduce nitrite (but not NO) enzymatically and had essentially no direct chemical reactivity toward nitrite or NO. The N-nitrosations showed saturation kinetics with respect to the nucleophile and, while exhibiting Vmax values which varied by about 40-fold, nevertheless showed little or no dependence of Vmax on nucleophile pKa. The N-nitrosations and NO-2/H2O-18O exchange required the reducing system, whereas NO/H2O-18O exchange was inhibited by the reducing system. NO was not detected to serve as a nitrosyl donor to N-nucleophiles. These and other kinetic observations suggest that the enzymatic nitrosyl donor is an enzyme-bound species derived from reduced enzyme and one molecule of nitrite, possibly a heme-nitrosyl compound (E-FeII X NO+) for which there is precedence. Nitrosyl transfer to N-nucleophiles may occur within a ternary complex of enzyme, nitrite, and nucleophile. Catalysis of nitrosyl transfer by nitrite reductase represents a new class of enzymatic reactions and may present another example of electrophilic catalysis by a metal center. The nitrosyl donor trapped by these reactions is believed to represent an intermediate in the reduction of nitrite by cytochrome c,d1.  相似文献   

4.
The reactions of nitric oxide (NO) with the turnover intermediates of cytochrome c oxidase were investigated by combining amperometric and spectroscopic techniques. We show that the complex of nitrite with the oxidized enzyme (O) is obtained by reaction of both the "peroxy" (P) and "ferryl" (F) intermediates with stoichiometric NO, following a common reaction pathway consistent with P being an oxo-ferryl adduct. Similarly to chloride-free O, NO reacted with P and F more slowly [k approximately (2-8) x 10(4) M(-1) s(-1)] than with the reduced enzyme (k approximately 1 x 10(8) M(-1) s(-1)). Recovery of activity of the nitrite-inhibited oxidase, either during turnover or after a reduction-oxygenation cycle, was much more rapid than nitrite dissociation from the fully oxidized enzyme (t(1/2) approximately 80 min). The anaerobic reduction of nitrite-inhibited oxidase produced the fully reduced but uncomplexed enzyme, suggesting that reversal of inhibition occurs in turnover via nitrite dissociation from the cytochrome a(3)-Cu(B) site: this finding supports the hypothesis that oxidase may have a physiological role in the degradation of NO into nitrite. Kinetic simulations suggest that the probability for NO to be transformed into nitrite is greater at low electron flux through oxidase, while at high flux the fully reduced (photosensitive) NO-bound oxidase is formed; this is fully consistent with our recent finding that light releases the inhibition of oxidase by NO only at higher reductant pressure [Sarti, P., et al. (2000) Biochem. Biophys. Res. Commun. 274, 183].  相似文献   

5.
Nitric oxide can inhibit mitochondrial cytochrome oxidase in both oxygen competitive and uncompetitive modes. A previous model described these interactions assuming equilibrium binding to the reduced and oxidised enzyme respectively (Mason, et al. Proc. Natl. Acad. Sci. U S A 103 (2006) 708-713). Here we demonstrate that the equilibrium assumption is inappropriate as it requires unfeasibly high association constants for NO to the oxidised enzyme. Instead we develop a model which explicitly includes NO binding and its enzyme-bound conversion to nitrite. Removal of the nitrite complex requires electron transfer to the binuclear centre from haem a. This revised model fits the inhibition constants at any value of substrate concentration (ferrocytochrome c or oxygen). It predicts that the inhibited steady state should be a mixture of the reduced haem nitrosyl complex and the oxidized-nitrite complex. Unlike the previous model, binding to the oxidase is always proportional to the degree of inhibition of oxygen consumption. The model is consistent with data and models from a recent paper suggesting that the primary effect of NO binding to the oxidised enzyme is to convert NO to nitrite, rather than to inhibit enzyme activity (Antunes et al. Antioxid. Redox Signal. 9 (2007) 1569-1579).  相似文献   

6.
Cytochrome c nitrite reductase catalyzes the six-electron reduction of nitrite to ammonia as a key step within the biological nitrogen cycle. Most recently, the crystal structure of the soluble enzyme from Sulfurospirillum deleyianum could be solved to 1.9 A resolution. This set the basis for new experiments on structural and functional aspects of the pentaheme protein which carries a Ca(2+) ion close to the active site heme. In the crystal, the protein was a homodimer with ten hemes in very close packing. The strong interaction between the nitrite reductase monomers also occurred in solution according to the dependence of the activity on the protein concentration. Addition of Ca(2+) to the enzyme as isolated had a stimulating effect on the activity. Ca(2+) could be removed from the enzyme by treatment with chelating agents such as EGTA or EDTA which led to a decrease in activity. In addition to nitrite, the enzyme converted NO, hydroxylamine and O-methyl hydroxylamine to ammonia at considerable rates. With N2O the activity was much lower; most likely dinitrogen was the product in this case. Cytochrome c nitrite reductase exhibited a remarkably high sulfite reductase activity, with hydrogen sulfide as the product. A paramagnetic Fe(II)-NO, S = 1/2 adduct was identified by rapid freeze EPR spectroscopy under turnover conditions with nitrite. This potential reaction intermediate of the reduction of nitrite to ammonia was also observed with PAPA NONOate and Spermine NONOate.  相似文献   

7.
Cytochrome cd(1) is a respiratory enzyme that catalyzes the physiological one-electron reduction of nitrite to nitric oxide. The enzyme is a dimer, each monomer containing one c-type cytochrome center and one active site d(1) heme. We present stopped-flow Fourier transform infrared data showing the formation of a stable ferric heme d(1)-NO complex (formally d(1)Fe(II)-NO(+)) as a product of the reaction between fully reduced Paracoccus pantotrophus cytochrome cd(1) and nitrite, in the absence of excess reductant. The Fe-(14)NO nu(NO) stretching mode is observed at 1913 cm(-1) with the corresponding Fe-(15)NO band at 1876 cm(-1). This d(1) heme-NO complex is still readily observed after 15 min. EPR and visible absorption spectroscopic data show that within 4 ms of the initiation of the reaction, nitrite is reduced at the d(1) heme, and a cFe(III) d(1)Fe(II)-NO complex is formed. Over the next 100 ms there is an electron redistribution within the enzyme to give a mixed species, 55% cFe(III) d(1)Fe(II)-NO and 45% cFe(II) d(1)Fe(II)-NO(+). No kinetically competent release of NO could be detected, indicating that at least one additional factor is required for product release by the enzyme. Implications for the mechanism of P. pantotrophus cytochrome cd(1) are discussed.  相似文献   

8.
Cytochrome c nitration by peroxynitrite   总被引:1,自引:0,他引:1  
Peroxynitrite (ONOO(-)), the product of superoxide (O(2)) and nitric oxide (.NO) reaction, inhibits mitochondrial respiration and can stimulate apoptosis. Cytochrome c, a mediator of these two aspects of mitochondrial function, thus represents an important potential target of ONOO(-) during conditions involving accelerated rates of oxygen radical and.NO generation. Horse heart cytochrome c(3+) was nitrated by ONOO(-), as indicated by spectral changes, Western blot analysis, and mass spectrometry. A dose-dependent loss of cytochrome c(3+) 695 nm absorption occurred, inferring that nitration of a critical heme-vicinal tyrosine (Tyr-67) promoted a conformational change, displacing the Met-80 heme ligand. Nitration was confirmed by cross-reactivity with a specific antibody against 3-nitrotyrosine and by increased molecular mass compatible with the addition of a nitro-(-NO(2)) group. Mass analysis of tryptic digests indicated the preferential nitration of Tyr-67 among the four conserved tyrosine residues in cytochrome c. Cytochrome c(3+) was more extensively nitrated than cytochrome c(2+) because of the preferential oxidation of the reduced heme by ONOO(-). Similar protein nitration patterns were obtained by ONOO(-) reaction in the presence of carbon dioxide, whereupon secondary nitrating species arise from the decomposition of the nitroso-peroxocarboxylate (ONOOCO(2)(-)) intermediate. Peroxynitrite-nitrated cytochrome c displayed significant changes in redox properties, including (a) increased peroxidatic activity, (b) resistance to reduction by ascorbate, and (c) impaired support of state 4-dependent respiration in intact rat heart mitochondria. These results indicate that cytochrome c nitration may represent both oxidative and signaling events occurring during .NO- and ONOO(-)-mediated cell injury.  相似文献   

9.
Described are further studies directed towards elucidating the mechanism of the nitric oxide reduction of the copper(II) model system, Cu(dmp)2(2+) (I, dmp=2,9-dimethyl-1,10-phenanthroline). The reaction of I with NO in methanol results in the formation of Cu(dmp)2+ (II) and methyl nitrite (CH3ONO), with a second order rate constant kNO=38.1 M-1 s-1 (298K). The activation parameters for this reaction in buffered aqueous medium were measured to be DeltaH(double dagger)=41.6 kJ/mol and DeltaS(double dagger)=-82.7 kJ/mol deg. The addition of azide ion (N3-) as a competing nucleophile results in a marked acceleration in the rate of the copper(II) reduction. Analysis of the kinetics for the NO reduction of the bulkier Cu(dpp)(2)2+ (IV, dpp=2,9-diphenyl-1,10-phenanthroline) and the stronger oxidant, Cu(NO2-dmp)2(2+) (V, NO2-dmp=5-nitro-2,9-dimethyl-1,10-phenanthroline), gave the second order rate constants kNO=21.2 and 29.3 M-1 s-1, respectively. These results argue against an outer sphere electron transfer pathway and support a mechanism where the first step involves the formation of a copper-nitrosyl (Cu(II)-NO or Cu(I)-NO+) adduct. This would be followed by the nucleophilic attack on the bound NO and the labilization of RONO to form the nitrite products and the cuprous complex.  相似文献   

10.
The maximal concentration of nitric oxide (NO) developing in cultured cells following stimulation of endogenous NO synthases was shown to be submicromolar by NO-selective microelectrode measurements. In electron paramagnetic resonance experiments with isolated and finely divided pericardium, NO was found to react with oxymyoglobin to form metmyoglobin provided that NO was supplied at concentrations in excess of a few micromolar. However, at NO concentrations achievable by endogenous sources, this reaction did not take place to any measurable extent. Oxidative conversion of NO to nitrite ion by cytochrome c oxidase appears to be the most plausible route for cellular catabolism of NO.  相似文献   

11.
Induction of the mitochondrial nitrate-respiration (denitrification) system of the fungus Fusarium oxysporum requires the supply of low levels of oxygen (O(2)). Here we show that O(2) and nitrate (NO(3)(-)) respiration function simultaneously in the mitochondria of fungal cells incubated under hypoxic, denitrifying conditions in which both O(2) and NO(3)(-) act as the terminal electron acceptors. The NO(3)(-) and nitrite (NO(2)(-)) reductases involved in fungal denitrification share the mitochondrial respiratory chain with cytochrome oxidase. F. oxysporum cytochrome c(549) can serve as an electron donor for both NO(2)(-) reductase and cytochrome oxidase. We are the first to demonstrate hybrid respiration in respiring eukaryotic mitochondria.  相似文献   

12.
Endogenously produced nitric oxide (NO) controls oxygen consumption by inhibiting cytochrome c oxidase, the terminal electron acceptor of the mitochondrial electron transport chain. The oxygen-binding site of the enzyme is an iron/copper (haem a3/CuB) binuclear centre. At high substrate (ferrocytochrome c) concentrations, NO binds reversibly to the reduced iron in competition with oxygen. At low substrate concentrations, NO binds to the oxidized copper. Inhibition at the haem iron site is relieved by dissociation of the NO from the reduced iron. Inhibition at the copper site is relieved by oxidation of the bound NO and subsequent dissociation of nitrite from the enzyme. Therefore, NO can be a substrate, inhibitor or effector of cytochrome oxidase, depending on cellular conditions.  相似文献   

13.
Inhibition of terminal oxidases by nitric oxide (NO) has been extensively investigated as it plays a role in regulation of cellular respiration and pathophysiology. Cytochrome bd is a tri-heme (b558, b595, d) bacterial oxidase containing no copper that couples electron transfer from quinol to O2 (to produce H2O) with generation of a transmembrane protonmotive force. In this work, we investigated by stopped-flow absorption spectroscopy the reaction of NO with Escherichia coli cytochrome bd in the fully oxidized (O) state. We show that under anaerobic conditions, the O state of the enzyme binds NO at heme d with second-order rate constant kon = 1.5 ± 0.2 × 102 M−1 s−1, yielding a nitrosyl adduct (d3+–NO or d2+–NO+) with characteristic optical features (an absorption increase at 639 nm and a red shift of the Soret band). The reaction mechanism is remarkably different from that of O cytochrome c oxidase in which the heme–copper binuclear center reacts with NO approximately three orders of magnitude faster, forming nitrite. The data allow us to conclude that in the reaction of NO with terminal oxidases in the O state, CuB is indispensable for rapid oxidation of NO into nitrite.  相似文献   

14.
Interactions of Vibrio (formerly Achromobacter) fischeri nitrite reductase were studied by electron paramagnetic resonance spectroscopy. The spectrum of the oxidized enzyme showed a number of features which were attributed to two low-spin ferric hemes. These comprised an unusual derivative peak at g = 3.7 and a spectrum at g = 2.88, 2.26, and 1.51. Neither heme was reactive in the oxidized state with the substrate nitrite and with cyanide and azide. When frozen under turnover conditions (i.e., reduction in the presence of excess nitrite), the enzyme showed the spectrum of a nitrosyl heme derivative. The g = 2.88, 2.26, and 1.51 signals reappeared partially on reoxidation by nitrite, indicating that the nitrosyl species which remained arose from the g = 3.7 heme. The nitrosyl derivative showed a 14N nuclear hyperfine splitting, Az = 1.65 mT. The nitrosyl derivative was produced by treatment of the oxidized nitrite reductase with nitric oxide or hydroxylamine. Exchange of nitric oxide between the nitrosyl derivative and NO gas in solution was observed by using the [15N]nitrosyl compound. A possible reaction cycle for the enzyme is discussed, which involves reduction of the enzyme followed by binding of nitrite to one heme and formation of the nitrosyl intermediate.  相似文献   

15.
The reactions of nitrogen monoxide (NO) with the blue copper-containing nitrite reductases from Alcaligenes sp. NCIB 11015 and Achromobacter cycloclastes IAM 1013 were investigated spectroscopically. The electron paramagnetic resonance (EPR) signals of the blue coppers vanished in the presence of NO at 77 K, being fully restored by the removal of NO. The additions of NO to the enzyme solutions resulted in the substantial bleaching of the visible absorption bands at room temperature. The reactions were also completely reversible. These results suggest the formation of a cuprous nitrosyl complex (Cu+-NO+), which is likely the intermediate in the enzymatic nitrite reduction.  相似文献   

16.
Nitrite binds reversibly to the ferriheme proteins metmyoglobin and methemoglobin in aqueous buffer solution at a physiological pH of 7.4. The spectral changes recorded for the formation of metMb(NO2-) differ significantly from those observed for the nitrosylation of metMb, which can be accounted for in terms of the different reaction products. Nitric oxide binding to metMb produces a nitrosyl product with Fe(II)-NO+ character, whereas the reaction with nitrite produces an Fe(III)-NO2- complex. The kinetics of the binding and release of nitrite by metMb and metHb were investigated by stopped-flow techniques at ambient and high pressure. The kinetic traces recorded for the reaction of nitrite with metMb exhibit excellent single-exponential fits, whereas nitrite binding to metHb is characterized by double-exponential kinetics which were assigned to the reactions of the alpha- and beta-chains of metHb with NO2-. The rate constants for the binding of nitrite to metMb and metHb were found to be much smaller than those reported for the binding of NO, such that nitrite impurities will not affect the latter reaction. The activation parameters (deltaH++,deltaS(ne),deltaV++) obtained from the temperature and pressure dependence of the reactions support the operation of a dissociative mechanism for the binding and release of nitrite, similar to that found for the binding and release of NO in metMb.  相似文献   

17.
This mini-review of focussed on the information available on the molecular mechanisms by which NO controls the function of mitochondrial cytochrome c oxidase and thereby cell respiration. The reaction mechanisms are described as dissected in vitro and recently confirmed in cell cultures, whereby two reaction pathways have been identified, leading to accumulation of either the [a3(2+)NO]-nitrosyl or the [a3(3+)NO2-]-nitrite derivative of the enzyme. The experimental data and the theoretical computation analysis, supporting the hypothesis that one pathway prevails on the other depending on the electron flow level through the respiratory chain, are discussed. Finally, the patho-physiological implications of the reaction between NO and CcOX have been also outlined.  相似文献   

18.
The anoxic plant mitochondrion as a nitrite: NO reductase   总被引:1,自引:0,他引:1  
Under the conditions of oxygen deprivation, accumulating nitrite can be reduced in the mitochondrial electron transport chain forming free radical nitric oxide (NO). By reducing nitrite to NO, plant mitochondria preserve the capacity to oxidize external NADH and NADPH and retain a limited power for ATP synthesis complementing glycolytic ATP production. NO participates in O(2) balance in mitochondria by competitively inhibiting cytochrome c oxidase which can oxidize it to nitrite when oxygen concentration increases. Some of the NO escapes to the cytosol, where the efficient scavenging system involving non-symbiotic hemoglobin oxygenates NO to nitrate and supports continuous anaerobic turnover of nitrogen species.  相似文献   

19.
Cytochrome c oxidase can generate membrane potential in the absence of cytochrome c (e.g., in cytochrome c-deficient mitochondria or in proteoliposomes) with hexaammineruthenium as an artificial electron donor. Of several other redox mediators tested, phenazine methosulfate was found to be an efficient artificial substrate for membrane energization by cytochrome oxidase, whereas TMPD, DAD, DCPIP or ferrocyanide are virtually ineffective. The ability of Ru(NH3)6(2+) and phenazine methosulfate to support the generation of delta psi by cytochrome c-oxidase correlates with their effectiveness as electron donors to cytochrome a in the cyanide-inhibited membrane-bound enzyme.  相似文献   

20.
The physiological functions of nitric oxide (NO) are well established. The finding that the endothelium-derived relaxing factor (EDRF) is NO was totally unexpected. It was shown that NO is a reaction product of an enzymatically catalyzed, overall, 5-electron oxidation of guanidinium nitrogen from L-arginine followed by the release of the free radical species NO. NO is synthesized by a single protein complex supported by cofactors, coenzymes (such as tetrahydrobiopterin) and cytochrome P450. The latter can uncouple from substrate oxidation producing O2*- radicals. The research groups of Richter [Ghafourifar P, Richter C. Nitric oxide synthase activity in mitochondria. FEBS Lett 1997; 418: 291-296.] and Boveris [Giulivi C, Poderoso JJ, Boveris A. Production of nitric oxide by mitochondria. J Biol Chem 1998; 273: 11038-11043.] identified a mitochondrial NO synthase (NOS). There are, however, increasing reports demonstrating that mitochondrial NO is derived from cytosolic NOS belonging to the Ca2+-dependent enzymes. NO was thought to control cytochrome oxidase. This assumption is controversial due to the life-time of NO in biological systems (millisecond range). We found a nitrite reductase in mitochondria which is of major interest. Any increase of nitrite in the tissue which is the first oxidation product of NO, for instance following NO donors, will stimulate NO-recycling via mitochondrial nitrite reductase. In this paper, we describe the identity and the function of mitochondrial nitrite reductase and the consequences of NO-recycling in the metabolic compartment of mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号