首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 308 毫秒
1.
Human prion protein fragments (PrP60-67 or PrP59-91) prevented and reversed the inhibition elicited by 5 micro m copper on the P2X4 receptor expressed in Xenopus laevis oocytes. A 60-s pre-application of 5 micro m copper caused a 69.2 +/- 2.6% inhibition of the 10 micro m adenosine triphosphate (ATP)-evoked currents, an effect that was prevented by mixing 5 micro m copper with 0.01-10 micro m of the PrP fragments 1-min prior to application. This interaction was selective, as PrP59-91 did not alter the facilitatory action of zinc. The EC50 of PrP60-67 and PrP59-91 for the reduction of the copper inhibition were 4.6 +/- 1 and 1.3 +/- 0.4 micro m, respectively. A synthetic PrP59-91 variant in which all four His were replaced by Ala was inactive. However, the replacement of Trp in each of the four putative copper-binding domains by Ala slightly decreased its potency. Furthermore, the application of 10 micro m PrP59-91 reversed the copper-evoked inhibition, restoring the ATP concentration curve to the same level as the non-inhibited state. Fragment 139-157 of betaA4 amyloid precursor protein also prevented the action of copper; its EC50 was 1.6 +/- 0.1 micro m; the metal chelator penicillamine was equipotent with PrP60-67, but carnosine was significantly less potent. Our findings highlight the role of PrP in copper homeostasis and hint at its possible role as a modulator of synapses regulated by this trace metal.  相似文献   

2.
The rat ATP P2X4 receptor was expressed in Xenopus laevis oocytes to assess the effect of zinc and copper as possible regulators of purinergic mechanisms. ATP applied for 20 s evoked an inward cationic current with a median effective concentration (EC50) of 21.4+/-2.8 microM and a Hill coefficient (nH) of 1.5+/-0.1. Coapplication of ATP plus 10 microM zinc displaced leftward, in a parallel fashion, the ATP concentration-response curve, reducing the EC50 to 8.4+/-1.8 microM (p < 0.01) without altering the receptor nH. The zinc potentiation was fast in onset, easily reversible, and voltage-independent and did not require metal preexposure. The zinc EC50 was 2-5 microM, with a bell-shaped curve. At concentrations of 100-300 microM, zinc produced less potentiation, and at 1 mM, it inhibited 50% the ATP current. The effect of zinc was mimicked by cadmium. In contrast, copper inhibited the ATP-evoked currents in a time- and concentration-dependent fashion, reducing the maximal current (Imax) without altering the EC50. The copper-induced inhibition was slow in onset, slowly reversible, and voltage-independent. Whereas coapplication of 300 microM copper plus ATP reduced Imax to 36.2+/-5%, the coapplication of, or 60-s preexposure by, 10 microM copper reduced Imax to 79+/-9.2% (p < 0.05) and 39.6+/-8.7% (p < 0.01), respectively. The inhibition was noncompetitive in nature and mimicked by mercury. Cobalt, barium, and manganese did not modify significantly the ATP-evoked current, demonstrating metal specificity. The simultaneous 1-min preapplication of both metals revealed that the 10 microM zinc-induced potentiation was obliterated by 10 microM copper, whereas 30 microM copper not only reduced the potentiation, but inhibited the ATP response. Following coapplication of both metals for 20 s with ATP, at least 100 microM copper was required to counteract the 10 microM zinc-induced potentiation. The simultaneous preincubation with both metals provided evidence for a noncompetitive interaction. We hypothesize the existence of metal binding site(s), which are most likely localized in the extracellular domain of the P2X4 receptor structure. These sites are selective and accessible to extracellular metal applications and bind micromolar concentrations of metals. The present results are compatible with the working hypothesis that trace metals, such as copper and zinc, are physiological modulators of the P2X4 receptor. The modulation of brain purinergic transmission by physiologically and toxicologically relevant trace metal cations is highlighted.  相似文献   

3.
Zinc and copper are atypical modulators of ligand-gated ionic channels in the central nervous system. We sought to identify the amino acids of the rat P2X4 receptor involved in trace metal interaction, specifically in the immediate linear vicinity of His140, a residue previously identified as being critical for copper-induced inhibition of the ATP-evoked currents. Site-directed mutagenesis replaced conspicuous amino acids located within the extracellular domain region between Thr123 and Thr146 for alanines. cDNAs for the wild-type and the receptor mutants were expressed in Xenopus laevis oocytes and examined by the two-electrode technique. Cys132, but not Cys126, proved crucial for zinc-induced potentiation of the receptor activity, but not for copper-induced inhibition. Zinc inhibited in a concentration-dependent manner the ATP-gated currents of the C132A mutant. Likewise, Asp138, but not Asp131 was critical for copper and zinc inhibition; moreover, mutant D138A was 20-fold more reactive to zinc potentiation than wild-type receptors. Asp129, Asp131, and Thr133 had minor roles in metal modulation. We conclude that this region of the P2X4 receptor has a pocket for trace metal coordination with two distinct and separate facilitator and inhibitor metal allosteric sites. In addition, Cys132 does not seem to participate exclusively as a structural receptor channel folding motif but plays a role as a ligand for zinc modulation highlighting the role of trace metals in neuronal excitability.  相似文献   

4.
Cholesterol-rich lipid rafts act as signaling microdomains and can regulate receptor function. We have shown in HEK293 cells recombinant P2X1-4 receptors (ATP-gated ion channels) are expressed in lipid rafts. Localization to flotillin-rich lipid rafts was reduced by the detergent Triton X-100. This sensitivity to Triton X-100 was concentration- and subunit-dependent, demonstrating differential association of P2X1-4 receptors with lipid rafts. The importance of raft association to ATP-evoked P2X receptor responses was determined in patch clamp studies. The cholesterol-depleting agents methyl-β-cyclodextrin or filipin disrupt lipid rafts and reduced P2X1 receptor currents by >90%. In contrast, ATP-evoked P2X2-4 receptor currents were unaffected by lipid raft disruption. To determine the molecular basis of cholesterol sensitivity, we generated chimeric receptors replacing portions of the cholesterol-sensitive P2X1 receptor with the corresponding region from the insensitive P2X2 receptor. These chimeras identified the importance of the intracellular amino-terminal region between the conserved protein kinase C site and the first transmembrane segment for the sensitivity to cholesterol depletion. Mutation of any of the variant residues between P2X1 and P2X2 receptors in this region in the P2X1 receptor (residues 20–23 and 27–29) to cysteine removed cholesterol sensitivity. Cholesterol depletion did not change the ATP sensitivity or cell surface expression of P2X1 receptors. This suggests that cholesterol is normally needed to facilitate the opening/gating of ATP-bound P2X1 receptor channels, and mutations in the pre-first transmembrane segment region remove this requirement.  相似文献   

5.
To assess the mechanism of P2X2 receptor modulation by transition metals, the cDNA for the wild-type receptor was injected to Xenopus laevis oocytes and examined 48-72 h later by the two-electrode voltage-clamp technique. Copper was the most potent of the trace metals examined; at 10 microm it evoked a 25-fold potentiation of the 10 microm ATP-gated currents. Zinc, nickel or mercury required 10-fold larger concentrations to cause comparable potentiations, while palladium, cobalt or cadmium averaged only 12- and 3-fold potentiations, respectively. Platinum was inactive. The non-additive effect of copper and zinc at 10-100 microm suggests a common site of action; these metals also shifted to the left the ATP concentration-response curves. To define residues necessary for trace metal modulation, alanines were singly substituted for each of the nine histidines in the extracellular domain of the rat P2X2 receptor. The H120A and H213A mutants were resistant to the modulator action of copper, zinc and other metals with the exception of mercury. Mutant H192A showed a reduction but not an abrogation of the copper or zinc potentiation. H245A showed less affinity for copper while this mutant flattened the zinc-induced potentiation. Mutant H319A reduced the copper but not the zinc-induced potentiation. In contrast, mutants H125A, H146A, H152A and H174A conserved the wild-type receptor sensitivity to trace metal modulation. We propose that His120, His192, His213 and His245 form part of a common allosteric metal-binding site of the P2X2 receptor, which for the specific coordination of copper, but not zinc, additionally involves His319.  相似文献   

6.
We have cloned a P2X receptor (OtP2X) from the green algae Ostreococcus tauri. The 42-kDa receptor shares approximately 28% identity with human P2X receptors and 23% with the Dictyostelium P2X receptor. ATP application evoked flickery single channel openings in outside-out membrane patches from human embryonic kidney 293 cells expressing OtP2X. Whole-cell recordings showed concentration-dependent cation currents reversing close to zero mV; ATP gave a half-maximal current at 250 mum. alphabeta-Methylene-ATP evoked only small currents in comparison to ATP (EC(50) > 5 mm). 2',3'-O-(4-Benzoylbenzoyl)-ATP, betagamma-imido-ATP, ADP, and several other nucleotide triphosphates did not activate any current. The currents evoked by 300 mum ATP were not inhibited by 100 microm suramin, pyridoxal-phosphate-6-azophenyl-2',4'-disulfonic acid, 2',3'-O-(2,4,6-trinitrophenol)-ATP, or copper. Ion substitution experiments indicated permeabilities relative to sodium with the rank order calcium >choline >Tris >tetraethylammonium >N-methyl-D-glucosamine. However, OtP2X had a low relative calcium permeability (P(Ca)/P(Na) = 0.4) in comparison with other P2X receptors. This was due at least in part to the presence of an asparagine residue (Asn(353)) at a position in the second transmembrane domain in place of the aspartate that is completely conserved in all other P2X receptor subunits, because replacement of Asn(353) with aspartate increased calcium permeability by approximately 50%. The results indicate that the ability of ATP to gate cation permeation across membranes exists in cells that diverged in evolutionary terms from animals about 1 billion years ago.  相似文献   

7.
The cloning and characterization of a P2X receptor (schP2X) from the parasitic blood fluke Schistosoma mansoni provides the first example of a non-vertebrate ATP-gated ion channel. A number of functionally important amino acid residues conserved throughout vertebrate P2X receptors, including 10 extracellular cysteines, aromatic and positively charged residues involved in ATP recognition, and a consensus protein kinase C site in the amino-terminal tail, are also present in schP2X. Overall, the amino acid sequence identity of schP2X with human P2X(1-7) receptors ranges from 25.8 to 36.6%. ATP evoked concentration-dependent currents at schP2X channels expressed in Xenopus oocytes with an EC(50) of 22.1 microM. 2',3'-O-(4-Benzoylbenzoyl)adenosine 5'-triphosphate (Bz-ATP) was a partial agonist (maximum response 75.4 +/- 4.4% that of ATP) with a higher potency (EC(50) of 3.6 microM) than ATP. Suramin and pyridoxal-phosphate-6-azophenyl-2',4'-disulfonic acid blocked schP2X responses to 100 microm ATP with IC(50) values of 9.6 and 0.5 microM, respectively. Ivermectin (10 microM) potentiated currents to both ATP and Bz-ATP by approximately 60% with a minimal effect on potency (EC(50) of 18.2 and 1.6 microM, respectively). The relative permeability of schP2X expressed in HEK293 cells to various cations was determined under bi-ionic conditions. schP2X has a relatively high calcium permeability (P(Ca)/P(Na) = 3.80 +/- 0.29) and an estimated minimum pore diameter similar to that of vertebrate P2X receptors. SchP2X provides a useful comparative model for the better understanding of human P2X receptor function and may also provide an alternative drug target for treatment of schistosomiasis.  相似文献   

8.
Although originally cloned from rat brain, the P2X7 receptor has only recently been localized in neurones, and functional responses mediated by these neuronal P2X7 receptors (P2X7 R) are largely unknown. Here we studied the effect of P2X7 R activation on the release of neurotransmitters from superfused rat hippocampal slices. ATP (1-30 mm) and other ATP analogues elicited concentration-dependent [3 H]GABA outflow, with the following rank order of potency: benzoylbenzoylATP (BzATP) > ATP > ADP. PPADS, the non-selective P2-receptor antagonist (3-30 microm), Brilliant blue G (1-100 nm) the P2X7 -selective antagonist and Zn2+ (0.1-30 microm) inhibited, whereas lack of Mg2+ potentiated the response by ATP. In situ hybridization revealed that P2X7 R mRNA is expressed in the neurones of the cell body layers in the hippocampus. P2X7 R immunoreactivity was found in excitatory synaptic terminals in CA1 and CA3 region targeting the dendrites of pyramidal cells and parvalbumin labelled structures. ATP (3-30 microm) and BzATP (0.6-6 microm) elicited concentration-dependent [14 C]glutamate efflux, and blockade of the kainate receptor-mediated transmission by CNQX (10-100 microm) and gadolinium (100 microm), decreased ATP evoked [3 H]GABA efflux. The Na+ channel blocker TTX (1 microm), low temperature (12 degrees C), and the GABA uptake blocker nipecotic acid (1 mm) prevented ATP-induced [3 H]GABA efflux. Brilliant blue G and PPADS also reduced electrical field stimulation-induced [3 H]GABA efflux. In conclusion, P2X7 Rs are localized to the excitatory terminals in the hippocampus, and their activation regulates the release of glutamate and GABA from themselves and from their target cells.  相似文献   

9.
The P2X7 receptor is a non-selective cationic channel activated by extracellular ATP, belonging to the P2X receptor family. To assess the role of extracellular histidines on the allosteric modulation of the rat P2X7 receptor by divalent metals (copper, zinc and magnesium) and protons, these amino acid residues were singly substituted for corresponding alanines. Wild-type and mutated receptors were injected to Xenopus laevis oocytes; metal-related effects were evaluated by the two-electrode voltage-clamp technique. Copper inhibited the ATP-gated currents with a median inhibitory concentration of 4.4 +/- 1.0 micromol/L. The inhibition was non-competitive and time-dependent; copper was 60-fold more potent than zinc. The mutant H267A, resulted in a copper resistant receptor; mutants H201A and H130A were less sensitive to copper inhibition (p < 0.05). The rest of the mutants examined, H62A, H85A, and H219A, conserved the copper-induced inhibition. Only mutants H267A and H219A were less sensitive to the modulator action of zinc. Moreover, the magnesium-induced inhibition was abolished exclusively on the H130A and H201A mutants, suggesting that this metal may act at a novel cationic modulator site. Media acidification inhibited the ATP-gated current 87 +/- 3%; out of the six mutants examined, only H130A was significantly less sensitive to the change in pH, suggesting that His-130 could be involved as a pH sensor. In conclusion, while His-267 is critically involved in the copper or zinc allosteric modulation, the magnesium inhibitory effects is related to His-130 and His-201, His-130 is involved in proton sensing, highlighting the role of defined extracellular histidines in rat P2X7 receptor allosteric modulation.  相似文献   

10.
Membrane currents and changes in the intracellular Ca2+ concentration ([Ca2+]i) were measured in HEK293 cells transfected with the human P2X3 receptor (HEK293-hP2X3). RT-PCR and immunocytochemistry indicated the additional presence of endogenous P2Y1 and to some extent P2Y4 receptors. P2 receptor agonists induced inward currents in HEK293-hP2X3 cells with the rank order of potency alpha,beta-meATP approximately ATP > ADP-beta-S > UTP. A comparable rise in [Ca2+]i was observed after the slow superfusion of ATP, ADP-beta-S and UTP; alpha,beta-meATP was ineffective. These data, in conjunction with results obtained by using the P2 receptor antagonists TNP-ATP, PPADS and MRS2179 indicate that the current response to alpha,beta-meATP is due to P2X3 receptor activation, while the ATP-induced rise in [Ca2+]i is evoked by P2Y1 and P2Y4 receptor activation. TCE depressed the alpha,beta-meATP current in a manner compatible with a non-competitive antagonism. The ATP-induced increase of [Ca2+]i was much less sensitive to the inhibitory effect of TCE than the current response to alpha,beta-meATP. The present study indicates that in HEK293-hP2X3 cells, TCE, but not ethanol, potently inhibits ligand-gated P2X3 receptors and, in addition, moderately interferes with G protein-coupled P2Y1 and P2Y4 receptors. Such an effect may be relevant for the interruption of pain transmission in dorsal root ganglion neurons following ingestion of chloral hydrate or trichloroethylene.  相似文献   

11.
Pankratov  Yu. V.  Lalo  U. V.  Dashkin  A. N.  Krishtal  O. A. 《Neurochemical research》2001,26(8-9):993-1000
The properties and functional expression of the purinergic receptors in small (nociceptive) neurons acutely isolated from the DRG of rat were studied using whole-cell patch-clamp recording. The responses of small DRG neurons to ATP exhibited diverse kinetics and could be subdivided into three types: rapid, slow and mixed kinetics responses. Their affinities to agonists allowed to identify the responsible receptors as P2X3 (fast) and heteromeric P2X2/3 (slow) subtypes. The expression of different responses dramatically varied both on the neuron-to-neuron and animal-to-animal basis. Out of 744 neurons tested 24% of cells demonstrated predominance of functional P2X2/3 receptors, 44% had mixed representation and in 32% of cells P2X3 receptors dominated. All the animals tested (110) could be subdivided into 3 groups: in 19% of animals the response of each cell to ATP was mediated by P2X2/3 receptors, both types of ATP-evoked currents were found in 58% of animals and only in 23% of the animals P2X3 receptors dominated. Our results argue with exclusive role of P2X3 receptors in purinergic signaling in primary nociceptive neurons.  相似文献   

12.
Human P2X2 receptors (hP2X2) are strongly inhibited by zinc over the range of 2–100 μm, whereas rat P2X2 receptors (rP2X2) are strongly potentiated over the same range, and then inhibited by zinc over 100 μm. However, the biological role of zinc modulation is unknown in either species. To identify candidate regions controlling zinc inhibition in hP2X2 a homology model based on the crystal structure of zebrafish P2X4.1 was made. In this model, His-204 and His-209 of one subunit were near His-330 of the adjacent subunit. Cross-linking studies confirmed that these residues are within 8 Å of each other. Simultaneous mutation of these three histidines to alanines decreased the zinc potency of hP2X2 nearly 100-fold. In rP2X2, one of these histidines is replaced by a lysine, and in a background in which zinc potentiation was eliminated, mutation of Lys-197 to histidine converted rP2X2 from low potency to high potency inhibition. We explored whether the zinc-binding site lies within the vestibules running down the central axis of the receptor. Elimination of all negatively charged residues from the upper vestibule had no effect on zinc inhibition. In contrast, mutation of several residues in the hP2X2 middle vestibule resulted in dramatic changes in the potency of zinc inhibition. In particular, the zinc potency of P206C could be reversibly shifted from extremely high (∼10 nm) to very low (>100 μm) by binding and unbinding MTSET. These results suggest that the cluster of histidines at the subunit interface controls access of zinc to its binding site.  相似文献   

13.
As neuroactive steroids modulate several ionotropic receptors, we assessed whether the ATP-gated currents elicited by P2X4 receptors are modulated by these compounds. We transfected HEK293 cells or injected Xenopus laevis oocytes with the cDNA coding for rat P2X4 receptor. Application of 0.1–10 μM alfaxolone potentiated within 60-s the 1 μM ATP-evoked currents with a maximal potentiation of 1.8 and 2.6-fold in HEK293 or oocytes cells respectively. Allopregnalolone or 3α, 21-dihydroxy-5α-pregnan-20-one (THDOC) also potentiated the ATP-gated currents but with a maximal effect only averaging 1.25 and 1.35-fold respectively. In contrast, 0.3–10 μM pregnanolone, but not its sulfated derivative, inhibited the ATP-gated currents; the maximal inhibition reached 40% in both cell types. THDOC, but not other neurosteroids increased significantly the τoff of the ATP-evoked currents, revealing another mode of neurosteroid modulation. Sexual steroids such as 17β-estradiol or progesterone were inactive revealing explicit structural requirements. Alfaxolone or THDOC at concentrations 30- to 100-fold larger than required to modulate the receptor, gated the P2X4 receptor eliciting ATP-like currents that were reduced with suramin or brilliant blue G, but potentiated the P2X4 receptor more than 10-fold by 10 μM zinc. In conclusion, neurosteroids rapidly modulate via non-genomic mechanisms and with nanomolar potencies, the P2X4 receptor interacting likely at distinct modulator sites.  相似文献   

14.
Desensitization masks nanomolar potency of ATP for the P2X1 receptor   总被引:3,自引:0,他引:3  
ATP-gated P2X1 receptors feature fast activation and fast desensitization combined with slow recovery from desensitized states. Here, we exploited a non-desensitizing P2X2/P2X1 chimera that includes the entire P2X1 ectodomain (Werner, P., Seward, E. P., Buell, G. N., and North, R. A. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 15485-15490) to obtain a macroscopic representation of intrinsic receptor kinetics without bias arising from the overlap of channel activation and desensitization. From the stationary currents made amenable to analysis by this chimera, an EC50 for ATP of 3.3 nM was derived, representing a >200- and >7000-fold higher ATP potency than observed for the parental P2X1 and P2X2A receptors, respectively. Also, other agonists activated the P2X2/P2X1 chimera with nanomolar EC50 values ranging from 3.5 to 73 nM in the following rank order: 2-methylthio-ATP, 2',3'-O-(4-benzoylbenzoyl)-ATP, alpha,beta-methylene-ATP, adenosine 5'-O-(3-thiotriphosphate). Upon washout, the P2X2/P2X1 chimera deactivated slowly with a time constant (ranging from 63 to 2.5 s) that is inversely related to the EC50 value for the corresponding agonist. This suggests that deactivation time courses reflect unbinding rates, which by themselves define agonist potencies. The P2X2/P2X1 chimera and the P2X1 receptor possess virtually identical sensitivity to inhibition by the P2X1 receptor-selective antagonist NF279, a suramin analog. These results suggest that the P2X1 ectodomain confers nanomolar ATP sensitivity, which, within the wild-type P2X1 receptor, is obscured by desensitization such that only a micromolar ATP potency can be deduced from peak current measurements, representing an amalgam of activation and desensitization.  相似文献   

15.
P2X(1) receptors belong to a family of cation channels gated by extracellular ATP; they are found inter alia in smooth muscle, platelets, and immune cells. Suramin has been widely used as an antagonist at P2X receptors, and its analog 4,4',4',4'-[carbonylbis(imino-5,1,3-benzenetriylbis(carbonylimino))] tetrakis-benzene-1,3-disulfonic acid (NF449) is selective for the P2X(1) subtype. Human and mouse P2X(1) receptors were expressed in human embryonic kidney cells, and membrane currents evoked by ATP were recorded. ATP (10 nm to 100 microm) was applied only once to each cell, to avoid the profound desensitization exhibited by P2X(1) receptors. Suramin (10 microm) and NF449 (3-300 nM) effectively blocked the human receptor. Suramin had little effect on the mouse receptor. Suramin and NF449 are polysulfonates, with six and eight negative charges, respectively. We hypothesized that species differences might result from differences in positive residues presented by the large receptor ectodomain. Four lysines in the human sequence (Lys(111), Lys(127), Lys(138), and Lys(148)) were changed individually and together to their counterparts in the mouse sequence. The substitution K138E, either alone or together with K111Q, K127Q, and K148N, reduced the sensitivity to block by both suramin and NF449. Conversely, when lysine was introduced into the mouse receptor, the sensitivity to block by suramin and NF449 was much increased for E138K, but not for Q111K, Q127K, or N148K. The results explain the marked species difference in antagonist sensitivity and identify an ectodomain lysine residue that plays a key role in the binding of both suramin and NF449 to P2X(1) receptors.  相似文献   

16.
Receptor desensitization can determine the time course of transmitter action and profoundly alter sensitivity to drugs. Among P2X receptors, ion currents through homomeric P2X4 receptors exhibit intermediate desensitization when compared with P2X1 and P2X3 (much faster) and P2X2 and P2X7 (slower). We recorded membrane currents in HEK293 cells transfected to express the human P2X4 receptor. The decline in current during a 4-s application of ATP (100 microm) was about 30%; this was not different during whole-cell or perforated patch recording. Alanine-scanning mutagenesis of the intracellular C terminus identified two positions with much accelerated desensitization kinetics (Lys373: 92% and Tyr374: 74%). At position 373, substitution of Arg or Cys also strongly accelerated desensitization: however, in the case of K373C the wild-type phenotype was fully restored by adding ethylammonium methanethiosulfonate. At position 374, phenylalanine could replace tyrosine. These results indicate that wild-type desensitization properties requires an aromatic moiety at position 374 and an amino rather than a guanidino group at position 373. These residues lie between previously identified motifs involved in membrane trafficking (YXXXK and YXXGL) and implicates the C-terminal also in rearrangements leading to channel closing during the presence of agonist.  相似文献   

17.
P2X receptors comprise a family of ATP-gated ion channels with the basic amino acids Lys-68, Arg-292, and Lys-309 (P2X(1) receptor numbering) contributing to agonist potency. In many ATP-binding proteins aromatic amino acids coordinate the binding of the adenine group. There are 20 conserved aromatic amino acids in the extracellular ligand binding loop of at least 6 of the 7 P2X receptors. We used alanine replacement mutagenesis to determine the effects of individual conserved aromatic residues on the properties of human P2X(1) receptors expressed in Xenopus oocytes. ATP evoked concentration-dependent (EC(50) approximately 1 microm) desensitizing currents at wild-type receptors and for the majority of mutants there was no change (10 residues) or a <6-fold decrease in ATP potency (6 mutants). Mutants F195A and W259A failed to form detectable channels at the cell surface. F185A and F291A produced 10- and 160-fold decreases in ATP potency. The partial agonists 2',3'-O-(4-benzoyl)-ATP (BzATP) and P(1),P(5)-di(adenosine 5')-pentaphosphate (Ap(5)A) were tested on a range of mutants that decreased ATP potency to determine whether this resulted predominantly from changes in agonist binding or gating of the channel. At K68A and K309A receptors BzATP and Ap(5)A had essentially no agonist activity but antagonized, or for R292A potentiated, ATP responses. At F185A receptors BzATP was an antagonist but Ap(5)A no longer showed affinity for the receptor. These results suggest that residues Lys-68, Phe-185, Phe-291, Arg-292, and Lys-309 contribute to ligand binding at P2X(1) receptors, with Phe-185 and Phe-291 coordinating the binding of the adenine ring of ATP.  相似文献   

18.
P2X1 receptors for ATP are ligand-gated cation channels expressed on a range of smooth muscle preparations and blood platelets. The receptors appear to be clustered close to sympathetic nerve varicosities and mediate the underlying membrane potential changes and constriction following nerve stimulation in a range of arteries and resistance arterioles. In this study we have used discontinuous sucrose density gradients, Western blot analysis, and cholesterol measurements to show that recombinant and smooth muscle (rat tail artery, vas deferens, and bladder) P2X1 receptors are present in cholesterol-rich lipid rafts and co-localize with the lipid raft markers flotillin-1 and -2. Lipid rafts are specialized lipid membrane microdomains involved in signaling and trafficking. To determine whether lipid raft association was essential for P2X1 receptor channel function we used the cholesterol-depleting agent methyl-beta-cyclodextrin (10 mm for 1 h). This led to a redistribution of the P2X1 receptor throughout the sucrose gradient and reduced P2X1 receptor-mediated (alpha,beta-methylene ATP, 10 microm) currents in HEK293 cells by >90% and contractions of the rat tail artery by approximately 50%. However contractions evoked by potassium chloride (60 mm) were unaffected by methyl-beta-cyclodextrin and the inactive analogue alpha-cyclodextrin had no effect on P2X1 receptor-mediated currents or contractions. P2X1 receptors are subject to ongoing regulation by receptors and kinases, and the present results suggest that lipid rafts are an essential component in the maintenance of these localized signaling domains and play an important role in P2X1 receptor-mediated control of arteries.  相似文献   

19.
James G  Butt AM 《Cell calcium》2001,30(4):251-259
It is known that ATP acts as an extracellular messenger mediating Ca2+ signalling in glial cells. Here, the mechanisms involved in the ATP-evoked increase in glial [Ca2+]i were studied in situ, in the acutely isolated rat optic nerve. ATP and agonists for P2X (a,b-metATP) and P2Y (2MeSATP) purinoreceptors triggered raised glial [Ca2+]i, and there was no significant difference between cells identified morphologically as astrocytes and oligodendrocytes. Dose-response curves indicated that P2Y receptors were activated at nanomolar concentrations, whereas P2X purinoreceptors were only activated above 10 microM. The rank order of potency for several agonists indicated optic nerve glia expressed heterogeneous purinoreceptors, with P2Y1< or = P2Y2/4< or = P2X. The ATP evoked increase in [Ca2+]i was reversibly blocked by the P2X/Y purinoreceptor antagonist suramin (100 microM) and markedly reduced by thapsigargin (10 microM), which blocks IP3-dependent release of Ca2+ from intracellular stores. Removal of extracellular Ca2+ reduced the ATP evoked increase in [Ca2+]i and completely blocked its recovery, indicating that refilling of intracellular stores was ultimately dependent on Ca2+ influx from the extracellular milieu. The results implicate ATP as an important signal in CNS white matter astrocytes and oligodendrocytes in situ, and indicate that metabotropic P2Y purinoreceptors mobilize intracellular Ca2+ at physiological concentrations of ATP, whereas ionotropic P2X purinoreceptors induce Ca2+ influx across the plasmalemma only at high concentrations of ATP, such as occur following CNS injury.  相似文献   

20.
P2X4 receptors are adenosine triphosphate (ATP)-gated cation channels present on the plasma membrane (PM) and also within intracellular compartments such as vesicles, vacuoles, lamellar bodies (LBs), and lysosomes. P2X4 receptors in microglia are up-regulated in epilepsy and in neuropathic pain; that is to say, their total and/or PM expression levels increase. However, the mechanisms underlying up-regulation of microglial P2X4 receptors remain unclear, in part because it has not been possible to image P2X4 receptor distribution within, or trafficking between, cellular compartments. Here, we report the generation of pH-sensitive fluorescently tagged P2X4 receptors that permit evaluations of cell surface and total receptor pools. Capitalizing on information gained from zebrafish P2X4.1 crystal structures, we designed a series of mouse P2X4 constructs in which a pH-sensitive green fluorescent protein, superecliptic pHluorin (pHluorin), was inserted into nonconserved regions located within flexible loops of the P2X4 receptor extracellular domain. One of these constructs, in which pHluorin was inserted after lysine 122 (P2X4-pHluorin123), functioned like wild-type P2X4 in terms of its peak ATP-evoked responses, macroscopic kinetics, calcium flux, current–voltage relationship, and sensitivity to ATP. P2X4-pHluorin123 also showed pH-dependent fluorescence changes, and was robustly expressed on the membrane and within intracellular compartments. P2X4-pHluorin123 identified cell surface and intracellular fractions of receptors in HEK-293 cells, hippocampal neurons, C8-B4 microglia, and alveolar type II (ATII) cells. Furthermore, it showed that the subcellular fractions of P2X4-pHluorin123 receptors were cell and compartment specific, for example, being larger in hippocampal neuron somata than in C8-B4 cell somata, and larger in C8-B4 microglial processes than in their somata. In ATII cells, P2X4-pHluorin123 showed that P2X4 receptors were secreted onto the PM when LBs undergo exocytosis. Finally, the use of P2X4-pHluorin123 showed that the modulator ivermectin did not increase the PM fraction of P2X4 receptors and acted allosterically to potentiate P2X4 receptor responses. Collectively, our data suggest that P2X4-pHluorin123 represents a useful optical probe to quantitatively explore P2X4 receptor distribution, trafficking, and up-regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号