首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Belowground communities can affect interactions between plants and aboveground insect communities. Such belowground–aboveground interactions are known to depend on the composition of belowground communities, as well as on the plant species that mediates these interactions. However, it is largely unknown whether the effect of belowground communities on aboveground plant–insect interactions also depends on genotypic variation within the plant species that mediates the interaction. To assess whether the outcome of belowground–aboveground interactions can be affected by plant genotype, we selected two white cabbage cultivars [Brassica oleracea L. var. capitata (Brassicaceae)]. From previous studies, it is known that these cultivars differ in their chemistry and belowground and aboveground multitrophic interactions. Belowground, we inoculated soils of the cultivars with either nematodes or microorganisms and included a sterilized soil as a control treatment. Aboveground, we quantified aphid [Brevicoryne brassicae (L.) (Hemiptera: Aphididae)] population development and parasitoid [Diaeretiella rapae (McIntosh) (Hymenoptera: Braconidae)] fitness parameters. The cultivar that sustained highest aphid numbers also had the best parasitoid performance. Soil treatment affected aphid population sizes: microorganisms increased aphid population growth. Soil treatments did not affect parasitoid performance. Cultivars differed in their amino acid concentration, leaf relative growth rate, and root, shoot, and phloem glucosinolate composition but showed similar responses of these traits to soil treatments. Consistent with this observation, no interactions were found between cultivar and soil treatment for aphid population growth or parasitoid performance. Overall, the aboveground community was more affected by cultivar, which was associated with glucosinolate profiles, than by soil community.  相似文献   

2.
Plant–soil feedbacks (PSF) strongly influence plant performance. However, to what extent these PSF effects are persistent in the soil and how they are altered by species that subsequently condition the soil is unclear. Here we test how conspecific and heterospecific soil‐conditioning effects interact across different soil‐conditioning phases. We conducted a fully factorial glasshouse experiment where six plant species conditioned soils in two consecutive phases and measured the performance of Jacobaea vulgaris. The species that conditioned the soil during the second conditioning phase strongly determined the performance of J. vulgaris, but also the order and combination of species that conditioned the soil in the two phases accounted for a large part of the variance. For shoot biomass this interaction was the dominant variance component. We show that soil conditioning legacies carry‐over and interact with the conditioning effects of succeeding plants. In the field, species replacements at the patch level often appear to be unpredictable and we suggest that sequential feedbacks may explain these apparently unpredictable transitions.  相似文献   

3.
Plant-mediated soil legacy effects can be important determinants of the performance of plants and their aboveground insect herbivores, but, soil legacy effects on plant–insect interactions have been tested for only a limited number of host plant species and soils. Here, we tested the performance of a polyphagous aboveground herbivore, caterpillars of the cabbage moth Mamestra brassicae, on twelve host plant species that were grown on a set of soils conditioned by each of these twelve species. We tested how growth rate (fast- or slow-growing) and functional type (grass or forb) of the plant species that conditioned the soil and of the responding host plant species growing in those soils affect the response of insect herbivores to conditioned soils. Our results show that plants and insect herbivores had lower biomass in soils that were conditioned by fast-growing forbs than in soils conditioned by slow-growing forbs. In soils conditioned by grasses, growth rate of the conditioning plant had the opposite effect, i.e. plants and herbivores had higher biomass in soils conditioned by fast-growing grasses, than in soils conditioned by slow-growing grasses. We show that the response of aboveground insects to soil legacy effects is strongly positively correlated with the response of the host plant species, indicating that plant vigour may explain these relationships. We provide evidence that soil communities can play an important role in shaping plant–insect interactions aboveground. Our results further emphasize the important and interactive role of the conditioning and the response plant in mediating soil–plant–insect interactions.  相似文献   

4.
The nutritional quality of phloem sap utilized by natural aphid populations   总被引:10,自引:0,他引:10  
Abstract.
  • 1 The amino acid content of phloem exudates from leaves and of aphid honeydew were adopted as indices of the nutritional quality of phloem sap for aphids. Four plant species and associated leaf-dwelling aphids were investigated: the sycamore Acer pseudoplanatus and sycamore aphid Drepanosiphum platanoides; Prunus domestica (victoria plum) and the mealy plum aphid Hyalopterus pruni; and the spindle tree Euonymus europaeus and broad-bean Vicia faba, both hosts of the black bean aphid Aphis fabae.
  • 2 The concentration of amino acids in the phloem exudates varied with: (a) plant species (greater in the herb Vicia than in the tree species), (b) season (greater in the autumn than summer for Acer and Euonymus), and (c) position (greater in flush leaves than mature leaves of Prunus).
  • 3 For Acer and Prunus and their aphids, the concentration of amino acids in phloem exudates was significantly correlated with the amino acid content of the aphid honeydew.
  • 4 The amino acids in all exudates and honeydew were dominated by non-essential amino acids (glutamic acid, glutamine, asparagine or serine, varying with season and between plant species). The sole major discrepancy between the amino acid profiles of exudates and honeydew was the production of asparagine-rich honeydew by aphids feeding on leaves, whose exudates were dominated by glutamic acid; this applied to both H.pruni on mature Prunus leaves and Drepanosiphum platanoides on summer-leaves of Acer.
  • 5 It is suggested that EDTA-exudation may be a useful technique to study nutritional correlates of aphid life cycles, e.g. the time of migration between primary and secondary plant hosts.
  相似文献   

5.
1. Although anthropogenic nitrogen (N) enrichment has significantly changed the growth, survival and reproduction of herbivorous insects, its effects on the defensive sequestration of secondary chemicals by insect herbivores are less well understood. Previous studies have shown that soil nutrient availability can affect sequestration directly through changing concentrations of plant defence chemicals, or indirectly through altering growth rates of herbivores. There has been less exploration of how nutrient deposition affects the consumption of secondary chemicals and subsequent sequestration efficiency. In the current study, the overall effect of soil N availability on cardenolide sequestration by the monarch caterpillar Danaus plexippus was examined. Specifically, the effects of soil nutrient availability on growth, consumption, excretion and sequestration efficiency of cardenolides by D. plexippus larvae fed on the tropical milkweed Asclepias curassavica were measured. 2. The results showed that soil N and phosphorus (P) fertilisation significantly reduced caterpillar growth rate and the sequestration efficiency of cardenolides by monarch caterpillars feeding on A. curassavica. The lowered sequestration efficiency was accompanied by higher concentrations of cardenolides in frass. Although the total cardenolide contents of caterpillars were lower under high N or P fertilisation levels, caterpillar cardenolide concentrations were constant across fertilisation treatments because of lower growth rates (and therefore lower body mass) under high fertilisation. It is concluded that anthropogenic N deposition may have multiple effects on insect herbivores, including their ability to defend themselves from predators with sequestered plant defences.  相似文献   

6.
  1. The effects of drought-induced changes in plant quality on aphid performance and population growth is well-studied. The response of aphid behaviour to plant water limitation has received less attention. Water limitation may affect host-plant colonization by altering the attractiveness of plants. Additionally, plant water limitation may inhibit feeding site establishment and phloem ingestion.
  2. Our goal was to examine bird cherry-oat aphid (Rhopalosiphum padi L.) host selection and feeding behaviour under water limitation. We assessed aphid response to well-watered, mildly-stressed, and highly-stressed wheat (Triticum aestivum L.) by evaluating (i) host-plant selection through two-choice assays, (ii) feeding behaviour using the electrical penetration graph technique, and (iii) phloem ingestion by quantifying honeydew production.
  3. Aphids were less likely to select highly stressed plants than a mildly stressed or well-watered alternative. Aphids did not distinguish between mildly stressed and well-watered plants. Aphid feeding behaviours, including duration of phloem ingestion, were not affected by water availability. However, honeydew production was reduced under both levels of water limitation. These results suggest that the volume of phloem ingested by aphids per unit time declined on stressed plants. The combination of lower colonization and diminished access to food on stressed plants may lead to a reduction in aphid abundance, independent of the direct effects of nutrition on individual aphid performance.
  4. This study highlights the potential contribution of herbivore behaviour to documented changes in aphid abundance on stressed plants and underscores the important role of plant water stress intensity in mediating plant-herbivore interactions.
  相似文献   

7.
The aim of this review is to combine the knowledge of studies on effects of nutrients on pyrrolizidine alkaloids (PAs) in Senecio with those studies of effects of PAs on herbivores and pathogens in order to predict the effects that nutrients may have on herbivores and pathogens via changes in PAs. We discuss whether these predictions match with the outcome of studies where the effect of nutrients on herbivores and insects were measured. PA concentrations in S. jacobaea, S. vulgaris and S. aquaticus were mostly reduced by NPK fertilization, with genotype-specific effects occurring. Plant organs varied in their response to increased fertilization; PA concentrations in flowers remained constant, while shoot and roots were mostly negatively affected. Biomass change is probably largely responsible for the change in concentrations. Nutrients affect both the variety and the levels of PAs in the plant. The reduced PA concentrations after NPK fertilization was expected to benefit herbivores, but no or negative responses from insect herbivores were observed. Apparently other changes in the plant after fertilization are overriding the effect of PAs. Pathogens do seem to benefit from the lower PA concentrations after fertilization; they were more detrimental to fertilized plants than to unfertilized control plants. Future studies should include the effect of each element of nutrients separately and in combinations in order to gain more insight in the effect of specific nutrients on PA content in Senecio plants.  相似文献   

8.
Many herbivorous insects sequester defensive chemicals from their host plants. We tested sequestration fitness costs in the specialist moth Utetheisa ornatrix (Lepidoptera: Arctiidae). We added pyrrolizidine alkaloids (PAs) to an artificial diet at different concentrations. Of all the larval and adult fitness components measured, only development time was negatively affected by PA concentration. These results were repeated under stressful laboratory conditions. On the other hand, the amount of PAs sequestered greatly increased with the diet PA concentration. Absence of a detectable negative effect does not necessarily imply a lack of costs if all individuals express the biochemical machinery of detoxification and sequestration constitutively. Therefore, we used qPCR to show that expression of the gene used to detoxify PAs, pyrrolizidine‐alkaloid‐N‐oxygenase (pno), increased 41‐fold in our highest PA treatment. Nevertheless, fitness components were affected only slightly or not at all, suggesting that sequestration in this species does not incur a strong cost. The apparent lack of costs has important implications for our understanding of the evolution of ecological interactions; for example, it implies that selection by specialist herbivores may decrease the levels of certain chemical defences in plant populations.  相似文献   

9.
Secondary metabolites like pyrrolizidine alkaloids (PAs) play a crucial part in plant defense. We studied the effects of soil-borne microorganisms and soil-type on pyrrolizidine alkaloids in roots and shoots of Jacobaea vulgaris. We used clones of two genotypes from a dune area (Meijendel), propagated by tissue culture and grown on two sterilized soils and sterilized soils inoculated with 5% of non-sterilized soil of either of the two soil-types. Soil-borne microorganisms and soil-type affected the composition of PAs. By changing the composition rather than the total concentration below and aboveground, plants have a more complex defense strategy than formerly thought. Interestingly, a stronger negative effect on plant growth was found in sterilized soils inoculated with their ‘own’ microbial community suggesting that pathogenic and/or other plant inhibiting microorganisms were adapted to their ‘own’ soil conditions.  相似文献   

10.
The importance of plant–soil feedback (PSF) has long been recognized, but the current knowledge on PSF patterns and the related mechanisms mainly stems from laboratory experiments. We aimed at addressing PSF effects on community performance and their determinants using an invasive forb Solidago canadensis. To do so, we surveyed 81 pairs of invaded versus uninvaded plots, collected soil samples from these pairwise plots, and performed an experiment with microcosm plant communities. The magnitudes of conditioning soil abiotic properties and soil biotic properties by S. canadensis were similar, but the direction was opposite; altered abiotic and biotic properties influenced the production of subsequent S. canadensis communities and its abundance similarly. These processes shaped neutral S. canadensis–soil feedback effects at the community level. Additionally, the relative dominance of S. canadensis increased with its ability of competitive suppression in the absence and presence of S. canadensis–soil feedbacks, and S. canadensis‐induced decreases in native plant species did not alter soil properties directly. These findings provide a basis for understanding PSF effects and the related mechanisms in the field conditions and also highlight the importance of considering PSFs holistically.  相似文献   

11.
Aboveground plant performance is strongly influenced by belowground microorganisms, some of which are pathogenic and have negative effects, while others, such as nitrogen‐fixing bacteria and arbuscular mycorrhizal fungi, usually have positive effects. Recent research revealed that belowground interactions between plants and functionally distinct groups of microorganisms cascade up to aboveground plant associates such as herbivores and their natural enemies. However, while functionally distinct belowground microorganisms commonly co‐occur in the rhizosphere, their combined effects, and relative contributions, respectively, on performance of aboveground plant‐associated organisms are virtually unexplored. Here, we scrutinized and disentangled the effects of free‐living nitrogen‐fixing (diazotrophic) bacteria Azotobacter chroococcum (DB) and arbuscular mycorrhizal fungi Glomus mosseae (AMF) on host plant choice and reproduction of the herbivorous two‐spotted spider mite Tetranychus urticae on common bean plants Phaseolus vulgaris. Additionally, we assessed plant growth, and AMF and DB occurrence and density as affected by each other. Both AMF alone and DB alone increased spider mite reproduction to similar levels, as compared to the control, and exerted additive effects under co‐occurrence. These effects were similarly apparent in host plant choice, that is, the mites preferred leaves from plants with both AMF and DB to plants with AMF or DB to plants grown without AMF and DB. DB, which also act as AMF helper bacteria, enhanced root colonization by AMF, whereas AMF did not affect DB abundance. AMF but not DB increased growth of reproductive plant tissue and seed production, respectively. Both AMF and DB increased the biomass of vegetative aboveground plant tissue. Our study breaks new ground in multitrophic belowground–aboveground research by providing first insights into the fitness implications of plant‐mediated interactions between interrelated belowground fungi–bacteria and aboveground herbivores.  相似文献   

12.
Pyrrolizidine alkaloids (PAs) are the major defense compounds of plants in the Senecio genus. Here I will review the effects of PAs in Senecio on the preference and performance of specialist and generalist insect herbivores. Specialist herbivores have evolved adaptation to PAs in their host plant. They can use the alkaloids as cue to find their host plant and often they sequester PAs for their own defense against predators. Generalists, on the other hand, can be deterred by PAs. PAs can also affect survival of generalist herbivores. Usually generalist insects avoid feeding on young Senecio leaves, which contain a high concentration of alkaloids. Structurally related PAs can differ in their effects on insect herbivores, some are more toxic than others. The differences in effects of PAs on specialist and generalists could lead to opposing selection on PAs, which may maintain the genetic diversity in PA concentration and composition in Senecio species.  相似文献   

13.
Beneficial soil‐borne microbes, such as mycorrhizal fungi or rhizobacteria, can affect the interactions of plants with aboveground insects at several trophic levels. While the mechanisms of interactions with herbivorous insects, that is, the second trophic level, are starting to be understood, it remains unknown how plants mediate the interactions between soil microbes and carnivorous insects, that is, the third trophic level. Using Arabidopsis thaliana Col‐0 and the aphid Myzus persicae, we evaluate here the underlying mechanisms involved in the plant‐mediated interaction between the non‐pathogenic rhizobacterium Pseudomonas fluorescens and the parasitoid Diaeretiella rapae, by combining ecological, chemical and molecular approaches. Rhizobacterial colonization modifies the composition of the blend of herbivore‐induced plant volatiles. The volatile blend from rhizobacteria‐treated aphid‐infested plants is less attractive to an aphid parasitoid, in terms of both olfactory preference behaviour and oviposition, than the volatile blend from aphid‐infested plants without rhizobacteria. Importantly, the effect of rhizobacteria on both the emission of herbivore‐induced volatiles and parasitoid response to aphid‐infested plants is lost in an Arabidopsis mutant (aos/dde2‐2) that is impaired in jasmonic acid production. By modifying the blend of herbivore‐induced plant volatiles that depend on the jasmonic acid‐signalling pathway, root‐colonizing microbes interfere with the attraction of parasitoids of leaf herbivores.  相似文献   

14.
Variation in phloem sap composition is important in determining aphid performance and is known to occur at both diurnal timescales and in response to plant age. For field grown potato plants, Solanum tuberosum L. (Solanaceae), we determined diurnal variation in components of phloem sap, measured by ethylene diamine tetra‐acetate exudation, and tested for impacts of plant age. The effects of plant age and diurnal cycles on honeydew production by Macrosiphum euphorbiae (Thomas) and Myzus persicae (Sulzer) (both Hemiptera: Aphididae) were also quantified. Both the ratio of sucrose to amino acids and the composition of amino acids in phloem sap varied significantly with time of day. Dietary essential amino acids contributed a smaller proportion of amino acids in the phloem sap of older plants and during early phases of the diurnal cycle. The only significant effect on aphid honeydew production was of the diurnal cycle for Ma. euphorbiae, although increased honeydew production during the day when compared with the production at night, was consistent across the two species. In contrast with studies carried out at seasonal scales, we found limited evidence for variation in phloem sap composition in response to plant age, consistent with our results for honeydew production. These data highlight the need for improved understanding of how seasonal and diurnal physiology of plants influence performance in phloem sap feeding insects.  相似文献   

15.
Long-term agricultural fertilization strategies gradually change soil properties including the associated microbial communities. Cultivated crops recruit beneficial microbes from the surrounding soil environment via root exudates. In this study, we aimed to investigate the effects of long-term fertilization strategies across field sites on the rhizosphere prokaryotic (Bacteria and Archaea) community composition and plant performance. We conducted growth chamber experiments with lettuce (Lactuca sativa L.) cultivated in soils from two long-term field experiments, each of which compared organic versus mineral fertilization strategies. 16S rRNA gene amplicon sequencing revealed the assemblage of a rhizosphere core microbiota shared in all lettuce plants across soils, going beyond differences in community composition depending on field site and fertilization strategies. The enhanced expression of several plant genes with roles in oxidative and biotic stress signalling pathways in lettuce grown in soils with organic indicates an induced physiological status in plants. Lettuce plants grown in soils with different fertilization histories were visibly free of stress symptoms and achieved comparable biomass. This suggests a positive aboveground plant response to belowground plant–microbe interactions in the rhizosphere. Besides effects of fertilization strategy and field site, our results demonstrate the crucial role of the plant in driving rhizosphere microbiota assemblage.  相似文献   

16.
Introduction – Pyrrolizidine alkaloids (PAs) serve an important function in plant defence. Objective – To compare different extraction methods and detection techniques, namely gas chromatography with nitrogen phosphorus detection (GC‐NPD) and liquid chromatography tandem mass spectrometry (LC‐MS/MS) with quadrupole analysers for analysing PAs in Jacobaea vulgaris. Methodology – Both formic acid and sulfuric acid were tested for PA extraction from dry plant material. For GC‐NPD, reduction is required to transform PA N‐oxides into tertiary amines. Zinc and sodium metabisulfite were compared as reducing agents. Results – The lowest PA concentration measured with GC‐NPD was approximately 0.03 mg/g and with LC‐MS/MS 0.002 mg/g. The detection of major PAs by both techniques was comparable but a number of minor PAs were not detected by GC‐NPD. With the LC‐MS/MS procedure higher concentrations were found in plant extracts, indicating that losses may have occurred during the sample preparation for the GC‐NPD method. Zinc proved a more effective reducing agent than sodium metabisulfite. The sample preparation for LC‐MS/MS analysis using formic acid extraction without any reduction and purification steps is far less complex and less time consuming compared to GC‐NPD analysis with sulfuric acid extraction and PA N‐oxide reduction with zinc and purification. Conclusions – In terms of sensitivity and discrimination, formic acid extraction in combination with LC‐MS/MS detection is the method of choice for analysing PAs (both free and N‐oxides forms) in plant material. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
1. Selection does not only operate in a genotype (G) × environment (E) context, but can also be modulated by the activities of organisms interacting with their environment (G × G × E). 2. The influences of aphid clonal identity and host plant (Vicia faba) intraspecific genetic variation on the performance of five genotypes of pea aphid (Acyrthosiphon pisum) were investigated – with and without interaction with a competing heterospecific clone of vetch aphid (Megoura viciae) – across three cultivars of V. faba. 3. Pea aphid performance in the presence of a competing vetch aphid clone (G × G × E) compared with the absence of competition (G × E) revealed strong context‐dependent, genotype‐specific shifts in performance, influenced by plant cultivar, competitor presence and their interaction. 4. The performance of vetch aphid in competition with each pea aphid clone was also compared. Here, competitor's genotype and abundance underlay a remarkably varied response by vetch aphid across interactions. 5. The study shows that aphid genotypes exhibit a varying degree of risk spreading, contingent on competitor identity and the patterns of aggregation across three plant cultivars. Owing to feedback loops between species activities and selective forces acting on them, our findings suggest that there are context‐dependent responses by competitors that are shaped via the interplay of the co‐occurring species and their biotic environment. 6. This work highlights the complexity of species interactions and the importance of investigating reciprocity between competition and intraspecific genetic variation. A better understanding of the eco‐evolutionary interactions between phloem‐feeding insects and their host plants can potentially be used to enhance crop protection and pest control.  相似文献   

18.
Semi-natural grassland soils are frequently fertilised for agricultural improvement. This practice often comes at a loss of the indigenous flora while fast-growing nitrogen-responsive species, such as Lolium perenne, take over. Since soil microbial communities depend on plant root exudates for carbon and nitrogen sources, this shift in vegetation is thought to influence soil microbial community structure. In this study, we investigated the influence of different plant species, fertilisation and L. perenne ingression on microbial communities in soils from three semi-natural Irish grasslands. Bacterial and fungal community compositions were determined by automated ribosomal intergenic spacer analysis, and community changes were linked to environmental factors by multivariate statistical analysis. Soil type had a strong effect on bacterial and fungal communities, mainly correlated to soil pH, as well as soil carbon and nitrogen status. Within each soil type, plant species composition was the main influencing factor followed by nitrogen fertilisation and finally Lolium ingression in the acidic upland and mesotrophic grassland. In the alkaline grassland, however, Lolium ingression had a stronger effect than fertilisation. Our results suggest that a change in plant species diversity strongly influences the microbial community structure, which may subsequently lead to significant changes in ecosystem functioning.  相似文献   

19.
To achieve a thorough understanding of plant-aphid interactions, it is necessary to investigate in detail both the plant and insect side of the interaction. The pea aphid (PA; Acyrthosiphon pisum) has been selected by an international consortium as the model species for genetics and genomics studies, and the model legume Medicago truncatula is a host of this aphid. In this study, we identified resistance to PA in a M. truncatula line, 'Jester', with well-characterized resistance to a closely related aphid, the bluegreen aphid (BGA; Acyrthosiphon kondoi). The biology of resistance to the two aphid species shared similarity, with resistance in both cases occurring at the level of the phloem, requiring an intact plant and involving a combination of antixenosis, antibiosis, and plant tolerance. In addition, PA resistance cosegregated in 'Jester' with a single dominant gene for BGA resistance. These results raised the possibility that both resistances may be mediated by the same mechanism. This was not supported by the results of gene induction studies, and resistance induced by BGA had no effect on PA feeding. Moreover, different genetic backgrounds containing a BGA resistance gene from the same resistance donor differ in resistance to PA. These results suggest that distinct mechanisms are involved in resistance to these two aphid species. Resistance to PA and BGA in the same genetic background in M. truncatula makes this plant an attractive model for the study of both plant and aphid components of resistant and susceptible plant-aphid interactions.  相似文献   

20.
Host plant nutritional quality can directly and indirectly affect the third trophic levels. The aphid–parasitoid relationship provides an ideal system to investigate tritrophic interactions (as the parasitoids are completely dependent for their development upon their hosts) and assess the bottom up forces operating at different concentrations of nitrogen applications. The effects of varying nitrogen fertilizer on the performance of Aphidius colemani (V.) reared on Sitobion avenae (F.) and Aphidius rhopalosiphi (D.) reared on Rhopalosiphum padi (L.) were measured. Parasitism and percent emergence of parasitoids were positively affected by nitrogen fertilizer treatments while developmental duration (egg, larval, and pupal stages) was not affected by increasing nitrogen inputs. In males and females of both parasitoid species, adult longevity increased with the increasing nitrogen fertilizer. Hind tibia length and mummy weight of both parasitoid species increased with nitrogen fertilizer concentrations, as a result of larger aphids. This study showed that nitrogen application to the soil can have important consequences for aboveground multitrophic interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号