首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
Aleutian disease virus (ADV) of mink is a nondefective parvovirus with a single-stranded DNA genome. We characterized the viral DNA forms found in infected cells prepared by a modified Hirt extraction procedure. Double-stranded DNA molecules corresponding in size to 4.8-kilobase-pair duplex monomers and 9.6-kilobase-pair duplex dimers were identified in agarose gels by blot hybridization to 32P-labeled ADV DNA. A rapidly reannealing ADV duplex monomer was isolated on a preparative scale and physically mapped with a series of restriction endonucleases. The map derived was similar to one derived from double-stranded ADV DNA produced by self-primed synthesis on virion DNA, but differed from restriction endonuclease maps reported for other parvovirus DNAs. The purified duplex monomer could be labeled with [32P]dCTP by nick translation and used as a probe in blot hybridization to detect ADV sequences in DNA from small numbers of infected cells. Additional studies indicated that double-stranded ADV DNA could first be detected at 24 h after infection.  相似文献   

3.
Expression of Campoletis sonorensis virus (CsV) in parasitized Heliothis virescens larvae was investigated by Northern blot analysis of poly(A)+ mRNAs isolated from H. virescens larvae at various times after parasitization by C. sonorensis. At least 12 CsV mRNAs were detected in parasitized H. virescens larvae. Injection of nonparasitized H. virescens larvae with purified CsV resulted in a pattern of viral mRNAs similar to that observed in naturally parasitized larvae. With CsV DNA restriction fragments which contained expressed sequences, individual CsV mRNAs were mapped to the superhelical DNAs of the viral genome. Two gene-specific probes, which consisted of cloned S1 nuclease-protected restriction fragments, each hybridized to several CsV superhelical DNAs, suggesting that some CsV genes may be shared on several superhelical DNAs. Cloned restriction fragments containing sequences which flank the expressed sequences also hybridized to numerous CsV superhelical DNAs. Some CsV proteins were identified by in vitro translation of hybrid-selected CsV mRNAs.  相似文献   

4.
Either aphidicolin- or thymidine-synchronized human HL-60 cells were used to study the replication pattern of a family of human repetitive DNA sequences, the EcoRI 340 bp family (αRI-DNA), and of the ladders of fragments generated in total human DNA after digestion with XbaI and HaeIII (alpha satellite sequences). DNAs replicated in early, middle-early, middle-late and late S periods were labelled with BUdR or with [3H]thymidine. The efficiency of the cell synchronization procedure was confirmed by the transition from a high-GC to a high-AT average base composition of the DNA synthesized going from early to late S periods. By hybridizing EcoRI 340 bp repetitive fragments to BUdR-DNAs it was found that this family of sequences is replicated throughout the entire S period. Comparing fluorograph densitometric scans of [3H]DNAs to the scans of ethidium bromide patterns of total HL-60 DNA digested with XbaI and HaeIII, it was observed that DNA synthesized in different S periods is characterized by approximately the same ladder of fragments, while the intensity of each band may vary through the S phase; in particular, the XbaI 2.4 kb fragment becomes undetectable in late S.  相似文献   

5.
A simple reverse-phase chromatographic system for separating deoxyribonucleoside monophosphates is described. Using isocratic elution at room temperature, clear separation of seven of the deoxyribonucleoside monophosphates that occur in either procaryotic or eucaryotic DNAs can be achieved in less than 2 h. Thus, this method allows a sensitive and rapid analysis of submicrogram quantities of 32P-labeled deoxyribonucleoside monophosphates derived from DNA labeled in vivo with 32Pi or from DNA labeled enzymatically in vitro at the 5′ or 3′ ends. The suitability of the method for studying methylation of mammalian DNAs is illustrated by presenting examples of its application to (a) quantitation of major and minor nucleotides in newly synthesized DNA, (b) determination of the specificity of in vitro methylation of DNA, and (c) quantitation of the extent to which specific restriction endonuclease sites are methylated in vivo.  相似文献   

6.
A physical map of the DNA regions flanking the rabbit β-globin gene   总被引:1,自引:0,他引:1  
A.J. Jeffreys  R.A. Flavell 《Cell》1977,12(2):429-439
  相似文献   

7.
Summary Plastids of the brown algaDictyota dichotoma contain a single homogeneous DNA species which bands at a buoyant density of 1.693 g/cm3 in neutral CsCl equilibrium density gradients. The corresponding nuclear DNA has a density of 1.715 g/cm3. The molecular size of the plastid DNA is 123 kbp as calculated by both electron microscopy of spread intact circular molecules and gel electrophoresis following single and double digestions with various restriction enzymes. A restriction map has been constructed using the endonucleases Sal I, Bam HI, and Bgl II which cleave theDictyota plastome into 6, 12, and 17 fragments, respectively. No large repeated regions, as found in chlorophycean andEuglena plastid DNAs, were detected.Dictyota dichotoma is the first member from the chlorophyll c-line of the algal pedigree for which a physical map of plastid DNA has been established. Dedicated to Professor Dr. W. Stubbe on the occasion of his 65th birthday.  相似文献   

8.
Abstract: DNA ligase activities were measured in neuron-rich and glial nuclear preparations and liver nuclei isolated from adult guinea pigs. The enzymatic properties of cerebral and liver nuclear DNA ligases were studied with isolated nuclei and nuclear extracts. ATP (Km= 46–48 μM) and bivalent cation (Mg2+ or Mn2+) were required for the maximal activities in cerebral and liver nuclei. β-Mercaptoethanol did not affect the activities, but N-ethylmaleimide and p-chloromercuribenzoate completely inhibited the activities. Deoxyadenosine-5′-triphosphate partially inhibited the activities in both cerebral and liver nuclei. An interdependent effect of Na+ and Mg2+ on the enzyme activities was observed. A high concentration (200 mM) of Na+ activated both enzymes and shifted to the acid side the optimal pH for both enzymes. DNA ligase was more easily extracted with lower concentrations of NaCl from liver nuclei than from cerebral nuclei, but the extraction curves from both nuclear species reached a plateau level (92% of total activities of nuclear enzymes) at 200 mM-NaCl. Apparent Km for the substrate [32P]phosphoryl DNA was determined according to a modification of the Michaelis-Menten equation, which was applied for the case where an unknown amount of substrate nicks in chromatin DNA coexisted with the nicks in exogenous substrate DNA. Neuronal and glial nuclear enzymes had similar Km values (about 20 μg of [32P]phosphoryl DNA/ml), but the liver nuclear enzyme had a higher Km value (54 μg of [32P]phosphoryl DNA/ml). The modified Michaelis-Menten equation provided the amounts of nicks available as substrate in chromatin DNA of isolated nuclei. Neuronal and glial nuclei contained 1.5 and 0.29 pmol of nicks/μg of nuclear DNA, respectively, in contrast to an intermediate amount of nicks in liver nuclei (0.63 pmol/μg of nuclear DNA). DNA ligase activity in neuronal nuclei [312 units (fmol of 5′-phosphomonoester converted into a phosphatase-resistant form per min at 37°C) per μg of nuclear DNA] was 11-fold higher than that in glial nuclei [28.7 units/μg of nuclear DNA]. Liver nuclei contained an intermediate activity [54.7 units/μg of nuclear DNA].  相似文献   

9.
Extensive genomic heterogeneity was detected in the restriction endonuclease cleavage patterns of DNA from five entomopoxvirus isolates and vaccinia virus, strain WR. An 8.2 kilobase pair extra-chromosomal element was detected in Amsacta moorei entomopoxvirus and a 22 kilobase pair extra-chromosomal DNA element was isolated from Choristoneura biennis EPV. The extent of DNA base sequence homology was determined by Southern hybridization of HindIII and BamHI DNA restriction fragments of C. biennis EPV DNA and A. moorei EPV DNA with (α32P)-labeledA. moorei EPV DNA. Methylation of 5′-CmCGG-3′ sequences was not detected in the DNA of A. moorei, C. biennis, E. auxiliaris, M. sanguinipes, and A. conspersa entomopoxviruses after cleavage of the viral DNAs with MspI and HpaII restriction endonucleases. Based upon the DNA base sequence homology data presented here, the five entomopoxviruses used in this study appear to be unrelated.  相似文献   

10.
Nick-translated simian virus 40 (SV40) [32P]DNA fragments (greater than 2 X 10(8) cpm/micrograms) were resolved into early- and late-strand nucleic acid sequences by hybridization with asymmetric SV40 complementary RNA. Both single-stranded DNA fractions contained less than 0.5% self-complementary sequences; both included [32P]-DNA sequences that derived from all regions of the SV40 genome. In contrast to asymmetric SV40 complementary RNA, both single-stranded [32P]DNAs annealed to viral [3H]DNA at a rate characteristic of SV40 DNA reassociation. Kinetics of reassociation between the single-stranded [32P]DNAs indicated that the two fractions contain greater than 90% of the total nucleotide sequences comprising the SV40 genome. These preparations were used as hybridization probes to detect small amounts of viral DNA integrated into the chromosomes of Chinese hamster cells transformed by SV40. Under the conditions used for hybridization titrations in solution (i.e., 10- to 50-fold excess of radioactive probe), as little as 1 pg of integrated SV40 DNA sequence was assayed quantitatively. Among the transformed cells analyzed, three clones contained approximately one viral genome equivalent of SV40 DNA per diploid cell DNA complement; three other clones contained between 1.2 and 1.6 viral genome equivalents of SV40 DNA; and one clone contained somewhat more than two viral genome equivalents of SV40 DNA. Preliminary restriction endonuclease maps of the integrated SV40 DNAs indicated that four clones contained viral DNA sequences located at a single, clone-specific chromosomal site. In three clones, the SV40 DNA sequences were located at two distinct chromosomal sites.  相似文献   

11.
After digestion by TaqI or nicking by DNAase I, five highly modified bacteriophage DNAs were tested as substrates for T4 DNA ligase. The DNAs used were from phages T4, XP12, PBS1, SP82, and SP15, which contain as a major base either glucosylated 5-hydroxymethylcytosine, 5-methylcytosine, uracil, 5-hydroxymethyluracil, or phosphoglucuronated, glucosylated 5-(4′,5′-dihydroxypentyl)uracil, respectively. The relative ability of cohesive-ended TaqI fragments of these DNAs and of normal, λ DNA to be ligated was as follows: λ DNA = XP12 DNA >SP82 DNA ? nonglucosylatedT4 DNA >T4 DNA = PBS1 DNA ? SP15 DNA. TaqI-T4 DNA fragments were also inefficiently ligated by Escherichia coli DNA ligase. However, annealing-independent ligation of DNAase I-nicked T4, PBS1, and λ DNAs was equally efficient. We conclude that the poor ligation of TaqI fragments of T4 and PBS1 DNAs was due to the hydroxymethylation (and glucosylation) of cytosine residues at T4's cohesive ends and the substitution of uracil residues for thymine residues adjacent to PBS1's cohesive ends destabilizing the annealing of the restriction fragments. Only SP15 DNA with its negatively charged, modified base was unable to serve as a substrate for T4 DNA ligase in an annealing-independent reaction; therefore, its modification directly interfered with enzyme binding or catalysis.  相似文献   

12.
Nick translation of DNA bound to nylon membranes is described. Phage lambda DNA was digested with restriction endonuclease HindIII. The fragments were separated by agarose electrophoresis and electrophoretically transferred to Zeta-Probe nylon membranes. After being air-dried, the areas with DNA fragments attached were cut out and subjected to nick translation. The labeled fragments, removed from the membranes by a single wash step, can be used as specific hybridization probes. Currently used methods require time-consuming electroelution and often additional purification procedures if a specific DNA fragment, separated by gel electrophoresis, is to be labeled by nick translation. With the procedure described it is possible to label many DNA fragments in parallel in a time- and cost-saving manner.  相似文献   

13.
Entomopoxvirus (EPV) occlusion bodies were isolated from virus infected nymphs of the grasshoppers Melanoplus sanguinipes, Arphia conspirsa, and Phoetaliotes nebrascensis. Separation of the viral structural proteins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis gave unique protein patterns for each of the three viruses. An occlusion body protein of approximately 100,000 MW was isolated from each virus. Cleavage of viral DNA with HinddIII and BamHI restriction endonucleases and separation of the fragments by agarose gel electrophoresis gave different DNA fragment patterns for each of the three entomopoxviruses. Molecular weight estimates of 120 × 106 for M. sanguinipes EPV DNA, 129 × 106 for A. conspirsa EPV DNA, and 125 × 106 for P. nebrascensis EPV DNA were calculated from the sizes of the viral DNA fragments. Approximately 55% base sequence homology was detected by Southern hybridization of α-32P-labeledM. sanguinipes EPV DNA with P. nebrascensis DNA. No base sequence homology was detected by Southern hybridization of labeled M. sanguinipes EPV DNA to Othnonius batesi EPV DNA (Coleoptera), Amsacta moorei EPV DNA (Lepidoptera), Euxoa auxiliaris EPV DNA (Lepidoptera), and vaccinia virus DNA fragments.  相似文献   

14.
Information has been lacking as to whether mitochondrial DNA of animal cells is methylated. The methylation patterns of mitochondrial and nuclear DNAs of several mammalian cell lines have therefore been compared by four methods: (1) in vivo transfer of the methyl group from [methyl-3H]methionine; (2) in vivo incorporation of [32P]orthophosphate and a combination of (1) and (2); (3) in vivo incorporation of [3H]deoxycytidine; (4) in vitro methylation of DNAs with 3H-labeled S-adenosylmethionine as methyl donor and DNA methylase preparations from L cell nuclei. The cell lines were mouse L cells, BHK21C13, C13B4 (baby hamster kidney cells transformed by the Bryan strain of Rouse sarcoma virus), and PyY (BHK cells transformed by polyoma virus). DNA bases were separated chromatographically, using 5-methylcytosine, 6-methylaminopurine and, in some cases, 7-methylguanine as markers.Mitochondrial DNA was found to be significantly less methylated than nuclear DNA with respect to 5-methylcytosine in all cell types studied and by all methods used. The relative advantages and disadvantages of each method have been discussed. The level of 5-methylcytosine in mitochondrial DNA as compared with that in nuclear DNA was estimated as one-fourth to one-fourteenth in various cell lines. The estimated 5-methylcytosine content per circular mitochondrial DNA molecule (mol. wt 10 × 106) was about 12 methylcytosine residues for L cells and 24, 30 and 36 methylcytosine residues for BHK, B4 and PyY cells, respectively. Relative to cytosine residues, the estimate was one 5-methylcytosine per 500 cytosine residues of mitochondrial DNA and one 5-methylcytosine per 36 cytosine residues of nuclear DNA from L-cells. The values for methylcytosine of mitochondrial DNA are presumed to be maximal. PyY cells as compared with other cells had the highest methylcytosine content of both mitochondrial and nuclear DNA as estimated by method (3). No methylation of nuclear DNA was observed in confluent L cells.Evidence for the presence of DNA methylase activity associated with mitochondrial fractions was obtained. This activity could be distinguished from other cellular DNA methylase activity by differential response to mercaptoethanol. Radioactivity from 3H-labeled S-adenosylmethionine was found only in 5-methyl-cytosine of DNA.  相似文献   

15.
This report is an analysis of cross-hybridizing sequences found within the 28 superhelical (SH) DNAs of the multipartite genome of the polydnavirus Campoletis sonorensis virus (CsV). A Southern cross-blot hybridization analysis showed that the majority of CsV EcoRI restriction fragments cross-hybridize to multiple EcoRI fragments. These sequence homologies were analyzed by hybridizing recombinant clones of the CsV SH DNAs B, H, M, and O1 to Southern blots of undigested CsV DNA, using different hybridization stringencies. The results indicated that homologous regions among the SH DNAs include closely related sequences that are detectable under stringent conditions and related but more diverged sequences which are only detectable under reduced stringencies. A sequence that hybridized to the majority of the CsV SH DNAs was identified and subcloned from the SH DNAs O1, H, and B. Nucleotide sequence data revealed that these homologous regions contained a family of imperfectly conserved repeated elements. These repeat elements were arranged singly or in direct tandem arrays and had an average length of 540 base pairs. Within the sequenced regions that contained the repeated elements six putative open reading frames were identified. These results show that the CsV genome consists of SH DNAs with complex sequence interrelationships that may have arisen due to multiple recombinational events.  相似文献   

16.
Southern blot hybridization techniques were used to estimate the extent of chloroplast DNA sequences present in the mitochondrial genome of cowpea (Vigna unguiculata L.) The entire mitochondrial chromosome was homogeneously labeled and used to probe blotted DNA fragments obtained by extensive restriction of the tobacco chloroplast genome. The strongest cross-homologies were obtained with fragments derived from the inverted repeat and the atpBE cluster regions, although most of the clones tested (spanning 85% of the tobacco plastid genome) hybridized to mitochondrial DNA. Homologous chloroplast DNA restriction fragments represent a total of 30 to 68 kilobase pairs, depending upon the presence or absence of tRNA-encoding fragments. Plastid genes showing homology with mitochondrial DNA include those encoding ribosomal proteins, RNA polymerase, subunits of photosynthetic complexes, and the two major rRNAs.  相似文献   

17.
Homologies between nuclear and plastid DNA in spinach   总被引:3,自引:0,他引:3  
Summary Homologies between spinach nuclear (n) DNA and Chloroplast (pt) DNA, have been detected with a clone bank of spinach ptDNA as hybridization probes to restriction fragments of nDNA prepared from purified root nuclei. Every cloned fragment of ptDNA showed homologies to discrete restriction fragments of nDNA, different from those of ptDNA, indicating integration of these homologies into nDNA. While most ptDNA clones were relatively large and probably contained several genes, sequence homologies were also found to the cloned plastid gene for RuBP carboxylase and the subunit of ptATPase. Many of the homologies in nDNA occur in regions of the genome that are highly methylated and are not digested by the methylation sensitive restriction endonucleases HpaII and MspI. In contrast these enzymes cleave ptDNA into small fragments which allows the nDNA homologies to be distinguished in total root DNA. The sequence homologies observed were not due to contaminating non nuclear sequences as shown by hybridization to mitochondrial (mt) and bacterial DNAs. The total amount of homology to ptDNA in nDNA is equivalent to about five copies of the plastome per haploid nuclear genome. The homologies generally appear to be in individual segments of less than 2 kbp in length, integrated into several different places in the genome.On sabbatical leave from Department of Botany, University College, Dublin, Ireland  相似文献   

18.
DNA purified from a Chinese hamster cell line of lung fibroblast origin (DC83F) was analyzed by density gradient centrifugation and by gel electrophoresis after restriction endonuclease digestion in order to fractionate discrete repetitive fractions within the total DNA. No obvious satellite DNAs were resolved using the CsCl or Ag-Cs2SO4 density gradient conditions described herein. However, analysis of the digestion products of a battery of restriction endonucleases indicated that three of these enzymes, EcoR 1, HaeIII, and XhoI, yielded discrete fragments which could be visualized with EtBr staining or identified by scintillation counting of [ 3 H] DNA. DNAs from several highly ( hundredfold increased resistance) antifolate-resistant sublines of DC-3F, characterized by a large homogeneously staining region (HSR) in the chromosome complement, were examined with both techniques and compared to the parental, antifolate-sensitive cell line DNA. The density gradient profiles and electrophoretic patterns of restriction endonuclease digests were identical among all the cell lines examined and were indistinguishable from those of the parental DC-3F DNA.This work was supported in part by grants to the Sloan-Kettering Institute and to J.L.B. and P.W.M. by the National Institutes of Health and the Fairchild New Frontiers Fund. Portions of this study were presented at the 18th Annual Meeting of the American Society for Cell Biology held in San Antonio, Texas, November 4–8, 1978.  相似文献   

19.
Randomly cloned fragments of DNA from Bacteroides thetaiotaomicron were used as hybridization probes for differentiation of B. thetaiotaomicron from closely related Bacteroides species. HindIII digestion fragments of DNA from B. thetaiotaomicron (type strain) were inserted into plasmid pBR322 and labeled with [alpha-32P]dCTP by nick translation. These labeled plasmids were screened for hybridization to HindIII digests of chromosomal DNA from type strains of the following human colonic Bacteroides species: B. thetaiotaomicron, Bacteroides ovatus, reference strain 3452-A (formerly part of B. distasonis), Bacteroides uniformis, Bacteroides fragilis, Bacteroides vulgatus, Bacteroides distasonis, Bacteroides eggerthii, and reference strain B5-21 (formerly B. fragilis subsp. a). Two of the five cloned fragments hybridized only to DNA from B. thetaiotaomicron. Each of these two fragments hybridized to the same DNA restriction fragment in five strains of B. thetaiotaomicron other than the strain from which the DNA was cloned. One of the cloned fragments (pBT2) was further tested for specificity by determining its ability to hybridize to DNA from 65 additional strains of colonic Bacteroides.  相似文献   

20.
Summary Potato plastid DNA clones, representing onefourth of the potato plastome complexity and containing sequences of the 16SrRNA, rps16, atpA, atpE, psaA, psaB, trnK, trnV, and trnG genes, were used as hybridization probes on nuclear- and mitochondrial-enriched DNAs. Each probe hybridized to multiple nuclear restriction fragments distinct from the plastid cleavage products generated by the same endonucleases. The nuclear hybridizable fragments are highly methylated at their Hpall target sequences (C/CGG). In some instances, the transfer seemed to involve plastid regions of several kilobase pairs, as reflected by the co-integration in the nucleus of restriction sites that are distant in the plastome. Three clones hybridized additionally to distinct mitochondrial fragments. These results indicate that extensive DNA transfers did occur between plastids and other organelles in potato.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号