首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The objective of this study was to examine the rate of synthesis and the intracellular levels of polyamines as a function of the HeLa cell cycle. The intracellular levels of ornithine, which were high during mitosis and early G1 phase, decreased rapidly during late G1 phase when the ornithine decarboxylase activity was at its peak. The activities of ornithine decarboxylase and S-adenosyl methionine decarboxylase reached a peak during G1 and decreased rapidly during the S phase. The levels of polyamines were maximum in mitosis and S phase. In constrast, the rate of polyamine synthesis during S phase was 5–10 fold lower than that in mitosis or G1 phase. We have also observed fluctuations in diamine-oxidase activity during the cell cycle. The enzyme activity was high during mitosis and late G1 and low during S phase. Thus, the results of this study suggest an important role for the catabolic enzymes in the regulation of polyamine levels during the mammalian cell cycle.  相似文献   

3.
We analyzed changes in polyamine contents and the activities of biosynthetic enzymes during each phase of the cell cycle for a synchronized population of BY-2 cells. Based on our analysis of H3-thymidine incorporation flow cytometry, and the mitotic index, the M and G2 phases seemed to occur at 8 h and from 2.5 to 8 h, respectively, after the release of aphidicolin. The respective activities of arginine decarboxylase (ADC), Ornithine decarboxylase (ODC), and S-adenosyl methionine decarboxylase (SAMDC) at the beginning (7.4, 11.2, and 5.5 nmol mg-1 protein h-1) were increased to 22.6, 22.1, and 15.1 nmol mg-1 protein h-1. However, those increases do not coincide with the general change in polyamines reported from animal cells. In addition, the bi-phasic activation of polyamine biosynthetic enzymes, such as those found in the general animal model, was observed with ADC and ODC but not with SAMDC. These results suggest that the general animal model for explaining polyamine changes and SAMDC activation in the cell cycle cannot be applied to BY-2 cells. Further, our flow-cytometric analysis of cell populations may be a useful tool for evaluating the effects of polyamines on cell cycle progression in BY-2 cells.  相似文献   

4.
Ornithine decarboxylase is a mediator of c-Myc-induced apoptosis.   总被引:21,自引:9,他引:12       下载免费PDF全文
c-Myc plays a central role in the regulation of cell cycle progression, differentiation, and apoptosis. However, the proteins which mediate c-Myc function(s) remain to be determined. Enforced c-myc expression rapidly induces apoptosis in interleukin-3 (IL-3)-dependent 32D.3 murine myeloid cells following IL-3 withdrawal, and this is associated with the constitutive, growth factor-independent expression of ornithine decarboxylase (ODC), a rate-limiting enzyme of polyamine biosynthesis. Here we have examined the role of ODC in c-Myc-induced apoptosis. Enforced expression of ODC, like c-myc, is sufficient to induce accelerated death following IL-3 withdrawal. ODC induced cell death in a dose-dependent fashion, and alpha-difluoromethylornithine (DFMO), an irreversible inhibitor of ODC enzyme activity, effectively blocked ODC-induced cell death. ODC-induced cell death was due to the induction of apoptosis. We also demonstrate that ODC is a mediator of c-Myc-induced apoptosis. 32D.3-derived c-myc clones have augmented levels of ODC enzyme activity, and their rates of death were also a function of their ODC enzyme levels. Importantly, the rates of death of c-myc clones were inhibited by treatment with DFMO. These findings demonstrate that ODC is an important mediator of c-Myc-induced apoptosis and suggest that ODC mediates other c-Myc functions.  相似文献   

5.
6.
A cell cycle-dependent internal ribosome entry site   总被引:10,自引:0,他引:10  
The eukaryotic mRNA 5' cap structure facilitates translation. However, cap-dependent translation is impaired at mitosis, suggesting a cap-independent mechanism for mRNAs translated during mitosis. Translation of ornithine decarboxylase (ODC), the rate-limiting enzyme in the biosynthesis of polyamines, peaks twice during the cell cycle, at the G1/S transition and at G2/M. Here, we describe a cap-independent internal ribosome entry site (IRES) in the ODC mRNA that functions exclusively at G2/M. This ensures elevated levels of polyamines, which are implicated in mitotic spindle formation and chromatin condensation. c-myc mRNA also contains an IRES that functions during mitosis. Thus, IRES-dependent translation is likely to be a general mechanism to synthesize short-lived proteins even at mitosis, when cap-dependent translation is interdicted.  相似文献   

7.
In the yeast Saccharomyces cerevisiae, the specific activity of the enzyme ornithine decarboxylase (ODC) was correlated with overall growth status. The activity of ODC was highest in actively growing cells, whereas the specific activity was lower in slow-growing cultures limited for nitrogen or inhibited by low concentrations of cycloheximide. Specific activities of ODC were also low in cultures arrested in the stationary phase (in the G1 portion of the cell cycle) by starvation for required nutrients. Although correlated with overall growth, ODC activity was not required for growth or cell cycle regulation. Cells continued to grow in the presence of the polyamine spermidine or spermine, which markedly reduced ODC specific activities. Thus, high levels of ODC activity were not necessary for growth, nor were decreased ODC specific activities sufficient to cause cells to arrest in G1. Conversely, one agent (o-phenanthroline) which causes growing cells to arrest in G1 did so with no effect on ODC specific activity. Therefore, ODC specific activity changes are not necessary for cell cycle regulation but simply reflect the normal growth status of cells.  相似文献   

8.
Natural polyamines (putrescine, spermidine and spermine) are ubiquitous molecules known to regulate a number of physiological processes and suspected to play a role also in various pathological conditions. Changes in polyamine levels and in their biosynthetic enzymes have been described for some neurodegenerative diseases but the available data are incomplete and somewhat contradictory. We report here alterations of the key enzyme of the polyamine pathway, ornithine decarboxylase (ODC) catalytic activity and polyamine levels in different CNS areas from SOD1 G39A transgenic mice, an animal model for amyotrophic lateral sclerosis (ALS). ODC catalytic activity, was found significantly increased both in the cervical and lumbar spinal cord and, to a lesser extent in the brain stem of transgenic mice at a symptomatic stage of the disease (125-day-old mice), while no differences were present at a pre-symptomatic stage (55-day-old mice). In parallel with the increase of ODC activity putrescine levels were several times increased in both cervical and lumbar spinal cord and in the brain stem of 125-day-old SOD1 G39A mice. Higher order polyamines were not increased except for a significant increase of spermidine in the cervical spinal cord. The present data demonstrate considerable alterations of the ODC/polyamine system in a reliable animal model of ASL, consistent with their role in neurodegeneration and in particular in motor neuron diseases.  相似文献   

9.
Serum deprivation arrests BALB/c-3T3 fibroblasts (clone A31) in G0 phase, where resumption of the cell division cycle can be induced by addition of serum or of specific growth factors in a defined sequence: PDGF (inducer of a state of "competence," characterized by the expression of a family of genes including c-myc), epidermal growth factor EGF and IGF1 (Leof et al., 1982, 1983). When exponentially growing A31 cells are placed for greater than or equal to 2 days in a medium containing the alpha-difluoromethylornithine (alpha DFMO), an irreversible inhibitor of ornithine decarboxylase, they become arrested in G1 phase as a consequence of polyamine depletion (Medrano et al., 1983). In the alpha DFMO-arrested cells, addition of putrescine (60 microM) in a culture medium containing 6% fetal calf serum (FCS), but not in serum-free medium, is sufficient to induce G1 progression and entry into S phase (as determined by 3H-thymidine incorporation). The level of "competence" mRNAs is high in alpha DFMO-arrested cells. After addition of putrescine in FCS-containing medium, these mRNAs continue to be present for at least 3 h. A large proportion of alpha DFMO-arrested cells can be induced to progress to S phase by insulin (1 microM, acting via IGF1 receptor) plus putrescine in a serum-free medium (greater than or equal to 50% of FCS effect). In this case, the levels of "competence" mRNAs become low or undetectable within 3 h, EGF (10 nM) plus insulin had only slightly greater effect than insulin alone on the progression of alpha DFMO-arrested cells. When the alpha DFMO-arrested cells are subsequently incubated during 3 days in a low-serum-containing medium (0.25% FCS), they do not replenish their supply of polyamines, and then continue to express the c-myc gene. The recruitment of the polyamine-depleted, serum-deprived cells into the cell division cycle does not require PDGF and can be induced by addition of EGF and insulin plus putrescine. These data indicate that alpha DFMO arrests majority of the cells at a point situated beyond the PDGF- and EGF-dependent portion of G1 phase. During the subsequent serum deprivation, the alpha DFMO-arrested cells remain "competent" (PDGF-independent), probably as a consequence of their continued expression of c-myc (and possibly other PDGF-inducible genes).  相似文献   

10.
A cDNA of tobacco BY-2 cells corresponding to an mRNA species which was rapidly induced by methyl jasmonate (MeJA) in the presence of cycloheximide (CHX) was found to encode ornithine decarboxylase (ODC). Another cDNA from a MeJA-inducible mRNA encoded S-adenosylmethionine synthase (SAMS). Although these enzymes could be involved in the biosynthesis of polyamines, the level of putrescine, a reaction product of ODC, increased slowly and while the levels of spermidine and spermine did not change following treatment of cells with MeJA. However, N-methylputrescine, which is a precursor of pyrrolidine ring of nicotine, started to increase shortly after MeJA-treatment of cells and the production of nicotine occured thereafter. The levels of mRNA for arginine decarboxylase (ADC), an alternative enzyme for putrescine synthesis, and that for S-adenosylmethionine decarboxylase (SAMDC), required for polyamine synthesis, were not affected by MeJA. In addition to mRNAs for ODC and SAMS, mRNA for putrescine N-methyltransferase (PMT) was also induced by MeJA. Unlike the MeJA-induction of ODC mRNA, MeJA-induction of SAMS and PMT mRNAs were blocked by CHX. The level of ODC mRNA declined after 1 to 4 h following MeJA treatment, while the levels of mRNAs for SAMS and PMT continued to increase. Auxin significantly reduced the MeJA-inducible accumulation of mRNAs for ODC, SAMS and PMT. These results indicate that MeJA sequentially induces expression of a series of genes involved in nicotine biosynthesis by multiple regulatory mechanisms.p>  相似文献   

11.
Ornithine decarboxylase (ODC), which catalyzes polyamine biosynthesis, plays an essential role in cell growth. DL-alpha-Difluoromethylornithine (DFMO), a synthetic inhibitor of ODC, inhibits cell growth. However, the exact mechanism by which polyamine depletion by DFMO results in growth inhibition remains to be elucidated. We clarified the mechanisms by which DFMO inhibits human gastric cancer cell (MKN45) growth. DFMO induced MKN45 cell G(1) phase arrest after 48 h, and the percentage of G(1) arrest cells continued to increase until 72 h. Expression of p21 and phosphorylation of Stat1 were significantly induced by DFMO at 24 h. Luciferase assay and gel shift assay showed specific binding of Stat1 to the p21 promoter, and promoter activity was activated at 24 h. In dominant negative p53 expressing cells, DFMO significantly induced p21 expression, arrested cells at G(1) phase, and suppressed cell growth effectively. These results suggest that DFMO induced MKN45 cell arrest at G(1) phase in a p53 independent manner, and Stat1 is, at least in part, involved in G(1) arrest.  相似文献   

12.
The expression of a set of cell cycle dependent (CCD) genes (c-fos, c-myc, ornithine decarboxylase (ODC), and thymidine kinase (TK)) was comparatively studied in cultured arterial smooth muscle cells (SMC) during exit from quiescence and exponential proliferation. These genes, which were not expressed in quiescent SMC, were chronologically induced after serum stimulation. c-fos mRNA were rapidly and transiently expressed very early in the G1 phase; c-myc and ODC peaked a few hours after serum stimulation and then remained at an intermediary level throughout the first cell cycle; TK mRNA and activity then appeared at the G1/S boundary and peak in G2/M phases. Except for c-fos, the other genes were also expressed in asynchronously cycling SMC (ACSMC); their expression was studied in elutriated subpopulations representative of cell cycle progression. c-fos mRNA were undetectable in any sorted subpopulations, even in the pure early G1 population. Despite a slight increase as the cell cycle advanced, c-myc and ODC genes were expressed throughout the ACSMC cell cycle. A faint TK activity was found in G1 subpopulations and increased in populations enriched in other phases; in contrast, TK mRNA remained highly expressed in all elutriated subpopulations. This study demonstrates significant modulations in CCD gene expression between quiescent stimulated and asynchronously cycling SMC in culture. This suggests that the events occurring during the emergence of SMC from quiescence are probably different from those in the G1 phase of ACSMC.  相似文献   

13.
Polyamines and the Cell Cycle of Catharanthus roseus Cells in Culture   总被引:1,自引:0,他引:1  
Maki H  Ando S  Kodama H  Komamine A 《Plant physiology》1991,96(4):1008-1013
Investigation was made on the effect of partial depletion of polyamines (PAs), induced by treatment with inhibitors of the biosynthesis of PAs, on the distribution of cells at each phase of the cell cycle in Catharanthus roseus (L.) G. Don. cells in suspension cultures, using flow cytometry. More cells treated with inhibitors of arginine decarboxylase (ADC) and ornithine decarboxylase (ODC) were accumulated in the G1 phase than those in the control, while the treatment with an inhibitor of spermidine (SPD) synthase showed no effect on the distribution of cells. The endogenous levels of the PAs, putrescine (PUT), SPD, and spermine (SPM), were determined during the cell cycle in synchronous cultures of C. roseus. Two peaks of endogenous level of PAs, in particular, of PUT and SPD, were observed during the cell cycle. Levels of PAs increased markedly prior to synthesis of DNA in the S phase and prior to cytokinesis. Activities of ADC and ODC were also assayed during the cell cycle. Activities of ADC was much higher than that of ODC throughout the cell cycle, but both activities of ODC and ADC changed in concert with changes in levels of PAs. Therefore, it is suggested that these enzymes may regulate PA levels during the cell cycle. These results indicate that inhibitors of PUT biosynthesis caused the suppression of cell proliferation by prevention of the progression of the cell cycle, probably from the G1 to the S phase, and PUT may play more important roles in the progression of the cell cycle than other PAs.  相似文献   

14.
15.
16.
The activity of ornithine decarboxylase (ODC) and levels of polyamines were measured in the testes of Asterias vulgaris collected throughout an annual spermatogenic cycle. Samples of the testes were prepared for light and electron microscopy to observe the associated changes in the cytology of germinal cells. The specific activity of ODC increased at the onset of testicular growth, decreased during the coldest period of the winter when testicular growth was minimal, and increased again early in the spring when testes grew maximally. Increased activity of ODC resulted in increased levels of polyamines and was correlated with either mitotic or meiotic germinal cell divisions, or both. Spermine levels were always greater than putrescine, followed by spermidine. Highest levels of polyamine synthesis coincided with the onset of spermatogonial proliferation during the fall and with the period of meiotic differentiation and spermiogenesis in the spring. Mid-summer (July) testes were small (0.3-0.5 gonad index (GI)) and contained amitotic spermatogonia arrested in G(1) of the cell cycle. Mitotic and pre-meiotic testes (October/November) increased slightly in size (0.3-1.4 GI) and contained actively dividing spermatogonia, most of which differentiated into primary spermatocytes. Testes from February and March were large (1-6.75 GI), but the proliferative status of their spermatogonia and primary spermatocytes varied. Spermatogonia and primary spermatocytes from early February testes were not dividing. In testes obtained in March, both spermatogonial mitosis and meiosis of spermatocytes resumed, coincident with increased field water temperatures.  相似文献   

17.
Diamino butanone (DAB), a competitive inhibitor of ornithine decarboxylase (ODC) a key enzyme in polyamine biosynthesis, inhibited the yeast to hyphae transition in Mucor rouxii, induced by transfer from anaerobiosis to aerobiosis, but not the opposite phenomenon. Addition of DAB to anaerobic yeast cells brought about a decrease in ODC and polyamine levels. In these conditions, the aerobic shift produced only a weak increase in ODC activity and no change in polyamine levels. DAB also blocked phorogenesis in M. rouxii and in Phycomyces blakesleeanus. At the effective concentrations DAB did not affect cell growth of either fungus. It is suggested that low, constant levels of ODC and polyamines are necessary for cell growth, and that high transient levels are required during the differentiative steps. DAB, at the concentrations used, affects this last process, but does not interfere with the maintenance level of polyamines.Abbreviations ODC ornithine decarboxylase - DAB 1,4-diamino butanone  相似文献   

18.
R Panet  D Snyder    H Atlan 《The Biochemical journal》1986,239(3):745-750
In this study we tested the hypothesis that stimulation of univalent-cation fluxes which follow the addition of growth factors are required for cell transition through the G1-phase of the cell cycle. The effect of two drugs, amiloride and bumetanide, were tested on exit of BALB/c 3T3 cells from G0/G1-phase and entry into S-phase (DNA synthesis). Amiloride, an inhibitor of the Na+/H+ antiport, only partially inhibited DNA synthesis induced by serum. Bumetanide, an inhibitor of the Na+/K+ co-transport, only slightly suppressed DNA synthesis by itself, but when added together with amiloride completely blocked cell transition through G1 and entry into S-phase. Similar inhibitory effects of the two drugs were found on the induction of ornithine decarboxylase (ODC) (a marker of mid-G1-phase) in synchronized cells stimulated by either partially purified fibroblast growth factor (FGF) or serum. To test this hypothesis further, cells arrested in G0/G1 were stimulated by serum, insulin or FGF. All induced similar elevations of cellular K+ content during the early G1-phase of the cell cycle. However, serum and FGF, but not insulin, released the cells from the G0/G1 arrest, as measured by ODC enzyme induction. This result implies that the increase in cellular K+ content may be necessary but not sufficient for induction of early events during the G1-phase. The synergistic inhibitory effects of amiloride and bumetanide on the two activities stimulated by serum growth factors, namely ODC induction (mid-G1) and thymidine incorporation into DNA (S-phase), suggested that the amiloride-sensitive Na+/H+ antiport system together with the bumetanide-sensitive Na+/K+ transporter play a role in the mitogenic signal.  相似文献   

19.
The role of Na + transport systems in the mitogenic signal induced by growth factors was studied, and it was shown that two Na + transport systems contribute to the early increase in cytoplasmic Na + in response to serum growth factors, namely the amiloride-sensitive Na+/H+ antiport and the bumetanide-sensitive Na+/K+/Cl- cotransport. Bumetanide or amiloride, when added separately, inhibited part of the increase in cytoplasmic Na +, as a response to the addition of serum to quiescent BALB/c mouse 3T3 fibroblasts. Each drug also suppressed part of the stimulation of the ouabain-sensitive Rb + influx, which was controlled by intracellular Na +. However, when both drugs were added together with serum growth factors, a complete inhibition of the early increase in [Na +], and subsequently a complete blockage of Na+/K+ pump stimulation was obtained. Amiloride or bumetanide, when added separately, only partially inhibited DNA synthesis induced by serum, 24% and 8% respectively. However, when both drugs were added together, at the time of serum addition to the quiescent cells, cell entry into S-phase was completely inhibited. To investigate the mode of cell-cycle inhibition, analysis was done of the possible role of early Na + fluxes in the mitogenic signal transduced from cell membrane receptors to the nucleus. The effects of the two drugs amiloride and bumetanide on induction of three genes--c-fos, c-myc, and ornithin decarboxylase (ODC)--was measured during cell transition through the G1-phase. Amiloride and bumetanide, when added separately or in combination, did not inhibit the induction of c-fos, c-myc, and ODC mRNAs. These results suggest that stimulation of Na + fluxes by serum growth factors is essential for cell transition into the S-phase of cell cycle, but it plays no apparent role in the growth factor signal transduced from the cell surface to the interior of the cell, as manifested by c-fos, c-myc, and ODC genes induction.  相似文献   

20.
BHK cells were synchronized by excess thymidine treatment, which resulted in approximately 90% synchrony. The activity of ornithine decarboxylase (ODC), the rate-limiting enzyme in polyamine biosynthesis, elevated in early S phase, decreased in G2 + M and G1 phase and then increased during late G1 approximately second round of early S phase. The concentration of cyclic adenosine-3'-5'-monophosphate (cAMP) gradually decreased during S approximately G2 + M phase and then increased during late G1 approximately second round of early S phase, preceding that of ODC activity. The data suggest that ODC activity might be regulated by cellular cAMP level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号