首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Hsp26: a temperature-regulated chaperone   总被引:27,自引:0,他引:27       下载免费PDF全文
Small heat shock proteins (sHsps) are a conserved protein family, with members found in all organisms analysed so far. Several sHsps have been shown to exhibit chaperone activity and protect proteins from irreversible aggregation in vitro. Here we show that Hsp26, an sHsp from Saccharomyces cerevisiae, is a temperature-regulated molecular chaperone. Like other sHsps, Hsp26 forms large oligomeric complexes. At heat shock temperatures, however, the 24mer chaperone complex dissociates. Interestingly, chaperone assays performed at different temperatures show that the dissociation of the Hsp26 complex at heat shock temperatures is a prerequisite for efficient chaperone activity. Binding of non-native proteins to dissociated Hsp26 produces large globular assemblies with a structure that appears to be completely reorganized relative to the original Hsp26 oligomers. In this complex one monomer of substrate is bound per Hsp26 dimer. The temperature-dependent dissociation of the large storage form of Hsp26 into a smaller, active species and the subsequent re-association to a defined large chaperone-substrate complex represents a novel mechanism for the functional activation of a molecular chaperone.  相似文献   

2.
Small heat shock proteins (sHsps) are molecular chaperones that efficiently bind non-native proteins. All members of this family investigated so far are oligomeric complexes. For Hsp26, an sHsp from the cytosol of Saccharomyces cerevisiae, it has been shown that at elevated temperatures the 24-subunit complex dissociates into dimers. This dissociation seems to be required for the efficient interaction with unfolding proteins that results in the formation of large, regular complexes comprising Hsp26 and the non-native proteins. To gain insight into the molecular mechanism of this chaperone, we analyzed the dynamics and stability of the two oligomeric forms of Hsp 26 (i.e. the 24-mer and the dimer) in comparison to a construct lacking the N-terminal domain (Hsp26DeltaN). Furthermore, we determined the stabilities of complexes between Hsp26 and non-native proteins. We show that the temperature-induced dissociation of Hsp26 into dimers is a completely reversible process that involves only a small change in energy. The unfolding of the dissociated Hsp26 dimer or Hsp26DeltaN, which is a dimer, requires a much higher energy. Because Hsp26DeltaN was inactive as a chaperone, these results imply that the N-terminal domain is of critical importance for both the association of Hsp26 with non-native proteins and the formation of large oligomeric complexes. Interestingly, complexes of Hsp26 with non-native proteins are significantly stabilized against dissociation compared with Hsp26 complexes. Taken together, our findings suggest that the quaternary structure of Hsp26 is determined by two elements, (i) weak, regulatory interactions required to form the shell of 24 subunits and (ii) a strong and stable dimerization of the C-terminal domain.  相似文献   

3.
Small heat shock proteins (sHsps) are a conserved and ubiquitous protein family. Their ability to convey thermoresistance suggests their participation in protecting the native conformation of proteins. However, the underlying functional principles of their protective properties and their role in concert with other chaperone families remain enigmatic. Here, we analysed the influence of Hsp25 on the inactivation and subsequent aggregation of a model protein, citrate synthase (CS), under heat shock conditions in vitro. We show that stable binding of several non-native CS molecules to one Hsp25 oligomer leads to an accumulation of CS unfolding intermediates, which are protected from irreversible aggregation. Furthermore, a number of different proteins which bind to Hsp25 can be isolated from heat-shocked extracts of cells. Under permissive folding conditions, CS can be released from Hsp25 and, in cooperation with Hsp70, an ATP-dependent chaperone, the native state can be restored. Taken together, our findings allow us to integrate sHsps functionally in the cellular chaperone system operating under heat shock conditions. The task of sHsps in this context is to efficiently trap a large number of unfolding proteins in a folding-competent state and thus create a reservoir of non-native proteins for an extended period of time, allowing refolding after restoration of physiological conditions in cooperation with other chaperones.  相似文献   

4.
Small heat shock proteins (sHsps) are a ubiquitous part of the machinery that maintains cellular protein homeostasis by acting as molecular chaperones. sHsps bind to and prevent the aggregation of partially folded substrate proteins in an ATP-independent manner. sHsps are dynamic, forming an ensemble of structures from dimers to large oligomers through concentration-dependent equilibrium dissociation. Based on structural studies and mutagenesis experiments, it is proposed that the dimer is the smallest active chaperone unit, while larger oligomers may act as storage depots for sHsps or play additional roles in chaperone function. The complexity and dynamic nature of their structural organization has made elucidation of their chaperone function challenging. HspB1 and HspB5 are two canonical human sHsps that vary in sequence and are expressed in a wide variety of tissues. In order to determine the role of the dimer in chaperone activity, glutathione-S-transferase (GST) was genetically linked as a fusion protein to the N-terminus regions of both HspB1 and HspB5 (also known as Hsp27 and αB-crystallin, respectively) proteins in order to constrain oligomer formation of HspB1 and HspB5, by using GST, since it readily forms a dimeric structure. We monitored the chaperone activity of these fusion proteins, which suggest they primarily form dimers and monomers and function as active molecular chaperones. Furthermore, the two different fusion proteins exhibit different chaperone activity for two model substrate proteins, citrate synthase (CS) and malate dehydrogenase (MDH). GST-HspB1 prevents more aggregation of MDH compared to GST-HspB5 and wild type HspB1. However, when CS is the substrate, both GST-HspB1 and GST-HspB5 are equally effective chaperones. Furthermore, wild type proteins do not display equal activity toward the substrates, suggesting that each sHsp exhibits different substrate specificity. Thus, substrate specificity, as described here for full-length GST fusion proteins with MDH and CS, is modulated by both sHsp oligomeric conformation and by variations of sHsp sequences.  相似文献   

5.
Small heat shock proteins (sHsps) are a widespread and diverse class of molecular chaperones. In vivo, sHsps contribute to thermotolerance. Recent evidence suggests that their function in the cellular chaperone network is to maintain protein homeostasis by complexing a variety of non-native proteins. One of the most characteristic features of sHsps is their organization into large, sphere-like structures commonly consisting of 12 or 24 subunits. Here, we investigated the functional and structural properties of Hsp20.2, an sHsp from Archaeoglobus fulgidus, in comparison to its relative, Hsp16.5 from Methanocaldococcus jannaschii. Hsp20.2 is active in suppressing the aggregation of different model substrates at physiological and heat-stress temperatures. Electron microscopy showed that Hsp20.2 forms two distinct types of octahedral oligomers of slightly different sizes, indicating certain structural flexibility of the oligomeric assembly. By three-dimensional analysis of electron microscopic images of negatively stained specimens, we were able to reconstitute 3D models of the assemblies at a resolution of 19 Å. Under conditions of heat stress, the distribution of the structurally different Hsp20.2 assemblies changed, and this change was correlated with an increased chaperone activity. In analogy to Hsp20.2, Hsp16.5 oligomers displayed structural dynamics and exhibited increased chaperone activity under conditions of heat stress. Thus, temperature-induced conformational regulation of the activity of sHsps may be a general phenomenon in thermophilic archaea.  相似文献   

6.
Human small heat shock protein 27 (Hsp27) undergoes concentration-dependent equilibrium dissociation from an ensemble of large oligomers to a dimer. This phenomenon plays a critical role in Hsp27 chaperone activity in vitro enabling high affinity binding to destabilized proteins. In vivo dissociation, which is regulated by phosphorylation, controls Hsp27 role in signaling pathways. In this study, we explore the sequence determinants of Hsp27 dissociation and define the structural basis underlying the increased affinity of Hsp27 dimers to client proteins. A systematic cysteine mutagenesis is carried out to identify residues in the N-terminal domain important for the equilibrium between Hsp27 oligomers and dimers. In addition, spin-labels were attached to the cysteine mutants to enable electron paramagnetic resonance (EPR) analysis of residue environment and solvent accessibility in the context of the large oligomers, upon dissociation to the dimer, and following complex formation with the model substrate T4 Lysozyme (T4L). The mutagenic analysis identifies residues that modulate the equilibrium dissociation in favor of the dimer. EPR analysis reveals that oligomer dissociation disrupts subunit contacts leading to the exposure of Hsp27 N-terminal domain to the aqueous solvent. Moreover, regions of this domain are highly dynamic with no evidence of a packed core. Interaction between T4L and sequences in this domain is inferred from transition of spin-labels to a buried environment in the substrate/Hsp27 complex. Together, the data provide the first structural analysis of sHSP dissociation and support a model of chaperone activity wherein unstructured and highly flexible regions in the N-terminal domain are critical for substrate binding.  相似文献   

7.
Small heat shock proteins (sHsps) usually exist as dynamic oligomers and oligomeric dissociation was believed to be a prerequisite for their chaperone activities. The truth of this hypothesis was verified in our present study on Hsp16.3, one member of sHsps from Mycobacterium tuberculosis, mainly by utilizing chemical cross-linking. Analysis using size exclusion chromatography demonstrated that the heat-induced oligomeric dissociation of Hsp16.3 was severely blocked due to highly efficient inter-subunit cross-linkages generated by chemical cross-linking, as well as its chaperone activity being reduced. Further analysis by non-denaturing pore gradient polyacrylamide gel electrophoresis and fluorescence spectrometry revealed that the dynamic oligomeric dissociation/reassociation process of Hsp16.3 at room temperature was suppressed by inter-subunit cross-linkages, accompanied by significantly decreased exposure of hydrophobic surfaces that are usually hidden in oligomers. These findings supported the hypothesis that substrate-binding sites of sHsps are exposed presumably by dissociation of larger oligomers into smaller active oligomers, and therefore such a dissociation process could be adjusted to modulate chaperone activities.  相似文献   

8.
Small heat-shock proteins (Hsps) are ubiquitous molecular chaperones which prevent the unspecific aggregation of non-native proteins. For Hsp26, a cytosolic sHsp from of Saccharomyces cerevisiae, it has been shown that, at elevated temperatures, the 24 subunit complex dissociates into dimers. This dissociation is required for the efficient interaction with non-native proteins. Deletion analysis of the protein showed that the N-terminal half of Hsp26 (amino acid residues 1-95) is required for the assembly of the oligomer. Limited proteolysis in combination with mass spectrometry suggested that this region can be divided in two parts, an N-terminal segment including amino acid residues 1-30 and a second part ranging from residues 31-95. To analyze the structure and function of the N-terminal part of Hsp26 we created a deletion mutant lacking amino acid residues 1-30. We show that the oligomeric state and the structure, as determined by size exclusion chromatography and electron microscopy, corresponds to that of the Hsp26 wild-type protein. Furthermore, this truncated version of Hsp26 is active as a chaperone. However, in contrast to full length Hsp26, the truncated version dissociates at lower temperatures and complexes with non-native proteins are less stable than those found with wild-type Hsp26. Our results suggest that the N-terminal segment of Hsp26 is involved in both, oligomerization and chaperone function and that the second part of the N-terminal region (amino acid residues 31-95) is essential for both functions.  相似文献   

9.
Small heat shock proteins (sHsps), including alpha-crystallin, represent a conserved and ubiquitous family of proteins. They form large oligomers, ranging in size from 140 to more than 800 kDa, which seem to be important for the interaction with non-native proteins as molecular chaperones. Here we analyzed the stability and oligomeric structure of murine Hsp25 and its correlation with function. Upon unfolding, the tertiary and quaternary structure of Hsp25 is rapidly lost, whereas the secondary structure remains remarkably stable. Unfolding is completely reversible, leading to native hexadecameric structures. These oligomers are in a concentration-dependent equilibrium with tetramers and dimers, indicating that tetramers assembled from dimers represent the basic building blocks of Hsp25 oligomers. At high temperatures, the Hsp25 complexes increase in molecular mass, consistent with the appearance of "heat shock granules" in vivo after heat treatment. This high molecular mass "heat shock form" of Hsp25 is in a slow equilibrium with hexadecameric Hsp25. Thus, it does not represent an off-pathway reaction. Interestingly, the heat shock form exhibits unchanged chaperone activity even after incubation at 80 degrees C. We conclude that Hsp25 is a dynamic tetramer of tetramers with a unique ability to refold and reassemble into its active quaternary structure after denaturation. So-called heat shock granules, which have been reported to appear in response to stress, seem to represent a novel functional species of Hsp25.  相似文献   

10.
Small Hsps represent a variation on the theme of protection of proteins from irreversible aggregation by reversible interaction with chaperone proteins. While different sHsps are highly heterogeneous in sequence and size, the common trait is the presence of a conserved alpha-crystallin domain. In addition sHsps assemble into large oligomeric complexes where dimers represent the basic building blocks. Hsp42, a member of the sHsp family in the cytosol of S. cerevisiae, forms ordered oligomers with a barrel-like structure. Here, we present the recombinant expression and purification of Hsp42. We demonstrate, that Hsp42 is expressed in inclusion bodies and can be resolubilized and folded to correct, active oligomers. This indicates that in contrast to thermal unfolding, the chemical disassembly and unfolding of Hsp42 is fully reversible. In comparison to the purification of mature Hsp42 from yeast, its recombinant expression leads to a substantial increase in the yield of the protein and to a reduction of contamination caused by aggregation prone proteins complexed by Hsp42. In addition, the recombinant Hsp42 is fully active as a chaperone in an energy independent manner.  相似文献   

11.
The ubiquitous small heat shock proteins (sHsps) are efficient molecular chaperones that interact with nonnative proteins, prevent their aggregation, and support subsequent refolding. No obvious substrate specificity has been detected so far. A striking feature of sHsps is that they form large complexes with nonnative proteins. Here, we used several well established model chaperone substrates, including citrate synthase, alpha-glucosidase, rhodanese, and insulin, and analyzed their interaction with murine Hsp25 and yeast Hsp26 upon thermal unfolding. The two sHsps differ in their modes of activation. In contrast to Hsp25, Hsp26 undergoes a temperature-dependent dissociation that is required for efficient substrate binding. Our analysis shows that Hsp25 and Hsp26 reacted in a similar manner with the nonnative proteins. For all substrates investigated, complexes of defined size and shape were formed. Interestingly, several different nonnative proteins could be incorporated into defined sHsp-substrate complexes. The first substrate protein bound seems to determine the complex morphology. Thus, despite the differences in quaternary structure and mode of activation, the formation of large uniform sHsp-substrate complexes seems to be a general feature of sHsps, and this unique chaperone mechanism is conserved from yeast to mammals.  相似文献   

12.
Small heat shock proteins (sHsps) usually exist as oligomers that undergo dynamic oligomeric dissociation/re-association, with the dissociated oligomers as active forms to bind substrate proteins under heat shock conditions. In this study, however, we found that Hsp16.3, one sHsp from Mycobacterium tuberculosis, is able to sensitively modulate its chaperone-like activity in a range of physiological temperatures (from 25 to 37.5 degrees C) while its native oligomeric size is still maintained. Further analysis demonstrated that Hsp16.3 exposes higher hydrophobic surfaces upon temperatures increasing and that a large soluble complex between Hsp16.3 and substrate is formed only in the condition of heating temperature up to 35 and 37.5 degrees C. Structural analysis by fluorescence anisotropy showed that Hsp16.3 nonameric structure becomes more dynamic and variable at elevated temperatures. Moreover, subunit exchange between Hsp16.3 oligomers was found to occur faster upon temperatures increasing as revealed by fluorescence energy resonance transfer. These observations indicate that Hsp16.3 is able to modulate its chaperone activity by adjusting the dynamics of oligomeric dissociation/re-association process while maintaining its static oligomeric size unchangeable. A kinetic model is therefore proposed to explain the mechanism of sHsps-binding substrate proteins through oligomeric dissociation. The present study also implied that Hsp16.3 is at least capable of binding non-native proteins in vivo while expressing in the host organism that survives at 37 degrees C.  相似文献   

13.
Molecular chaperones mainly function in assisting newly synthesized polypeptide folding and protect non-native proteins from aggregation, with known structural features such as the ability of spontaneous folding/refolding and high conformational flexibility. In this report, we verified the assumption that the lack of disulfide bonds in molecular chaperones is a prerequisite for such unique structural features. Using small heat shock protein (one sub-class of chaperones) Hsp16.3 as a model system, our results show the following: (1) Cysteine-free Hsp16.3 wild type protein can efficiently exhibit chaperone activity and spontaneously refold/reassemble with high conformational flexibility. (2) Whereas Hsp16.3 G89C mutant with inter-subunit disulfide bonds formed seems to lose the nature of chaperone proteins, i.e., under stress conditions, it neither acts as molecular chaperone nor spontaneously refolds/reassembles. Structural analysis indicated that the mutant exists as an unstable molten globule-like state, which incorrectly exposes hydrophobic surfaces and irreversibly tends to form aggregates that can be suppressed by the other molecular chaperone (alpha-crystallin). By contrast, reduction of disulfide bond in the Hsp16.3 G89C mutant can significantly recover its character as a molecular chaperone. In light of these results, we propose that disulfide bonds could severely disturb the structure/function of molecular chaperones like Hsp16.3. Our results might not only provide insights into understanding the structural basis of chaperone upon binding substrates, but also explain the observation that the occurrence of cysteine in molecular chaperones is much lower than that in other protein families, subsequently being helpful to understand the evolution of protein family.  相似文献   

14.
The small heat shock protein (sHsp), categorized into a class of molecular chaperones, binds and stabilizes denatured proteins for the purpose of preventing aggregation. The sHsps undergo transition between different oligomeric states to control their nature. We have been studying the function of sHsp of Sulfolobus tokodaii, StHsp14.0. StHsp14.0 exists as 24meric oligomer, and exhibits oligomer dissociation and molecular chaperone activity over 80°C. We constructed and characterized StHsp14.0 mutants with replacement of the C-terminal IKI to WKW, IKF, FKI and FKF. All mutant complexes dissociated into dimers at 50°C. Among them, StHsp14.0FKF is almost completely dissociated, probably to dimers. All mutants protected citrate synthase (CS) from thermal aggregation at 50°C. But, the activity of StHsp14.0FKF was the lowest. Then, we examined the complexes of StHsp14.0 mutants with denatured CS by SAXS. StHsp14.0WKW protects denatured CS by forming the globular complexes of 24 subunits and a substrate. StHsp14.0FKF also formed similar complex but the number of subunits in the complex is a little smaller. These results suggest that the dimer itself exhibits low chaperone activity, and a partially dissociated oligomer of StHsp14.0 protects a denatured protein from interacting with other molecules by surrounding it.  相似文献   

15.
Saji H  Iizuka R  Yoshida T  Abe T  Kidokoro S  Ishii N  Yohda M 《Proteins》2008,71(2):771-782
Small heat shock proteins (sHsps) are one of the most ubiquitous molecular chaperones. They are grouped together based on a conserved domain, the alpha-crystallin domain. Generally, sHsps exist as oligomers of 9-40 subunits, and the oligomers undergo reversible temperature-dependent dissociation into smaller species as dimers, which interact with denaturing substrate proteins. Previous studies have shown that the C-terminal region, especially the consensus IXI/V motif, is responsible for oligomer assembly. In this study, we examined deletions or mutations in the C-terminal region on the oligomer assembly and function of StHsp14.0, an sHsp from an acidothermophilic archaeon, Sulfolobus tokodaii strain 7. Mutated StHsp14.0 with C-terminal deletion or replacement of IIe residues in the IXI/V motif to Ala, Ser, or Phe residues could not form large oligomers and lost chaperone activity. StHsp14.0WKW, whose Ile residues in the IXI/V motif are changed to Trp, existed as an oligomer like that of the wild type. However, it dissociates to small oligomers and exhibits chaperone activity at relatively lowered temperature. Replacement of two Ile residues in the motif to relatively small residues, Ala or Ser, also resulted in the change of beta-sheet rich secondary structure and decrease of hydrophobicity. Interestingly, StHsp14.0 mutant with amino acid replacements to Phe kept almost the same secondary structure and relatively high hydrophobicity despite that it could not form an oligomeric structure. The results show that hydrophobicity and size of the amino acids in the IXI/V motif in the C-terminal region are responsible not only for assembly of the oligomer but also for the maintenance of beta-sheet rich secondary structure and hydrophobicity, which are important for the function of sHsp.  相似文献   

16.
Small heat shock proteins (sHsps) are ubiquitous molecular chaperones that prevent the unspecific aggregation of proteins. So far, Hsp26 was the only unambiguously identified member of the sHsp family in Saccharomyces cerevisiae. We show here that the sHsp system in the cytosol of S. cerevisiae consists of two proteins, Hsp26 and Hsp42. Hsp42 forms large dynamic oligomers with a barrel-like structure. In contrast to Hsp26, which functions predominantly at heat shock temperatures, Hsp42 is active as a chaperone under all conditions tested in vivo and in vitro. Under heat shock conditions, both Hsp42 and Hsp26 suppress the aggregation of one-third of the cytosolic proteins. This subset is about 90% overlapping for Hsp42 and Hsp26. The sHsp substrates belong to different biochemical pathways. This indicates a general protective function of sHsps for proteome stability in S. cerevisiae. Consistent with this observation, sHsp knockout strains show phenotypical defects. Taken together, our results define Hsp42 as an important player for protein homeostasis at physiological and under stress conditions.  相似文献   

17.
The small heat shock proteins (sHsps) from human (Hsp27) and mouse (Hsp25) form large oligomers which can act as molecular chaperones in vitro and protect cells from heat shock and oxidative stress when overexpressed. In addition, mammalian sHsps are rapidly phosphorylated by MAPKAP kinase 2/3 at two or three serine residues in response to various extracellular stresses. Here we analyze the effect of sHsp phosphorylation on its quaternary structure, chaperone function, and protection against oxidative stress. We show that in vitro phosphorylation of recombinant sHsp as well as molecular mimicry of Hsp27 phosphorylation lead to a significant decrease of the oligomeric size. We demonstrate that both phosphorylated sHsps and the triple mutant Hsp27-S15D,S78D,S82D show significantly decreased abilities to act as molecular chaperones suppressing thermal denaturation and facilitating refolding of citrate synthase in vitro. In parallel, Hsp27 and its mutants were analyzed for their ability to confer resistance against oxidative stress when overexpressed in L929 and 13.S.1.24 cells. While wild type Hsp27 confers resistance, the triple mutant S15D,S78D,S82D cannot protect against oxidative stress effectively. These data indicate that large oligomers of sHsps are necessary for chaperone action and resistance against oxidative stress whereas phosphorylation down-regulates these activities by dissociation of sHsp complexes to tetramers.  相似文献   

18.
Small heat shock proteins (sHsps) are oligomers that perform a protective function by binding denatured proteins. Although ubiquitous, they are of variable sequence except for a C-terminal approximately 90-residue "alpha-crystallin domain". Unlike larger stress response chaperones, sHsps are ATP-independent and generally form polydisperse assemblies. One proposed mechanism of action involves these assemblies breaking into smaller subunits in response to stress, before binding unfolding substrate and reforming into larger complexes. Two previously solved non-metazoan sHsp multimers are built from dimers formed by domain swapping between the alpha-crystallin domains, adding to evidence that the smaller subunits are dimers. Here, the 2.5A resolution structure of an sHsp from the parasitic flatworm Taenia saginata Tsp36, the first metazoan crystal structure, shows a new mode of dimerization involving N-terminal regions, which differs from that seen for non-metazoan sHsps. Sequence differences in the alpha-crystallin domains between metazoans and non-metazoans are critical to the different mechanism of dimerization, suggesting that some structural features seen for Tsp36 may be generalized to other metazoan sHsps. The structure also indicates scope for flexible assembly of subunits, supporting the proposed process of oligomer breakdown, substrate binding and reassembly as the chaperone mechanism. It further shows how sHsps can bind coil and secondary structural elements by wrapping them around the alpha-crystallin domain. The structure also illustrates possible roles for conserved residues associated with disease, and suggests a mechanism for the sHsp-related pathogenicity of some flatworm infections. Tsp36, like other flatworm sHsps, possesses two divergent sHsp repeats per monomer. Together with the two previously solved structures, a total of four alpha-crystallin domain structures are now available, giving a better definition of domain boundaries for sHsps.  相似文献   

19.
McHaourab HS  Lin YL  Spiller BW 《Biochemistry》2012,51(25):5105-5112
How does the sequence of a single small heat shock protein (sHSP) assemble into oligomers of different sizes? To gain insight into the underlying structural mechanism, we determined the crystal structure of an engineered variant of Methanocaldococcus jannaschii Hsp16.5 wherein a 14 amino acid peptide from human heat shock protein 27 (Hsp27) was inserted at the junction of the N-terminal region and the α-crystallin domain. In response to this insertion, the oligomer shell expands from 24 to 48 subunits while maintaining octahedral symmetry. Oligomer rearrangement does not alter the fold of the conserved α-crystallin domain nor does it disturb the interface holding the dimeric building block together. Rather, the flexible C-terminal tail of Hsp16.5 changes its orientation relative to the α-crystallin domain which enables alternative packing of dimers. This change in orientation preserves a peptide-in-groove interaction of the C-terminal tail with an adjacent β-sandwich, thereby holding the assembly together. The interior of the expanded oligomer, where substrates presumably bind, retains its predominantly nonpolar character relative to the outside surface. New large windows in the outer shell provide increased access to these substrate-binding regions, thus accounting for the higher affinity of this variant to substrates. Oligomer polydispersity regulates sHSPs chaperone activity in vitro and has been implicated in their physiological roles. The structural mechanism of Hsp16.5 oligomer flexibility revealed here, which is likely to be highly conserved across the sHSP superfamily, explains the relationship between oligomer expansion observed in disease-linked mutants and changes in chaperone activity.  相似文献   

20.
There exist two small heat shock proteins (sHsps) in the fission yeast, Schizosaccharomyces pombe (S. pombe), whose expressions are highly induced by heat stress. We have previously expressed, purified, and characterized one of the sHsps, SpHsp16.0. In this study, we examined the other sHsp, SpHsp15.8. It suppressed the thermal aggregation of citrate synthase (CS) from porcine heart and dithiothreitol-induced aggregation of insulin from bovine pancreas with very high efficiency. Almost one SpHsp15.8 subunit was sufficient to protect one protein molecule from aggregation. Like SpHsp16.0, SpHsp15.8 dissociated into small oligomers and then interacted with denatured substrate proteins. SpHsp16.0 exhibited a clear enthalpy change for denaturation occurring over 60 degrees C in differential scanning calorimetry (DSC). However, we could not observe any significant enthalpy change in the DSC of SpHsp15.8. The difference is likely to be caused by the adhesive characteristics of SpHsp15.8. The oligomer dissociation of SpHsp15.8 and SpHsp16.0 and their interactions with denatured substrate proteins were studied by fluorescence polarization analysis (FPA). Both sHsps exhibited a temperature-dependent decrease of fluorescence polarization, which correlates with the dissociation of large oligomers to small oligomers. The dissociation of the SpHsp15.8 oligomer began at about 35 degrees C and proceeded gradually. On the contrary, the SpHsp16.0 oligomer was stable up to approximately 45 degrees C, but then dissociated into small oligomers abruptly at this temperature. Interestingly, SpHsp16.0 is likely to interact with denatured CS in the dissociated state, while SpHsp15.8 is likely to interact with CS in a large complex. These results suggest that S. pombe utilizes two sHsps that function in different manners, probably to cope with a wide range of temperatures and various denatured proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号