首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bois noir (BN) is an insect-transmitted grapevine yellows disease caused by phytoplasmas belonging to the stolbur subgroup 16SrXII-A. In Italy, increasing prevalence of stolbur phytoplasma strains in vineyards suggests progressive spread of the disease and potential for heavy impacts on the wine industry. In this study, we investigated the genetic diversity of stolbur phytoplasma strains in BN phytoplasma populations. Nucleotide sequences of 16S rRNA genes from stolbur phytoplasma strains affecting vineyards in the Lombardy region of Italy and stolbur phytoplasma 16S rDNA sequences retrieved from GenBank were subjected to virtual restriction fragment length polymorphism analysis. Calculation of virtual restriction similarity coefficients revealed the presence of new subgroups in group 16SrXII (stolbur phytoplasma group). Representative strains of confirmed new subgroups 16SrXII-F (XII-F) and XII-G and tentative new subgroups XII-A1 through XII-A19, XII-H, XII-I, and XII-J as well as known subgroup XII-A were from grapevines; strains representing three additional tentative new subgroups (XII-K, XII-L and XII-M) were from other plant hosts. Nucleotide sequence alignments identified no less than nine genetically distinct 16S rDNA single nucleotide polymorphism lineages from grapevine, indicating a high degree of genetic heterogeneity within BN phytoplasma populations. The findings open new opportunities for in-depth studies of the distribution of grapevine-associated 16SrXII phytoplasma strains in weeds, insect vector populations and grapevines from vineyards located in different geographic areas.  相似文献   

2.
Three real‐time PCR–based assays for the specific diagnosis of flavescence dorée (FD), bois noir (BN) and apple proliferation (AP) phytoplasmas and a universal one for the detection of phytoplasmas belonging to groups 16Sr‐V, 16Sr‐X and 16Sr‐XII have been developed. Ribosomal‐based primers CYS2Fw/Rv and TaqMan probe CYS2 were used for universal diagnosis in real‐time PCR. For group‐specific detection of FD phytoplasma, ribosomal‐based primers fAY/rEY, specific for 16Sr‐V phytoplasmas, were chosen. For diagnosis of BN and AP phytoplasmas, specific primers were designed on non‐ribosomal and nitroreductase DNA sequences, respectively. SYBR® Green I detection coupled with melting curve analysis was used in each group‐specific protocol. Field‐collected grapevines infected with FD and BN phytoplasmas and apple trees infected with AP phytoplasma, together with Scaphoideus titanus, Hyalesthes obsoletus and Cacopsylla melanoneura adults, captured in the same vineyards and orchards, were used as templates in real‐time PCR assays. The diagnostic efficiency of each group‐specific protocol was compared with well‐established detection procedures, based on conventional nested PCR. Universal amplification was obtained in real‐time PCR from DNAs of European aster yellows (16Sr‐I), elm yellows (16Sr‐V), stolbur (16Sr‐XII) and AP phytoplasma reference isolates maintained in periwinkles. The same assay detected phytoplasma DNA in all test plants and test insect vectors infected with FD, BN and AP phytoplasmas. Our group‐specific assays detected FD, BN, and AP phytoplasmas with high efficiencies, similar to those obtained with nested PCR and did not amplify phytoplasma DNA of other taxonomic groups. Melting curve analysis was necessary for the correct identification of the specific amplicons generated in the presence of very low target concentrations. Our work shows that real‐time PCR methods can sensitively and rapidly detect phytoplasmas at the universal or group‐specific level. This should be useful in developing defence strategies and for quantitative studies of phytoplasma–plant–vector interactions.  相似文献   

3.
Bois Noir is an emergent disease of grapevine that has been associated to a phytoplasma belonging to the XII‐A stolbur group. In plants, phytoplasmas have been found mainly in phloem sieve elements, from where they spread moving through the pores of plates, accumulating especially in source leaves. To examine the expression of grapevine genes involved in sucrose transport and metabolism, phloem tissue, including sieve element/companion cell complexes and some parenchyma cells, was isolated from healthy and infected leaves by means of laser microdissection pressure catapulting (LMPC). Site‐specific expression analysis dramatically increased sensitivity, allowing us to identify specific process components almost completely masked in whole‐leaf analysis. Our findings showed decreased phloem loading through inhibition of sucrose transport and increased sucrose cleavage activity, which are metabolic changes strongly suggesting the establishment of a phytoplasma‐induced switch from carbohydrate source to sink. The analysis focused at the infection site also showed a differential regulation and specificity of two pathogenesis‐related thaumatin‐like genes (TL4 and TL5) of the PR‐5 family.  相似文献   

4.
Phormium yellow leaf (PYL) phytoplasma causes a lethal disease of the monocotyledon, New Zealand flax (Phormium tenax). The 16S rRNA genes of PYL phytoplasma were amplified from infected flax by PCR and cloned, and the nucleotide sequences were determined. DNA sequencing and Southern hybridization analysis of genomic DNA indicated the presence of two copies of the 16S rRNA gene. The two 16S rRNA genes exhibited sequence heterogeneity in 4 nucleotide positions and could be distinguished by the restriction enzymes BpmI and BsrI. This is the first record in which sequence heterogeneity in the 16S rRNA genes of a phytoplasma has been determined by sequence analysis. A phylogenetic tree based on 16S rRNA gene sequences showed that PYL phytoplasma is most closely related to the stolbur and German grapevine yellows phytoplasmas, which form the stolbur subgroup of the aster yellows group. This phylogenetic position of PYL phytoplasma was supported by 16S/23S spacer region sequence data.  相似文献   

5.
Vineyards of southern France and northern Italy are affected by the flavescence dorée (FD) phytoplasma, a quarantine pathogen transmitted by the leafhopper of Nearctic origin Scaphoideus titanus. To better trace propagation of FD strains and identify possible passage between the vineyard and wild plant compartments, molecular typing of phytoplasma strains was applied. The sequences of the two genetic loci map and uvrB-degV, along with the sequence of the secY gene, were determined among a collection of FD and FD-related phytoplasmas infecting grapevine, alder, elm, blackberry, and Spanish broom in Europe. Sequence comparisons and phylogenetic analyses consistently indicated the existence of three FD phytoplasma strain clusters. Strain cluster FD1 (comprising isolate FD70) displayed low variability and represented 17% of the disease cases in the French vineyard, with a higher incidence of the cases in southwestern France. Strain cluster FD2 (comprising isolates FD92 and FD-D) displayed no variability and was detected both in France (83% of the cases) and in Italy, whereas the more-variable strain cluster FD3 (comprising isolate FD-C) was detected only in Italy. The clonal property of FD2 and its wide distribution are consistent with diffusion through propagation of infected-plant material. German Palatinate grapevine yellows phytoplasmas (PGY) appeared variable and were often related to some of the alder phytoplasmas (AldY) detected in Italy and France. Finally, phylogenetic analyses concluded that FD, PGY, and AldY were members of the same phylogenetic subclade, which may have originated in Europe.  相似文献   

6.
During a survey in a limited area of the Shanxi province in China, phytoplasma symptoms were observed on woody plants such as Chinese scholar tree, apple, grapevine and apricot. The polymerase chain reaction/restriction fragment length polymorphism (PCR/RFLP) analyses on the phytoplasma 16S ribosomal gene confirmed that symptomatic samples from all these species were infected by phytoplasmas. The molecular characterization of the pathogen, performed also with sequencing of polymerase chain reaction amplified 16S rDNA, showed that the phytoplasmas detected in all plant species tested are closely related with stolbur, but two samples from a Chinese scholar tree were infected with phytoplasmas related to ‘Candidatus Phytoplasma japonicum’. The presence of RFLP polymorphism was found in the 16S rDNA amplicons with three of the six enzymes employed in the majority of phytoplasma strains studied.  相似文献   

7.
Laboratory trials were carried out on wild individuals of Reptalus quinquecostatus (Cixiidae), a potential vector of stolbur phytoplasma to grapevine, to assess its ability to inoculate the phytoplasma in artificial feeding medium. Seventy‐seven specimens of the cixiid were tested on a sucrose–TE (Tris–ethylenediaminetetraacetic acid) diet and 62 of them survived less than 24 h. Polymerase chain reaction (PCR) assays performed on the insect bodies detected the presence of stolbur phytoplasma, with an infection rate of 32.5%. Restriction fragment length polymorphism analysis of the tuf gene, amplified by PCR, revealed Vergilbungskrankheit type I (VK‐I) in 20 specimens, VK‐II in 4 specimens and both types in 1 specimen. Ten of the 25 infected R. quinquecostatus specimens successfully inoculated VK‐I in the sucrose solution, that is, a 40% inoculation efficiency despite the brief survival. The results indicate that R. quinquecostatus is a competent species to transmit the stolbur phytoplasma in artificial conditions. The repeated observation of adults feeding on grapevine strengthens the hypothesis that the species is a vector of stolbur phytoplasma to this plant.  相似文献   

8.
Vineyards of southern France and northern Italy are affected by the flavescence dorée (FD) phytoplasma, a quarantine pathogen transmitted by the leafhopper of Nearctic origin Scaphoideus titanus. To better trace propagation of FD strains and identify possible passage between the vineyard and wild plant compartments, molecular typing of phytoplasma strains was applied. The sequences of the two genetic loci map and uvrB-degV, along with the sequence of the secY gene, were determined among a collection of FD and FD-related phytoplasmas infecting grapevine, alder, elm, blackberry, and Spanish broom in Europe. Sequence comparisons and phylogenetic analyses consistently indicated the existence of three FD phytoplasma strain clusters. Strain cluster FD1 (comprising isolate FD70) displayed low variability and represented 17% of the disease cases in the French vineyard, with a higher incidence of the cases in southwestern France. Strain cluster FD2 (comprising isolates FD92 and FD-D) displayed no variability and was detected both in France (83% of the cases) and in Italy, whereas the more-variable strain cluster FD3 (comprising isolate FD-C) was detected only in Italy. The clonal property of FD2 and its wide distribution are consistent with diffusion through propagation of infected-plant material. German Palatinate grapevine yellows phytoplasmas (PGY) appeared variable and were often related to some of the alder phytoplasmas (AldY) detected in Italy and France. Finally, phylogenetic analyses concluded that FD, PGY, and AldY were members of the same phylogenetic subclade, which may have originated in Europe.  相似文献   

9.
Heteroduplex mobility analysis (HMA) was performed to distinguish French and German isolates of phytoplasmas from Populus nigra cv Italica witches broom. The French isolate was similar to the phytoplasma responsible for the European aster yellows while the German isolate was different but closely related to it. When phytoplasmas inducing similar "stolbur" symptoms in tomato were compared to HMA, a high degree of genetic differences was observed among the reference stolbur C (StC) isolate, the European aster yellows and the other phytoplasmas inducing stolbur or big bud symptoms in tomato. Pseudo-stolbur B and D from Brazil were differentiated from the reference St C using this method.  相似文献   

10.
In an epidemiological study conducted on commercial agricultural plots affected by stolbur phytoplasma in Northern and Central Spain, different species of leafhoppers and planthoppers were identified as potential vectors of the phytoplasma. They included individuals of Macrosteles quadripunctulatus infected by stolbur phtytoplasma in most of the locations. The potential of this species as a vector of stolbur was evaluated in this work. The transmission trials were carried out on healthy plants of Catharanthus roseus (periwinkle), Lycopersicon esculentum (tomato), Daucus carota (carrot), Lactuca sativa (lettuce) and Vitis vinifera (grapevine). The first symptoms of infection in these plants were observed 2 weeks after the inoculation period in tomato and periwinkle, and after 4 weeks in carrot. Only one of five grapevines showed phytoplasma symptoms. PCR analysis was used to verify the ability of M. quadripunctulatus in transmitting stolbur phytoplasma in the plant species tested. The phytoplasma was not detected in lettuce or in the healthy control plants. Studies of stolbur transmission to insect‐feeding medium were also conducted and indicated that M. quadripunctulatus acquires and was capable of transmitting the phytoplasma after it fed during a single day on infected plants followed by a 19‐day latent period on healthy plants.  相似文献   

11.
The grapevine disease ‘bois noir’ is widespread in European viticulture, but in many regions there is a lack of correspondence between disease spread and abundance of the main insect vector, the planthopper Hyalesthes obsoletus. This was the situation in Austria until 2012, when a mass occurrence of the vector was observed on Urtica dioica, a new host plant for the vector and reservoir plant for the pathogen, stolbur phytoplasma, in this area. Here we analyse the origin of the Austrian vector populations using genetic markers. The origin was unambiguously assigned to two regional populations, and two causes for the population expansion: immigration of East Central European populations and local demographic expansion. The observed population increase was thus independent of phylogenetic ancestry, but linked to the host plant and the exchange of a specific stolbur phytoplasma strain between the two vector populations. These circumstances are identical to but independent of the emergence of bois noir west of the European Alps, where an exchange between other vector populations associated with U. dioica of another stolbur phytoplasma genotype has led to disease outbreaks. Combined, the independent outbreaks in Austria and Europe west of the Alps are suggestive of an active role for stolbur phytoplasma in the vector–plant interaction and thus the host distribution of the vector.  相似文献   

12.
The stolbur phytoplasma ‘Candidatus Phytoplasma solani’ is responsible for the grapevine disease ‘bois noir’ affecting a number of wine‐growing areas in Europe. Transmission of stolbur phytoplasma to different laboratory hosts can be difficult due to the requirement of transmitting insect vectors or parasite plants. Here, heterologous grafting was used as an alternative technique for transmission of common and strongly symptomatic stolbur genotypes CPsM4_At1 and CPsM4_At6 of ‘Ca. P. solani’ to experimental host plants such as Catharanthus roseus and tomato making phytoplasma strains more accessible for molecular and experimental investigations in different plant species. Transmission was confirmed by quantitative PCR, microscopy and nested PCR followed by marker gene sequencing. In our study, the transmission of different genotypes of ‘Ca. P. solani’ resulted in distinguishable symptom development in the laboratory host C. roseus. Symptom development in grafted rootstock was observed three to 7 weeks after heterologous grafting. Survival of the graft unit was influenced by the presence of ‘Ca. P. solani’ in the scions and was clearly reduced in phytoplasma free scion – rootstock combinations.  相似文献   

13.
14.
Recent dramatic spread of the grapevine yellows disease Bois Noir (BN) in Germany is above all explained by highly increased abundances of the vector Hyalesthes obsoletus (Hemiptera: Cixiidae) associated to the plant Urtica dioica, the reservoir of the BN pathogen stolbur tuf‐type‐I. The vector acquires BN‐phytoplasma as larvae whilst feeding on the roots of infected U. dioica. To understand the dynamics of the Urtica‐cycle, we tested at what instar larvae become infected and whether infection affects larvae size (i.e. growth) at two sites in the Mosel Valley, Germany. Larvae were tested from infected plants and collected at instar‐stages 3, 4 and 5. Larvae at stage 3 were already infected but infection rates increased significantly between stage 3 and 5, mean infection rates: 0.12–0.62. There was no effect of infection on larval size at any instar stage.  相似文献   

15.
Visual symptom assessment, polymerase chain reaction amplification and restriction fragment length polymorphism analyses were used to detect and identify phytoplasmas infecting grapevines in Croatia. Samples were collected from different viticultural areas in order to examine geographic distribution of phytoplasmas throughout the country. Only phytoplasmas belonging to Bois Noir (subgroup 16SrXII-A or stolbur) were found in vineyards of continental Croatia. The fact that no phytoplasmas were detected in Dalmatia and Istria was in accordance with the absence of grapevine yellows symptoms in these regions.  相似文献   

16.
Columbia Basin potato purple top (PPT) phytoplasma and Alaska potato witches'‐broom (PWB) phytoplasma are two closely related but mutually distinct pathogenic bacteria that infect potato and other vegetable crops. Inhabiting phloem sieve elements and being transmitted by phloem‐feeding insect vectors, both pathogens are affiliated with ‘Candidatus Phytoplasma trifolii’ and are members of the clover proliferation phytoplasma group (16SrVI). The polyphagous nature and wide geographic distribution of their insect vectors make mixed infection inevitable. In this study, we experimentally constituted a simultaneous PPT and PWB phytoplasma infection in tomato (Solanum lycopersicum) and developed a sensitive diagnostic tool to investigate mixed infections by and in planta interactions of the two phytoplasmas. The distribution and relative abundance of the two co‐infecting phytoplasmas were monitored over a 45‐day post‐infection time course and for three serial passages in planta. Our results revealed that dual infections of the two phytoplasmas induce a new symptom unseen in infection by either phytoplasma alone. Our results also raised an interesting question as to whether the two phytoplasmas differ in ability of competitive dominance under co‐infection conditions. The molecular markers and the diagnostic tool devised in this study should be useful for further investigations of the interactions between the two closely related phytoplasmas in their hosts.  相似文献   

17.
Two independent surveys were performed in Peru during February and November 2007 to detect the presence of phytoplasmas within any crops showing symptoms resembling those caused by phytoplasmas. Molecular identifications and characterisations were based on phytoplasma 16S and 23S rRNA genes using nested PCR and terminal restriction fragment length polymorphism (T‐RFLP). The surveys indicated that phytoplasmas were present in most of the locations sampled in Peru in both cultivated crops, including carrots, maize, native potatoes, improved potato, tomato, oats, papaya and coconut, and in other plants such as dandelion and the ornamental Madagascar periwinkle (Catharanthus roseus). Phylogenetic analysis of the sequences confirmed that while most of the isolates belong to the 16SrI aster yellows group, which is ubiquitous throughout other parts of South America, one isolate from potato belongs to the 16SrII peanut witches’ broom group, and one isolate from tomato and one from dandelion belong to the 16SrIII X‐disease group. The use of T‐RFLP was validated for the evaluation of phytoplasma‐affected field samples and provided no evidence for mixed infection of individual plants with more than one phytoplasma isolate. These data represent the first molecular confirmation of the presence of phytoplasmas in a broad range of crops in Peru.  相似文献   

18.
Three real-time PCR systems for direct detection of phytoplasmas associated to Flavescence dorée (FD), Bois noir (BN) and aster yellows (AY) diseases were developed. TaqMan probes and primers were designed on the 16S ribosomal RNA sequences of phytoplasma genome. A further TaqMan assay, targeting a grapevine gene encoding for the chloroplast chaperonin 21, was developed in order to check the DNA quality and to verify the absence of PCR inhibition. A comparison between real-time PCR and conventional nested-PCR methods for phytoplasma detection was carried out on several reference samples from grapevine, periwinkle, other host plants and insect species. Detection of FD, BN and AY phytoplasma DNA on infected specimens was rapid, specific and reproducible. Sensitivity was as high as nested-PCR assay. The two procedures were then used on about 450 samples collected from grapevines showing yellows symptoms. The results showed that real-time PCR approach for phytodiagnostic purposes was more advantageous than nested-PCR method with regard to rapidity of the assay and reduced risk of sample cross contamination. These new protocols represent an improvement of existing analytical methods and could be used as a reliable diagnostic procedure in certification and control programs.  相似文献   

19.
Grapevine (Vitis vinifera) is one of the most important fruits in Iran where the provinces of Qazvin, Lorestan and Markazi are main producers. During 2013–2015, vineyards located in these provinces were surveyed to verify the presence of phytoplasma. The sample collection was based on symptomatology including decline, leaf yellowing and shortening of internodes. Total DNA was extracted from symptomatic and symptomless grapevine samples and used in nested‐polymerase chain reaction (PCR) assays with phytoplasma ribosomal primers (P1/Tint followed by R16F2n/R2, R16mF1/mR1, R16(I)F1/R1 or 6R758f/16R1232r). Nested‐PCR products were obtained only for symptomatic samples while samples from symptomless plants yielded no PCR products. Restriction fragment length polymorphism (RFLP) analyses with Tru1I, TaqI and Tsp509I and direct sequencing of amplicons followed by phylogenetic analyses indicated the presence of ‘Candidatus Phytoplasma fraxini’, ‘Ca. P. aurantifolia’, ‘Ca. P. solani’ and ‘Ca. P. phoenicium’‐related strains. In Marzaki province, there ‘Ca. P. aurantifolia’ strains were mainly detected, while in the other two provinces, all the four ‘Candidatus species’ were identified with the prevalence of ‘Ca. P. solani’‐related strains. In both provinces in one case, mixed phytoplasma infection was also detected by RFLP analyses. The presence of different phytoplasmas in positive samples indicates great phytosanitary significance due to grapevine economic importance for country. Grapevine phytoplasma infection represents a threat for other crops suggesting grapevine as alternative host species for the phytoplasmas already reported in Iran, while the ‘Ca. P. fraxini’ is for the first time identified in Iran.  相似文献   

20.
Flavescence dorée (FD) is among the major grapevine diseases causing high management costs; curative methods against FD are unavailable. In FD‐infected plants, decrease in photosynthesis is usually recorded, but deregulation in stomatal control of leaf gas exchange during FD infection and recovery is unknown. We measured the seasonal time course of gas exchange rates in two cultivars (‘Barbera’ and ‘Nebbiolo’) during the term of 1 year when grapevines experienced a water stress and another with no drought, with difference in gas exchange rates in response to FD infection and recovery as assessed by symptom observation and phytoplasma detection through PCR analysis. Chlorophyll fluorescence was also evaluated at the time of maximum symptom severity in ‘Barbera’, the cultivar showing the most severe stress response to FD infection, causing the highest damage in vineyards of north‐western Italy. In FD‐infected plants, net photosynthesis and transpiration gradually decreased during the season, more during the no drought year than during drought. During recovery, healthy (PCR negative) plants infected 2 years before, but not those infected an year before, regained the gas exchange performances to the level as measured before infection. The relationships between stomatal conductance and the residual leaf intercellular CO2 concentration (ci) discriminated healthy versus FD‐infected and recovered plants; at the same ci, FD‐infected leaves had higher non‐photochemical quenching than healthy ones. We conclude that metabolic, not stomatal, leaf gas exchange limitation in FD‐infected and recovered grapevines is the basis of plant response to FD disease. In addition, we also suggest that such response is dependent upon water stress, by showing that water stress superimposes on FD infection in terms of stomatal and metabolic non‐stomatal limitations to carbon assimilation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号