首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
In response to osmotic stress, proline is accumulated in many bacterial and plant cells. During various stresses, the yeast Saccharomyces cerevisiae induces glycerol or trehalose synthesis, but the fluctuations in gene expression and intracellular levels of proline in yeast are not yet well understood. We previously found that proline protects yeast cells from damage by freezing, oxidative, or ethanol stress. In this study, we examined the relationships between the gene expression profiles and intracellular contents of glycerol, trehalose, and proline under stress conditions. When yeast cells were exposed to 1 M sorbitol stress, the expression of GPD1 encoding glycerol-3-phosphate dehydrogenase is induced, leading to glycerol accumulation. In contrast, in the presence of 9% ethanol, the rapid induction of TPS2 encoding trehalose-6-phosphate phosphatase resulted in trehalose accumulation. We found that intracellular proline levels did not increase immediately after addition of sorbitol or ethanol. However, the expressions of genes involved in proline synthesis and degradation did not change during exposure to these stresses. It appears that the elevated proline levels are due primarily to an increase in proline uptake from a nutrient medium caused by the induction of PUT4. These results suggest that S. cerevisiae cells do not accumulate proline in response to sorbitol or ethanol stress different from other organisms.  相似文献   

2.
The lower lethal temperature of many insects indicates an overwintering flexibility as a result of either extensive supercooling or production of cryoprotectants. Ontogenetically, the gall fly (Eurosta solidagensis) utilizes both means of seasonal cryoprotection. All stages except third instar larvae demonstrate supercooling points well below the lowest temperature normally experienced by that particular stage. The third instar larvae exhibit a high supercooling point but are well protected by a cryoprotectant system consisting of glycerol, sorbitol, and trehalose. Glycerol is accumulated, possibly from triglyceride sources, during early autumn and reaches plateau levels (0·6 M) by early winter. Sorbitol synthesis is delayed until freezing exposures and reaches a plateau with glycerol at 0·3 M. It is not until mid-winter that peak trehalose levels are reached (300 mg %). All cryoprotectant levels are a reflection of haemolymph concentrations.Laboratory acclimation experiments further quantify these results. Trehalose synthesis is time and temperature dependent and appears to be affected by developmental processes.  相似文献   

3.
Steinernema feltiae is a moderately freeze-tolerant entomopathogenic nematode which survives intracellular freezing. We have detected by gas chromatography that infective juveniles of S. feltiae produce cryoprotectants in response to cold acclimation and to freezing. Since the survival of this nematode varies with temperature, we analyzed their cryoprotectant profiles under different acclimation and freezing regimes. The principal cryoprotectants detected were trehalose and glycerol with glucose being the minor component. The amount of cryoprotectants varied with the temperature and duration of exposure. Trehalose was accumulated in higher concentrations when nematodes were acclimated at 5°C for two weeks whereas glycerol level decreased from that of the non-acclimated controls. Nematodes were seeded with a small ice crystal and held at -1°C, a regime that does not produce freezing of the nematodes but their bodies lose water to the surrounding ice (cryoprotective dehydration). This increased the levels of both trehalose and glycerol, with glycerol reaching a higher concentration than trehalose. Nematodes frozen at -3°C, a regime that produces freezing of the nematodes and results in intracellular ice formation, had elevated glycerol levels while trehalose levels did not change. Steinernema feltiae thus has two strategies of cryoprotectant accumulation: one is an acclimation response to low temperature when the body fluids are in a cooled or supercooled state and the infective juveniles produce trehalose before freezing. During this process a portion of the glycerol is converted to trehalose. The second strategy is a rapid response to freezing which induces the production of glycerol but trehalose levels do not change. These low molecular weight compounds are surmised to act as cryoprotectants for this species and to play an important role in its freezing tolerance.  相似文献   

4.
Trehalose, a non-reducing disaccharide that accumulates in Saccharomyces cerevisiae, has been implicated in survival under various stress conditions by acting as membrane protectant, as a supplementary compatible solute or as a reserve carbohydrate which may be mobilized during stress. However, most of these studies have been done with strains isolated from European or Asian habitats of temperate climate. In this study, yeasts living in tropical environments, isolated from different microhabitats in Southeastern Brazil, were used to evaluate whether trehalose contributes to survival under osmotic, ethanol and heat stress. The survival under severe stress was compared to a well-characterized laboratorial wild-type strain (D273-10B). Most of the Saccharomyces cerevisiae strains isolated from Drosophila in Tropical Rain Forest were able to accumulate trehalose after a preconditioning treatment at 40 °C for 1 h. The amount of intracellular trehalose levels was better correlated with survival during a challenging heat shock at 50.5 °C for 8 min. Saccharomyces cerevisiae and Candida guilliermondii were observed to be thermotolerant as well as osmotolerant. No clear correlation between intracellular trehalose levels and survival could be derived during ethanol stress. In some cases, the amount of trehalose accumulated before the ethanol stress seemed to play an important role for the survival of these strains.  相似文献   

5.
Endocytosis in Saccharomyces cerevisiae is inhibited by concentrations of ethanol of 2 to 6% (vol/vol), which are lower than concentrations commonly present in its natural habitats. In spite of this inhibition, endocytosis takes place under enological conditions when high concentrations of ethanol are present. Therefore, it seems that yeast has developed some means to circumvent the inhibition. In this work we have investigated this possibility. We identified two stress conditions under which endocytosis was resistant to inhibition by ethanol: fermentation during nitrogen starvation and growth on nonfermentable substrates. Under these conditions, yeast accumulates stress protectors, primarily trehalose and Hsp104, a protein required for yeast to survive ethanol stress. We found the following. (i) The appearance of ethanol resistance was accompanied by trehalose accumulation. (ii) Mutant cells unable to synthesize trehalose also were unable to develop resistance. (iii) Mutant cells that accumulated trehalose during growth on sugars were resistant to ethanol even under this nonstressing condition. (iv) Mutant cells unable to synthesize Hsp104 were able to develop resistance. We conclude that trehalose is the major factor in the protection of endocytosis from ethanol. Our results suggest another important physiological role for trehalose in yeast.  相似文献   

6.
The accumulation of low molecular weight sugars and polyols is one of major mechanisms hypothesized to increase cold tolerance in overwintering insects. But little is known about whether these sugars and polyols are involved in geographic variation of cold tolerance. In this study, we investigated accumulation patterns of eight low molecular weight sugars and polyols of eggs in tropical and temperate populations of the migratory locust, which exhibits between-population variation in cold tolerance, in response to cold acclimation (5, 0 and −5 °C). Excluding erythritol, the other seven carbohydrates were identified as possible cryoprotectants in locust eggs. Basal maximal and minimal concentrations were 45 μg/g wet weight for trehalose and 0.59 μg/g wet weight for glycerol. Most sugars and polyols were elevated after a −5 °C exposure. In a tropical population, fructose, glucose, sorbitol and myo-inositol were significantly accumulated by low temperature treatments, but glycerol was not. In the temperate population, glycerol, glucose, mannitol, sorbitol, myo-inositol were significantly accumulated but trehalose did not increase. Our results suggest different accumulation patterns of these carbohydrates of locust eggs between tropical and temperate populations and highlighted possible roles for them in geographic variation of cold tolerance in the migratory locust.  相似文献   

7.
Maize is a cereal crop that is grown widely throughout the world in a range of agro-ecological environments. Trehalose is a nonreducing disaccharide of glucose that has been associated with tolerance to different stress conditions, including salt and drought. Bioinformatic analysis of genes involved in trehalose biosynthesis and degradation in maize has not been reported to date. Through systematic analysis, 1 degradation-related and 36 trehalose biosynthesis-related genes were identified. The conserved domains and phylogenetic relationships among the deduced maize proteins and their homologs, isolated from other plant species such as Arabidopsis and rice, were revealed. Using a comprehensive approach, the intron/exon structures and expression patterns of all identified genes and their responses to salt stress, jasmonic acid, and abscisic acid treatment were analyzed. Microarray data demonstrated that some of the genes show differential, organ-specific expression patterns in the 60 different developmental stages of maize. It was discovered that some of the key enzymes such as hexokinase, trehalose-6-phosphate synthase, and trehalose-6-phosphate phosphatase are encoded by multiple gene members with different expression patterns. The results highlight the complexity of trehalose metabolism and provide useful information for improving maize stress tolerance through genetic engineering.  相似文献   

8.
在以卵滞育的昆虫中昆虫滞育时的生理代谢特点已经得到了大量研究。本文对以末龄幼虫(5龄)滞育的大斑芫菁Mylabris phalerate(Pallas)在不同滞育阶段体内糖类和醇类代谢的特征进行了研究。结果表明: 滞育个体血淋巴中的海藻糖含量高于非滞育个体,且随滞育时间的加大逐渐升高,滞育5个月时达到最大值,为5.61 μmol/mL。糖原的含量随滞育的进程逐渐减少,滞育初期(0.5个月)为0.72 mg/mL,到滞育末期(5个月)时仅为0.1 mg/mL。滞育个体脂肪体中的海藻糖含量都高于非滞育个体,滞育1个月时为非滞育个体的3倍,至滞育末期时达非滞育个体的5倍,为2.5 μmol/g脂肪体。糖原含量总体变化趋势是随滞育时间的加大逐渐减少,滞育早期和中期都高于非滞育个体。在滞育过程中血淋巴积累的小分子多元醇主要为甘油,其次是山梨醇;而在脂肪体中主要为甘油,其次是甘露醇,少量积累山梨醇:表明大斑芫菁滞育幼虫主要积累的是海藻糖和一些小分子多元醇。滞育幼虫在准备滞育时储备了大量糖原,这些糖原可能为滞育期间海藻糖、山梨醇和甘油的代谢提供了原料。  相似文献   

9.
Natural abundance 13C nuclear magnetic resonance spectroscopy identified the disaccharide trehalose as the major organic osmolyte synthesized by Escherichia coli grown in continuous culture under nitrogen limitation in the presence of 0.5 M-NaCl. Trehalose accumulation was dependent on both the growth phase of the culture and the osmolality of the growth medium, but independent of the solute used to increase the osmolality as long as the solute was non-penetrant. The penetrant solute glycerol did not induce trehalose synthesis indicating that the loss of cell turgor rather than increasing medium osmolality per se was the mechanism stimulating trehalose synthesis. Under conditions of either carbon or nitrogen limitation osmoadaptation was distinctly biphasic. The initial response consisted of a rapid (within 30 min) accumulation of K+ and a concurrent synthesis of the amino acid glutamate; trehalose synthesis occurred during the second slower phase of osmoadaption. Chloramphenicol severely inhibited trehalose accumulation indicating that the enzyme(s) involved in trehalose synthesis were inducible.  相似文献   

10.
L André  A Hemming  L Adler 《FEBS letters》1991,286(1-2):13-17
Production of glycerol and a key enzyme in glycerol production, glycerol 3-phosphate dehydrogenase (NAD+) (GPD), was studied in Saccharomyces cerevisiae cultured in basal media or media of high salinity, with glucose, raffinose or ethanol as the sole carbon source. At high salinity, glycerol production was stimulated with all carbon sources and glycerol was accumulated to high intracellular concentration in cells grown on glucose and raffinose. Cells grown on ethanol accumulated glycerol to a lower level but showed an increased content of trehalose at high salinity. However, the trehalose concentration corresponded only to about 20% of the glycerol level, and did not compensate for the shortfall in intracellular osmolyte content. Immunoblot analysis demonstrated an increased production of GPD at high salinity. This increase was osmotically mediated but was lower when glycerol was substituted for NaCl or sorbitol as the stress-solute. The enzyme also appeared to be subject to glucose repression; the specific activity of GPD was significantly lower in cells grown on glucose, than on raffinose or ethanol.  相似文献   

11.
We investigated the mechanisms of osmoadaptation in the order Halobacteriales, with special emphasis on Haladaptatus paucihalophilus, known for its ability to survive in low salinities. H. paucihalophilus genome contained genes for trehalose synthesis (trehalose-6-phosphate synthase/trehalose-6-phosphatase (OtsAB pathway) and trehalose glycosyl-transferring synthase pathway), as well as for glycine betaine uptake (BCCT family of secondary transporters and QAT family of ABC transporters). H. paucihalophilus cells synthesized and accumulated ∼1.97–3.72 μmol per mg protein of trehalose in a defined medium, with its levels decreasing with increasing salinities. When exogenously supplied, glycine betaine accumulated intracellularly with its levels increasing at higher salinities. RT-PCR analysis strongly suggested that H. paucihalophilus utilizes the OtsAB pathway for trehalose synthesis. Out of 83 Halobacteriales genomes publicly available, genes encoding the OtsAB pathway and glycine betaine BCCT family transporters were identified in 38 and 60 genomes, respectively. Trehalose (or its sulfonated derivative) production and glycine betaine uptake, or lack thereof, were experimentally verified in 17 different Halobacteriales species. Phylogenetic analysis suggested that trehalose synthesis is an ancestral trait within the Halobacteriales, with its absence in specific lineages reflecting the occurrence of gene loss events during Halobacteriales evolution. Analysis of multiple culture-independent survey data sets demonstrated the preference of trehalose-producing genera to saline and low salinity habitats, and the dominance of genera lacking trehalose production capabilities in permanently hypersaline habitats. This study demonstrates that, contrary to current assumptions, compatible solutes production and uptake represent a common mechanism of osmoadaptation within the Halobacteriales.  相似文献   

12.
13.
Trehalose metabolism in yeast has been related to stress and could be used as a stress indicator. Winemaking conditions are stressful for yeast and understanding trehalose metabolism under these conditions could be useful for controlling alcoholic fermentation. In this study, we analysed trehalose metabolism of a commercial wine yeast strain during alcoholic fermentation by varying the nitrogen levels from low (below adequate) to high (excess). We determined trehalose, nitrogen, sugar consumption and expression of NTH1, NTH2 and TPS1. Our results show that trehalose metabolism is slightly affected by nitrogen availability and that the main consumption of nitrogen occurs in the first 24 h. After this period, nitrogen is hardly taken up by the yeast cells. Although nitrogen and sugar are still available, no further growth is observed in high concentrations of nitrogen. Increased expression of genes involved in trehalose metabolism occurs mainly at the end of the growth period. This could be related to an adaptive mechanism for fine tuning of glycolysis during alcoholic tumultuous fermentation, as both anabolic and catabolic pathways are affected by such expression.  相似文献   

14.
Trehalose is a non-reducing disaccharide of glucose that confers tolerance against abiotic stresses in many diverse organisms, including higher plants. It was previously reported that overexpression of the yeast trehalose-6-phosphate synthase gene in tomato results in improved tolerance against abiotic stresses. However, these transgenic tomato plants had stunted growth and pleiotropic changes in appearance. In this study, transgenic tomato plants were generated by the introduction of a gene encoding a bifunctional fusion of trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase genes from Escherichia coli under the control of the CaMV35S promoter. Transgenic plants accumulated higher levels of trehalose in their leaves and exhibited enhanced drought and salt tolerance and photosynthetic rates under salt stress conditions than wild-type plants. All of the transgenic plants had normal growth patterns and appearances. Therefore, the system described in this study can be used for practical application of the gene in crop improvement.  相似文献   

15.
Saccharomyces cerevisiae cells show under suboptimal growth conditions a complex response that leads to the acquisition of tolerance to different types of environmental stress. This response is characterised by enhanced expression of a number of genes which contain so-called stress-responsive elements (STREs) in their promoters. In addition, the cells accumulate under suboptimal conditions the putative stress protectant trehalose. In this work, we have examined the expression of four genes encoding subunits of the trehalose synthase complex,GGS1/TPS1, TPS2, TPS3 andTSL1. We show that expression of these genes is coregulated under stress conditions. Like for many other genes containing STREs, expression of the trehalose synthase genes is also induced by heat and osmotic stress and by nutrient starvation, and negatively regulated by the Ras-cAMP pathway. However, during fermentative growth onlyTSL1 shows an expression pattern like that of the STRE-controlled genesCTT1 andSSA3, while expression of the three other trehalose synthase genes is only transiently down-regulated. This difference in expression might be related to the known requirement of trehalose biosynthesis for the control of yeast glycolysis and hence for fermentative growth. We conclude that the mere presence in the promoter of (an) active STRE(s) does not necessarily imply complete coregulation of expression. Additional mechanisms appear to fine tune the activity of STREs in order to adapt the expression of the downstream genes to specific requirements.  相似文献   

16.
Endocytosis in Saccharomyces cerevisiae is inhibited by concentrations of ethanol of 2 to 6% (vol/vol), which are lower than concentrations commonly present in its natural habitats. In spite of this inhibition, endocytosis takes place under enological conditions when high concentrations of ethanol are present. Therefore, it seems that yeast has developed some means to circumvent the inhibition. In this work we have investigated this possibility. We identified two stress conditions under which endocytosis was resistant to inhibition by ethanol: fermentation during nitrogen starvation and growth on nonfermentable substrates. Under these conditions, yeast accumulates stress protectors, primarily trehalose and Hsp104, a protein required for yeast to survive ethanol stress. We found the following. (i) The appearance of ethanol resistance was accompanied by trehalose accumulation. (ii) Mutant cells unable to synthesize trehalose also were unable to develop resistance. (iii) Mutant cells that accumulated trehalose during growth on sugars were resistant to ethanol even under this nonstressing condition. (iv) Mutant cells unable to synthesize Hsp104 were able to develop resistance. We conclude that trehalose is the major factor in the protection of endocytosis from ethanol. Our results suggest another important physiological role for trehalose in yeast.  相似文献   

17.
Heat-shock response is highly conserved in animals and microorganisms, and it results in the synthesis of heat-shock proteins. In yeast, heat-shock response has also been reported to induce trehalose accumulation. We explored the relationship between heat- (35 C) or cold-shock (1 and 10 C) and trehalose metabolism in the entomopathogenic nematode, Heterorhabditis bacteriophora. Because both heat- and cold-shocks may precede desiccation stress in natural soil environments, we hypothesized that nematodes may accumulate a general desiccation protectant, trehalose, under both situations. Indeed, both heat- and cold-shocks influenced trehalose accumulation and activities of enzymes of trehalose metabolism in H. bacteriophora. Trehalose increased by 5- and 6-fold in heat- and cold-shocked infective juveniles, respectively, within 3 hr of exposure, compared with the nematodes maintained at 25 C (culture temperature). The activity of trehalose-6-phosphate synthase (T6PS), an enzyme involved in the synthesis of trehalose, also significantly increased in both heat- and cold-shocked nematodes during the first 3 hr of exposure. Generally, the trehalose levels and activities of T6PS declined to their original levels within 3 hr when nematodes were transferred back to 25 C. In both heat- and cold-shocked nematodes, trehalase activity decreased significantly within the first 3 hr and generally returned to the original levels within 3 hr when these nematodes were transferred back to 25 C. The results demonstrate that the trehalose concentrations in H. bacteriophora are influenced by both heat- and cold-shocks and are regulated by the action of 2 trehalose-metabolizing enzymes, T6PS and trehalase. The accumulated trehalose may enhance survival of nematodes under both cold and warm conditions, but it may also provide simultaneous protection against desiccation that may result from subsequent evaporation or freezing. This is the first report of the relationship between trehalose metabolism and heat-shock for the Nematoda.  相似文献   

18.
Trehalose considerably increased the tolerance of Escherichia coli to air drying, whether added as an excipient prior to drying or accumulated as a compatible solute in response to osmotic stress. The protective effect of exogenously added trehalose was concentration dependent, up to a threshold value of 350 mM. However, trehalose alone cannot explain the intrinsically greater desiccation tolerance of stationary compared to exponential phase E. coli cells, although their tolerance was also enhanced by exogenous or endogenously accumulated trehalose. In contrast, glycine betaine whether added as an excipient or accumulated intracellularly had no influence on desiccation tolerance. These data demonstrate that the protection provided by compatible solutes to cells subjected to desiccation differs from that during osmotic stress, due to the much greater reduction in available cell water. The protective effects of trehalose during desiccation appear to be due to its stabilising influence on membrane structure, its chemically inert nature and the propensity of trehalose solutions to form glasses upon drying, properties which are not shared by glycine betaine.  相似文献   

19.
Turkel S 《Mikrobiologiia》2006,75(6):737-741
Trehalose and glycogen accumulate in certain yeast species when they are exposed to unfavorable growth conditions. Accumulations of these reserve carbohydrates in yeasts provide resistance to stress conditions. The results of this study indicate that certain Pichia species do not accumulate high levels of glycogen and trehalose under normal growth conditions. However, depending on the Pichia species, both saccharides accumulate at high levels when the Pichia cells are exposed to unfavorable or stress-inducing growth conditions. Growth on glycerol or methanol mostly led to trehalose accumulation in Pichia species tested in this study. It was shown that the metabolic pathways for glycogen and trehalose biosynthesis are present in Pichia species. However, it appears that the biosynthesis of trehalose and glycogen may be regulated in different manners in Pichia species than in the yeast S. cerevisiae.  相似文献   

20.
Neurospora crassa conidiospore germlings exposed to a heat shock (30-45 C) rapidly accumulated trehalose and degraded glycogen, even in the presence of cycloheximide. This phenomenon was also rapidly reversible upon return of the cells at 30 degrees C. Trehalose accumulation at 45 degrees C demanded an exogenous source of carbon and either glucose or glycerol fulfilled such requirement. Experiments with the cyclic AMP-deficient cr-1 mutant suggested that the effects of temperature shifts on trehalose level were independent of cAMP metabolism. Cells exposed at 45 degrees C under conditions permissive for trehalose accumulation (i.e. in the presence of an assimilable carbon source) also acquired thermotolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号