首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 48 毫秒
1.
Two major proteolytic cleavages, one at NITEGE(373)/A(374)RGSVI and the other at VDIPEN(341)/F(342)FGVGG, have been shown to occur in vivo within the interglobular domain of aggrecan. The Glu(373)-Ala(374) site is cleaved in vitro by aggrecanase-1 (ADAMTS4) and aggrecanase-2 (ADAMTS5), whereas the other site, at Asn(341)-Phe(342), is efficiently cleaved by matrix metalloproteinases (MMPs) and by cathepsin B at low pH. Accordingly, the presence of the cleavage products globular domain 1 (G1)-NITEGE(373) and G1-VDIPEN(341) in vivo has been widely interpreted as evidence for the specific involvement of ADAMTS enzymes and MMPs/cathepsin B, respectively, in aggrecan proteolysis in situ. We show here, in digests with native human aggrecan, that purified ADAMTS4 cleaves primarily at the Glu(373)-Ala(374) site, but also, albeit slowly and secondarily, at the Asn(341)-Phe(342) site. Cleavage at the Asn(341)-Phe(342) site in these incubations was due to bona fide ADAMTS4 activity (and not a contaminating MMP) because the cleavage was inhibited by TIMP-3 (a potent inhibitor of ADAMTS4), but not by TIMP-1 and TIMP-2, at concentrations that totally blocked MMP-3-mediated cleavage at this site. Digestion of recombinant human G1-G2 (wild-type and cleavage site mutants) confirmed the dual activity of ADAMTS4 and supported the idea that the enzyme cleaves primarily at the Glu(373)-Ala(374) site and secondarily generates G1-VDIPEN(341) by removal of the Phe(342)-Glu(373) peptide from G1-NITEGE(373). These results show that G1-VDIPEN(341) is a product of both MMP and ADAMTS4 activities and challenge the widely held assumption that this product represents a specific indicator of MMP- or cathepsin B-mediated aggrecan degradation.  相似文献   

2.
The proteoglycan aggrecan is an important major component of cartilage matrix that gives articular cartilage the ability to withstand compression. Increased breakdown of aggrecan is associated with the development of arthritis and is considered to be catalyzed by aggrecanases, members of the ADAM-TS family of metalloproteinases. Four endogenous tissue inhibitors of metalloproteinases (TIMPs) regulate the activities of functional matrix metalloproteinases (MMPs), enzymes that degrade most components of connective tissue, but no endogenous factors responsible for the regulation of aggrecanases have been found. We show here that the N-terminal inhibitory domain of TIMP-3, a member of the TIMP family that has functional properties distinct from other TIMPs, is a strong inhibitor of human aggrecanases 1 and 2, with K(i) values in the subnanomolar range. This truncated inhibitor, which lacks the C-terminal domain that is responsible for interactions with molecules other than active metalloproteinases, is produced at high yield by bacterial expression and folding from inclusion bodies. This provides a starting point for developing a biologically available aggrecanase inhibitor suitable for the treatment of arthritis.  相似文献   

3.
Proteolysis of the hyalectans (aggrecan, versican, brevican) in vivo appears to result from the activity of ADAMTS4 (aggrecanase-1, herein referred to as an hyalectanase). To examine the mode of activation of ADAMTS4, a human chondrosarcoma cell line, JJ012, has been stably transfected with the full-length c-DNA for human ADAMTS4. The cells synthesized a high molecular weight form of the enzyme (p100), which in serum-free culture was processed to three truncated forms, p75, p60, and p50. Treatment of the p100 form with recombinant furin indicated that the p75 form is generated by the removal of the prodomain by a furin-like activity. Analysis with domain-specific antisera showed that the p60 and p50 forms are generated by C-terminal truncation of the p75 form. The appearance of the p60 and p50 forms in culture medium was prevented by inclusion of a furin inhibitor, inhibitors of glycosylphosphatidylinositol synthesis, glucosamine, a hydroxamate-based matrix metalloproteinase (MMP) inhibitor, and TIMP-1, but not by AEBSF (4-(2-aminoethyl)benzenesulfonyl fluoride) or E64. Only medium samples containing the p60/p50 forms exhibited aggrecanase activity, and isolation of the p75, p60, and p50 forms by preparative SDS-PAGE showed that only p60 and p50 were active in aggrecanase and versicanase assays. Pig synovium and human cartilages also contained ADAMTS4 in the p75, p60, and p50 forms. We suggest that in vivo production of proteolytically active ADAMTS4 requires not only removal of the prodomain by a furin-like activity but also MMP-mediated removal of a portion of the C-terminal spacer domain.  相似文献   

4.
ADAMTS4 (aggrecanase-1), a secreted enzyme belonging to the ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) gene family, is considered to play a key role in the degradation of cartilage proteoglycan (aggrecan) in osteoarthritis and rheumatoid arthritis. To clone molecules that bind to ADAMTS4, we screened a human chondrocyte cDNA library by the yeast two-hybrid system using the ADAMTS4 spacer domain as bait and obtained cDNA clones derived from fibronectin. Interaction between ADAMTS4 and fibronectin was demonstrated by chemical cross-linking. A yeast two-hybrid assay and solid-phase binding assay using wild-type fibronectin and ADAMTS4 and their mutants demonstrated that the C-terminal domain of fibronectin is capable of binding to the C-terminal spacer domain of ADAMTS4. Wild-type ADAMTS4 was co-localized with fibronectin as determined by confocal microscopy on the cell surface of stable 293T transfectants expressing ADAMTS4, although ADAMTS4 deletion mutants, including Delta Sp (Delta Arg(693)-Lys(837), lacking the spacer domain), showed negligible localization. The aggrecanase activity of wild-type ADAMTS4 was dose-dependently inhibited by fibronectin (IC(50) = 110 nm), whereas no inhibition was observed with Delta Sp. The C-terminal 40-kDa fibronectin fragment also inhibited the activity of wild-type ADAMTS4 (IC(50) = 170 nm). These data demonstrate for the first time that the aggrecanase activity of ADAMTS4 is inhibited by fibronectin through interaction with their C-terminal domains and suggest that this extracellular regulation mechanism of ADAMTS4 activity may be important for the degradation of aggrecan in arthritic cartilage.  相似文献   

5.
Tissue inhibitors of metalloproteinases (TIMPs) are the endogenous inhibitors of the matrix metalloproteinases, the ADAMs (a disintegrin and metalloproteinase) and the ADAM-TS (ADAM with thrombospondin repeats) proteinases. There are four mammalian TIMPs (TIMP-1 to -4), and each TIMP has its own profile of metalloproteinase inhibition. TIMP-4 is the latest member of the TIMPs to be cloned, and it has never been reported to be active against the tumor necrosis factor-alpha-converting enzyme (TACE, ADAM-17). Here we examined the inhibitory properties of the full-length and the N-terminal domain form of TIMP-4 (N-TIMP-4) with TACE and showed that N-TIMP-4 is a far superior inhibitor than its full-length counterpart. Although full-length TIMP-4 displayed negligible activity against TACE, N-TIMP-4 is a slow tight-binding inhibitor with low nanomolar binding affinity. Our findings suggested that the C-terminal subdomains of the TIMPs have a significant impact over their activities with the ADAMs. To elucidate further the molecular basis that underpins TIMP/TACE interactions, we sculpted N-TIMP-4 with the surface residues of TIMP-3, the only native TIMP inhibitor of the enzyme. Transplantation of only three residues, Pro-Phe-Gly, onto the AB-loop of N-TIMP-4 resulted in a 10-fold enhancement in binding affinity; the K(i) values of the resultant mutant were almost comparable with that of TIMP-3. Further mutation at the EF-loop supported our earlier findings on the preference of TACE for leucine at this locus. Drawing together our previous experience in TACE-targeted mutagenesis by using TIMP-1 and -2 scaffolds, we have finally resolved the mystery of the selective sensitivity of TACE to TIMP-3.  相似文献   

6.
The tissue inhibitors of metalloproteinases (TIMPs) are endogenous inhibitors of the matrix metalloproteinases (MMPs), enzymes that play central roles in the degradation of extracellular matrix components. The balance between MMPs and TIMPs is important in the maintenance of tissues, and its disruption affects tissue homoeostasis. Four related TIMPs (TIMP-1 to TIMP-4) can each form a complex with MMPs in a 1:1 stoichiometry with high affinity, but their inhibitory activities towards different MMPs are not particularly selective. The three-dimensional structures of TIMP-MMP complexes reveal that TIMPs have an extended ridge structure that slots into the active site of MMPs. Mutation of three separate residues in the ridge, at positions 2, 4 and 68 in the amino acid sequence of the N-terminal inhibitory domain of TIMP-1 (N-TIMP-1), separately and in combination has produced N-TIMP-1 variants with higher binding affinity and specificity for individual MMPs. TIMP-3 is unique in that it inhibits not only MMPs, but also several ADAM (a disintegrin and metalloproteinase) and ADAMTS (ADAM with thrombospondin motifs) metalloproteinases. Inhibition of the latter groups of metalloproteinases, as exemplified with ADAMTS-4 (aggrecanase 1), requires additional structural elements in TIMP-3 that have not yet been identified. Knowledge of the structural basis of the inhibitory action of TIMPs will facilitate the design of selective TIMP variants for investigating the biological roles of specific MMPs and for developing therapeutic interventions for MMP-associated diseases.  相似文献   

7.
Pro-inflammatory cytokines induce meniscal matrix degradation and inhibition of endogenous repair mechanisms, but the pathogenic mechanisms behind this are mostly unknown. Therefore, we investigated details of interleukin-1 (IL-1α)-induced aggrecan turnover in mature meniscal tissue explants. Fibro-cartilagenous disks (3 mm diameter × 1 mm thickness) were isolated from the central, weight-bearing region of menisci from 2-year-old cattle. After 3 or 6 days of IL-1α-treatment, GAG loss (DMMB assay), biosynthetic activity ([35SO4]-sulfate and [3H]-proline incorporation), gene expression (quantitative RT-PCR) and the abundance (zymography, Western blot) of matrix-degrading enzymes and specific aggrecan products were determined. Meniscal fibrocartilage had a 4-fold lower GAG content (per wet weight) than adjacent articular cartilage, and expressed MMPs-1, -2, -3 and ADAMTS4 constitutively, whereas ADAMTS5 m-RNA was essentially undetectable. Significant IL-1 effects were a decrease in biosynthetic activity, an increase in GAG release and in the expression/abundance of MMP-2, MMP-3 and ADAMTS4. Fresh tissue contained aggrecan core protein products similar to those previously described for bovine articular cartilage of this age. IL-1 induced the release of aggrecanase-generated CS-substituted products including both high (>250 kDa) and low molecular weight (about 75 kDa) species. TIMP-3 (but not TIMP-1 and -2 or a broad spectrum MMP inhibitor) inhibited IL-1-dependent GAG loss. In addition, IL-1 induced the release of preformed pools of three known G1-bearing products. We conclude that aggrecanases are responsible for IL-1-stimulated GAG release from meniscal explants, and that IL-1 also stimulates release of G1-bearing products, by a process possibly involving hyaluronan fragmentation.  相似文献   

8.
ADAMTS-4 (aggrecanase-1) is a glutamyl endopeptidase capable of generating catabolic fragments of aggrecan analogous to those released from articular cartilage during degenerative joint diseases such as osteoarthritis. Efficient aggrecanase activity requires the presence of sulfated glycosaminoglycans attached to the aggrecan core protein, implying the contribution of substrate recognition/binding site(s) to ADAMTS-4 activity. In this study, we developed a sensitive fluorescence resonance energy transfer peptide assay with a K(m) in the 10 microm range and utilized this assay to demonstrate that inhibition of full-length ADAMTS-4 by full-length TIMP-3 (a physiological inhibitor of metalloproteinases) is enhanced in the presence of aggrecan. Our data indicate that this interaction is mediated largely through the binding of glycosaminoglycans (specifically chondroitin 6-sulfate) of aggrecan to binding sites in the thrombospondin type 1 motif and spacer domains of ADAMTS-4 to form a complex with an improved binding affinity for TIMP-3 over free ADAMTS-4. The results of this study therefore indicate that the cartilage environment can modulate the function of enzyme-inhibitor systems and could have relevance for therapeutic approaches to aggrecanase modulation.  相似文献   

9.
A disintegrin-like and metalloprotease domain with thrombospondin type 1 motifs (ADAMTS)8 is a secreted protease, which was recently implicated in pathogenesis of pulmonary arterial hypertension (PAH). However, the substrate repertoire of ADAMTS8 and regulation of its activity are incompletely understood. Although considered a proteoglycanase because of high sequence similarity and close phylogenetic relationship to the proteoglycan-degrading proteases ADAMTS1, 4, 5, and 15, as well as tight genetic linkage with ADAMTS15 on human chromosome 11, its aggrecanase activity was reportedly weak. Several post-translational factors are known to regulate ADAMTS proteases such as autolysis, inhibition by endogenous inhibitors, and receptor-mediated endocytosis, but their impacts on ADAMTS8 are unknown. Here, we show that ADAMTS8 undergoes autolysis at six different sites within its spacer domain. We also found that in contrast to ADAMTS4 and 5, ADAMTS8 levels were not regulated through low-density lipoprotein receptor-related protein 1 (LRP1)-mediated endocytosis. Additionally, ADAMTS8 lacked significant activity against the proteoglycans aggrecan, versican, and biglycan. Instead, we found that ADAMTS8 cleaved osteopontin, a phosphoprotein whose expression is upregulated in PAH. Multiple ADAMTS8 cleavage sites were identified using liquid chromatography–tandem mass spectrometry. Osteopontin cleavage by ADAMTS8 was efficiently inhibited by TIMP-3, an endogenous inhibitor of ADAMTS1, 4, and 5, as well as by TIMP-2, which has no previously reported inhibitory activity against other ADAMTS proteases. These differences in post-translational regulation and substrate repertoire differentiate ADAMTS8 from other family members and may help to elucidate its role in PAH.  相似文献   

10.
Interleukin (IL)-17, a proinflammatory cytokine, is produced primarily by activated Th17 cells. IL-17 consists of six ligands that signal through five receptors (IL-17Rs); IL-17A and IL-17F share the highest homology in the family. Matrix metalloproteinases (MMPs) degrade the extracellular matrix during cartilage remodeling whereas tissue inhibitor of metalloproteinases (TIMPs) inhibit the action of MMPs. In the present study, we examined the effect of IL-17F on the degradation and synthesis of the extracellular matrix in cartilage using human articular chondrocytes. We examined the effect of IL-17F on the expression of IL-17Rs, MMPs, TIMPs, type II collagen, aggrecan, link protein, and cyclooxygenases (COXs), as well as on prostaglandin E2 (PGE2) production. We also examined the indirect effect of PGE2 on the above IL-17F-induced/reduced components using NS-398, a specific inhibitor of COX-2. Cells were cultured with or without IL-17F in the presence or absence of either an IL-17R antibody or NS-398 for up to 28 days. Expression of IL-17Rs, MMPs, TIMPs, type II collagen, aggrecan, link protein, and COXs at mRNA and protein levels was determined using real-time polymerase chain reaction and enzyme-linked immunosorbent assay (ELISA), respectively. PGE2 production was determined by ELISA. The expression of all types of IL-17Rs was detected in chondrocytes. However, IL-17RE expression was extremely low, compared with other IL-17Rs. The expression of MMP-1, MMP-3, MMP-13, and COX-2 as well as PGE2 production were increased by addition of IL-17F, whereas the expression of IL-17RD, TIMP-2, TIMP-4, type II collagen, aggrecan, link protein, and COX-1 was decreased. The expression of IL-17RA, IL-17RB, IL-17RC, MMP-2, MMP-14, TIMP-1, and TIMP-3 was unaffected by addition of IL-17F. The IL-17R antibody blocked the stimulating/reducing effect of IL-17F on the expression of MMP-1, MMP-3, MMP-13, TIMP-2, TIMP-4, type II collagen, aggrecan, and link protein. NS-398 blocked the reducing effect of IL-17F on aggrecan expression, whereas it did not completely block the stimulating/reducing effects of IL-17F on the expression of MMP-1, MMP-3, MMP-13, TIMP-2, TIMP-4, type II collagen, and link protein. Our results suggest that IL-17F stimulates cartilage degradation by increasing the expression of collagenases (MMP-1 and -13) and stromelysin-1 (MMP-3) and by decreasing expression of their inhibitors (TIMP-2 and -4), type II collagen, aggrecan, and link protein in chondrocytes. Furthermore, our results suggest that the expression of aggrecan, link protein, and TIMP-4 decrease through the autocrine action of PGE2 in chondrocytes.  相似文献   

11.
ADAMTS-2 is an extracellular metalloproteinase responsible for cleaving the N-propeptides of procollagens I-III; an activity necessary for the formation of collagenous ECM (extracellular matrix). The four TIMPs (tissue inhibitors of metalloproteinases) regulate the activities of matrix metalloproteinases, which are involved in degrading ECM components. Here we delineate the abilities of the TIMPs to affect biosynthetic processing of procollagens. TIMP-1, -2 and -4 show no inhibitory activity towards ADAMTS-2, in addition none of the TIMPs showed inhibitory activity towards bone morphogenetic protein 1, which is responsible for cleaving procollagen C-propeptides. In contrast, TIMP-3 is demonstrated to inhibit ADAMTS-2 in vitro with apparent Ki values of 160 and 602 nM, in the presence of heparin or without respectively; and TIMP-3 is shown to inhibit procollagen processing by cells.  相似文献   

12.
13.
Aggrecanases that include ADAMTS1, 4, 5, 8, 9 and 15 are considered to play key roles in aggrecan degradation in osteoarthritic cartilage. Here we demonstrate that calcium pentosan polysulfate (CaPPS) directly inhibits the aggrecanase activity of ADAMTS4 without affecting the mRNA expression of the ADAMTS species in interleukin-1alpha-stimulated osteoarthritic chondrocytes. Synthetic peptides corresponding to specific regions of the thrombospondin type 1 repeat, cysteine-rich or spacer domain of ADAMTS4 inhibit the binding to immobilized CaPPS. These data suggest that CaPPS could function as chondroprotective agent for the treatment of osteoarthritis by inhibition of ADAMTS4 through interaction with the C-terminal ancillary domain.  相似文献   

14.
Membrane microvesicle shedding is an active process and occurs in viable cells with no signs of apoptosis or necrosis. We report here that microvesicles shed by oligodendroglioma cells contain an 'aggrecanase' activity, cleaving aggrecan at sites previously identified as targets for adamalysin metalloproteinases with disintegrin and thrombospondin domains (ADAMTSs). Degradation was inhibited by EDTA, the metalloproteinase inhibitor GM6001 and by tissue inhibitor of metalloproteinases (TIMP)-3, but not by TIMP-1 or TIMP-2. This inhibitor profile indicates that the shed microvesicles contain aggrecanolytic ADAMTS(s) or related TIMP-3-sensitive metalloproteinase(s). The oligodendroglioma cells were shown to express the three most active aggrecanases, namely Adamts1, Adamts4 and Adamts5, suggesting that one or more of these enzymes may be responsible for the microvesicle activity. Microvesicles shed by rheumatoid synovial fibroblasts similarly degraded aggrecan in a TIMP-3-sensitive manner. Our findings raise the novel possibility that microvesicles may assist oligodendroglioma and rheumatoid synovial fibroblasts to invade through aggrecan-rich extracellular matrices.  相似文献   

15.
Atrolysin C is a P-I snake venom metalloproteinase (SVMP) from Crotalus atrox venom, which efficiently degrades capillary basement membranes, extracellular matrix, and cell surface proteins to produce hemorrhage. The tissue inhibitors of metalloproteinases (TIMPs) are effective inhibitors of matrix metalloproteinases which share some structural similarity with the SVMPs. In this work, we evaluated the inhibitory profile of TIMP-1, TIMP-2, and the N-terminal domain of TIMP-3 (N-TIMP-3) on the proteolytic activity of atrolysin C and analyzed the structural requirements and molecular basis of inhibitor-enzyme interaction using molecular modeling. While TIMP-1 and TIMP-2 had no inhibitory activity upon atrolysin C, the N-terminal domain of TIMP-3 (N-TIMP-3) was a potent inhibitor with a K(i) value of approximately 150nM. The predicted docking structures of atrolysin C and TIMPs were submitted to molecular dynamics simulations and the complex atrolysin C/N-TIMP-3 was the only one that maintained the inhibitory conformation. This study is the first to shed light on the structural determinants required for the interaction between a SVMP and a TIMP, and suggests a structural basis for TIMP-3 inhibitory action and related proteins such as the ADAMs.  相似文献   

16.
17.
A member of the A disintegrin and metalloproteinase domain with thrombospondin type-1 motifs (ADAMTS-4) protease family can efficiently cleave aggrecan at several sites detected in joints of osteoarthritic patients. Although recent studies have shown that removal of the prodomain of ADAMTS4 is critical for its ability to degrade aggrecan, the cellular mechanisms for its processing and trafficking remain unclear. In this study, by using both furin-specific inhibitor and RNA interference technique, we demonstrate that furin plays an important role in the intracellular removal of ADAMTS4 prodomain. Further, we demonstrate that proADAMTS4 can be processed by means of multiple furin recognition sites: (206)RPRR(209), (209)RAKR(212), or (211)KR(212). The processing of proADAMTS4 was completely blocked by brefeldin A treatment, suggesting that processing occurs in the trans-Golgi network. Indeed, ADAMTS4 is co-localized with furin in trans-Golgi network. Interestingly, the pro form of ADAMTS4, not its mature one, co-precipitates with furin, suggesting that furin physically interacts with the prodomain of ADAMTS-4. In addition, our evidence suggests that a furin-independent pathway may also contribute to the activation of ADAMTS4. These results indicate that the activation mechanism for ADAMTS4 can be targeted for therapeutical intervention against this enzyme.  相似文献   

18.
ADAMTS1 is a secreted protein that belongs to the recently described ADAMTS (a disintegrin and metalloprotease with thrombospondin repeats) family of proteases. Evaluation of ADAMTS1 catalytic activity on a panel of extracellular matrix proteins showed a restrictive substrate specificity which includes some proteoglycans. Our results demonstrated that human ADAMTS1 cleaves aggrecan at a previously shown site by its mouse homolog, but we have also identified additional cleavage sites that ultimately confirm the classification of this protease as an 'aggrecanase'. Specificity of ADAMTS1 activity was further verified when a point mutation in the zinc-binding domain abolished its catalytic effects, and latency conferred by the prodomain was also demonstrated using a furin cleavage site mutant. Suppression of ADAMTS1 activity was accomplished with a specific monoclonal antibody and some metalloprotease inhibitors, including tissue inhibitor of metalloproteinases 2 and 3. Finally, we developed an activity assay using an artificial peptide substrate based on the interglobular domain cleavage site (E(373)-A) of rat aggrecan.  相似文献   

19.
Troeberg L  Tanaka M  Wait R  Shi YE  Brew K  Nagase H 《Biochemistry》2002,41(50):15025-15035
The inhibitory properties of TIMP-4 for matrix metalloproteinases (MMPs) were compared to those of TIMP-1 and TIMP-2. Full-length human TIMP-4 was expressed in E. coli, folded from inclusion bodies, and the active component was purified by MMP-1 affinity chromatography. Progress curve analysis of MMP inhibition by TIMP-4 indicated that association rate constants (k(on)) and inhibition constants (K(i)) were similar to those for other TIMPs ( approximately 10(5) M(-)(1) s(-)(1) and 10(-)(9)-10(-)(12) M, respectively). Dissociation rate constants (k(off)) for MMP-1 and MMP-3 determined using alpha(2)-macroglobulin to capture MMP dissociating from MMP-TIMP complexes were in good agreement with values deduced from progress curves ( approximately 10(-)(4) s(-)(1)). K(i) and k(on) for the interactions of TIMP-1, -2, and -4 with MMP-1 and -3 were shown to be pH dependent. TIMP-4 retained higher reactivity with MMPs at more acidic conditions than either TIMP-1 or TIMP-2. Molecular interactions of TIMPs and MMPs investigated by IAsys biosensor analysis highlighted different modes of interaction between proMMP-2-TIMP-2 (or TIMP-4) and active MMP-2-TIMP-2 (or TIMP-4) complexes. The observation that both active MMP-2 and inactive MMP-2 (with the active site blocked either by the propeptide or a hydroxamate inhibitor) have essentially identical affinities for TIMP-2 suggests that there are two TIMP binding sites on the hemopexin domain of MMP-2: one with high affinity that is involved in proMMP-2 or hydroxamate-inhibited MMP-2; and the other with low affinity involved in formation of the complex of active MMP-2 and TIMP-2. Similar models of interaction may apply to TIMP-4. The latter low-affinity site functions in conjunction with the active site of MMP-2 to generate a tight enzyme-inhibitor complex.  相似文献   

20.
Selective inhibition of ADAMTS-1, -4 and -5 by catechin gallate esters.   总被引:3,自引:0,他引:3  
Three mammalian ADAMTS enzymes, ADAMTS-1, -4 and -5, are known to cleave aggrecan at certain glutamyl bonds and are considered to be largely responsible for cartilage aggrecan catabolism observed during the development of arthritis. We have previously reported that certain catechins, polyphenolic compounds found in highest concentration in green tea (Camellia sinensis), are capable of inhibiting cartilage aggrecan breakdown in an in vitro model of cartilage degradation. We have now cloned and expressed recombinant human ADAMTS-1, -4 and -5 and report here that the catechin gallate esters found in green tea potently inhibit the aggrecan-degrading activity of these enzymes, with submicromolar IC50 values. Moreover, the concentration needed for total inhibition of these members of the ADAMTS group is approximately two orders of magnitude lower than that which is needed to partially inhibit collagenase or ADAM-10 activity. Catechin gallate esters therefore provide selective inhibition of certain members of the ADAMTS group of enzymes and could constitute an important nutritional aid in the prevention of arthritis as well as being part of an effective therapy in the treatment of joint disease and other pathologies involving the action of these enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号