首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: The chemical topography of the γ-aminobutyric acid (GABA) and benzodiazepine (BZ) receptors was investigated in a thoroughly washed cortical membrane preparation of the rat. Chemical modification by several amino- and tyrosyl-selective reagents and the protection from it by direct and allosteric ligands of the GABA-BZ receptor complex were used to identify the residues at the binding sites. Inhibition of specific GABA binding by p -diazobenzenesulfonic acid (DSA), tetrani-tromethane (TNM), and N -acetylimidazole and the selective and complete protection from it by GABA and muscimol suggest the presence of a tyrosine residue at the GABAA site. TNM, like DSA, selectively decreased the number of the low-affinity GABA receptors, and this could be completely protected only by GABA concentrations that can saturate the low-affinity sites. TNM pre-treatment also abolished the muscimol enhancement of [3H]diazepam binding, which suggests that the low-affinity GABA receptor sites are responsible for this enhancement. Inhibition of GABA binding by pyridoxal-5-phosphate (PLP) and the selective protection by GABA and muscimol support the presence of a lysine residue at the GABAA receptor site. Complete and selective protection from diethylpyrocarbonate (DEP) inhibition of [3H]diazepam binding by flurazepam suggests the presence of a histidine residue at the BZ site. Flurazepam selectively protected from inhibition of [3H]diazepam binding by N -bromosuccinimide and N -acetylimidazole, but not that by DSA and TNM, which does not allow a unanimous conclusion regarding the presence of tyrosine or tryptophan residues at the BZ site.  相似文献   

2.
Abstract: The effects of chemical modification of a disulfide bond(s) (-SS-) or sulfhydryl group(s) (-SH) on the [3H]-flunitrazepam ([3H]FNZ) binding to membrane-bound or immunoprecipitated benzodiazepine (BZD) receptors (BZD-R) from bovine cerebral cortex were examined. Reduction of -SS- with dithiothreitol (DTT) brought about a reversible, time- and dose-dependent inhibition of [3H]FNZ binding to the membrane-bound BZD-R. Alkylation of the membranes with the -SH-modifying reagent iodoacetamide (IAA) or 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) produced a slight inhibition of [3H]FNZ binding in a dose-dependent manner. Scatchard analysis of saturation curves of [3H]FNZ binding in the presence and absence of 5 m M DTT revealed changes in affinity without modification in the maximal binding capacity, thus indicating a competitive mode of interaction. DTT pretreatment of both the membrane-bound and the immunoprecipitated BZD-R led to [3H]FNZ binding inhibition. Consistent with the modification of a binding site is the observation that reduction of -SS- does not bear on the binding affinity, but rather reduces the number of sites. Complete protection from DTT inhibition of [3H]FNZ binding by FNZ (an agonist) or by Ro 15–1788 (an antagonist) suggests the presence of -SS- at, or very close to, the BZD recognition binding site. No protection against IAA or DTNB inhibition was provided by FNZ. Photoaffinity labeling experiments with [3H]FNZ revealed a clear-cut band of 50 kDa in native and alkylated membranes but an extremely weak label in 5 m M DTT/IAA-treated membranes. The present results provide evidence for the participation of a disulfide bond in the recognition binding site of the bovine cerebral cortex BZD-R.  相似文献   

3.
Abstract: Administration of estradiol benzoate to gonadectomized female rats results in up-regulation of CNS γ-aminobutyric acid (GABA) receptors. The increase of [3H]muscimol binding activity is observed in six of the seven brain areas examined. The same treatment, performed in castrated male or and rogenized female rats, induced an increase of [3H]muscimol binding only in the striatum. Evidence is provided suggesting that the dimorphic sensitivity of GABA receptor is not correlated with the difference in spontaneous motor activity reported between male and female rats.  相似文献   

4.
Abstract: For the purpose of demonstrating the action of taurine as a neuromodulator in addition to its suggested neurotransmitter function, the effects of taurine and muscimol on the depolarization-induced Ca-dependent release of [3H]γ-aminobutyric acid (pH]GABA) and l -[3H]glutamate in cerebellar slices from guinea pigs were investigated. The release of [3H]GABA was found to be greatly decreased by a GABA agonist, muscimol, and by taurine, but not by glycine. The release of l -[3H]glutamate was little affected by taurine. The release of [3H]GABA was enhanced by bicuculline and strychnine, but not by picrotoxin, and the suppressive action of muscimol on the GABA release was antagonized by bicuculline, picrotoxin, and strychnine, suggesting the possible existence of presynaptic autoreceptors for GABA in the cerebellum. The suppressive action of taurine on the release of [3H]GABA, on the other hand, was blocked only by bicuculline. These results suggest that taurine reduced the release of [3H]GABA from cerebellar slices by acting on the GABA autoreceptors or, more likely, on other types of receptors that are sensitive to bicuculline. As a possible mechanism for this modulatory action of taurine, the blockade by this amino acid of the influx of Ca2+ into cerebellar tissues was tentatively suggested.  相似文献   

5.
Abstract: (+) Etomidate and pentobarbital enhance [3H]diazepam and [3H]γ-aminobutyric acid ([3H]GABA) binding to cerebral cortex membranes. Both (+)etomidate and pentobarbital increase the affinity of [3H]diazepam for its binding sites. In contrast, they increase the B max of both the high- and low-affinity GABA receptor sites. The enhancement of [3H]diazepam and [3H]GABA by (+)etomidate and pentobarbital is blocked by GABA antagonists. These results indicate that hypnotic drugs such as (+)etomidate and pentobarbital, which are not structurally related, modulate diazepam and GABA binding sites via similar mechanisms.  相似文献   

6.
Abstract— Recent reports have suggested that a major proportion of [3H]kainate binding in goldfish brain is to a novel form of G-protein-linked glutamate receptor. Here we confirm that guanine nucleotides decrease [3H]kainate binding in goldfish brain membranes, but that binding is also reduced to a similar extent under conditions where G-protein modulation should be minimised. Inclusion of GTPγS resulted in an approximately twofold decrease in the affinity of [3H]kainate binding and a 50% reduction in the apparent B max values in both Mg2+/Na+ and Mg2+/Na+-free buffer when assayed at 0°c. The pharmacology of [3H]kainate binding is similar to that of well-characterised ionotropic kainate receptors but unlike that of known me-tabotropic glutamate receptors, with neither 1 S ,3 R -amino-1,3-cyclopentanedicarboxylic acid (1 S ,3 R -ACPD) nor ibo-tenic acid being effective competitors. The molecular mass of the [3H]kainate binding protein, as determined by radiation inactivation, was 40 kDa, similar to the subunit sizes of other lower vertebrate kainate binding proteins that are believed to comprise ligand-gated ion channels. Furthermore, GTP-γS also inhibited the binding of the non-NMDA receptor-selective antagonist 6-[3H]cyano-7-ni-troquinoxaline-2,3-dione. These data strongly suggest that the regulatory interaction between guanine nucleotides and [3H]kainate and 6-[3H]cyano-7-nitroquinoxaline-2,3-dione binding is complex and involves competition at the agonist/antagonist binding site in addition to any G-protein-mediated modulation.  相似文献   

7.
Abstract: This study examined γ-aminobutyric acidA (GABAA) receptor function in cultured rat cerebellar granule cells by using microphysiometry following chronic flunitrazepam exposure, and correlated the findings with the α1 and β2/3 subunit protein expression and [3H]muscimol binding after the same treatment paradigm. Flunitrazepam treatment reduced ( p < 0.05) the maximal GABA-stimulated increase in extracellular acidification rate ( E max) (16.5 ± 1.2% and 11.3 ± 1.0%, 2-day control and treated cells, respectively; 17.4 ± 1.0% and 9.9 ± 0.7%, 7-day control and treated cells, respectively; best-fit E max± SEM, n = 7), without affecting the GABA concentration required to elicit 50% of maximal response (EC50) (1.2 ± 1.7 and 2.3 ± 1.8 µ M , 2-day control and treated cells, respectively; 1.7 ± 1.5 and 1.5 ± 1.5 µ M , 7-day control and treated cells, respectively; best-fit EC50± SEM, n = 7). Flunitrazepam exposure also abolished the flunitrazepam potentiation of the GABA response, caused a transient reduction of the GABAA receptor α1 and β2/3 subunit proteins over the initial 2 days, but did not alter [3H]muscimol binding compared with vehicle-treated cells. The results suggest that changes in GABAA receptor subunit protein expression, rather than loss of [3H]muscimol binding sites, underlie the chronic flunitrazepam-mediated desensitisation of GABAA receptor function.  相似文献   

8.
Abstract: [3H]Diazepam and [3H]flunitrazepam ([3H]FNP) binding to washed and frozen synaptosomal membranes from rat cerebral cortex were compared. In Tris-citrate buffer, γ -aminobutyric acid (GABA) and NaCl both increased [3H]diazepam binding more than [3H]FNP binding. GABA and pentobarbital both enhanced this effect of NaCl. Because of the extremely rapid dissociation of [3H]diazepam in the absence of NaCl and GABA, the Bmax (maximal binding capacity) was smaller by the filtration assay than by the centrifugation assay. [3H]FNP, which dissociates more slowly, had the same Bmax in both assays. [3H]Diazepam association had two components, and was faster than [3H]FNP association. [3H]Diazepam dissociation, which also had two components, was faster than that of [3H]FNP, and also had a greater fraction of rapidly dissociating species. [3H]FNP dissociation was similar when initiated by diazepam, flunitrazepam, clonazepam, or Ro15-1788, which is a benzodiazepine antagonist. [3H]Diazepam dissociation with Ro15-1788, flunitrazepam, or clonazepam was slower than with diazepam. GABA and NaCl, but not pentobarbital, increased the percentage of slowly dissociating species. This effect of NaCl was potentiated by GABA and pentobarbital. The results support the cyclic model of benzodiazepine receptors existing in two interconvertible conformations, and suggest that, distinct from their binding affinity, some ligands (like flunitrazepam) are better than others (like diazepam) in inducing the conversion of the receptor to the higher-affinity state.  相似文献   

9.
Abstract: The concentration of γ-aminobutyric acid (GABA) in the human ovary and the capacity of a membrane preparation from the same organ to bind [3H]GABA specifically were examined. The GABA concentration in the ovary was found to be 214 ± 66 nmol/g frozen tissue (mean ± SEM of six independent determinations). Moreover, a single population of high-affinity GABA binding sites has been identified in the ovarian membranes. The apparent dissociation constant ( K d) and maximum binding capacity ( B max) were 38.3 n M and 676 fmol/mg protein, respectively. The specific binding of [3H]GABA was displaced by muscimol, unlabelled GABA, or (+)bicuculline, but was unaffected by (±)baclofen and picrotoxin. The present results show that GABA and an extremely high density of GABAA receptor binding sites are present in the human ovary, indicating a physiological significance of this amino acid in the female reproductive system.  相似文献   

10.
Inhibition of GABAB Receptor Binding by Guanyl Nucleotides   总被引:4,自引:4,他引:0  
Abstract: GTP and GDP decreased the saturable binding of [3H]baclofen or [3H]γ-aminobutyric acid ([3H]GABA) to GABAB but not GABAA receptors whereas GMP displayed negligible activity. This effect was specific to guanyl nucleotides and was not mimicked by high concentrations of ATP. The inhibition of ligand binding was the result of a diminished receptor affinity with no change in receptor number. The use of a complete physiological saline solution rather than Tris buffer plus Ca2+ or Mg2+ increased the potency of GTP at the GABAB receptor. The results are discussed in relation to the effects of GABA and GTP on adenylate cyclase activity in the brain.  相似文献   

11.
Abstract: GABAA and benzodiazepine receptors are allosterically coupled, and occupation of either receptor site increases the affinity of the other. Chronic exposure of primary neuronal cultures to benzodiazepine agonists reduces these allosteric interactions. Neurons express multiple GABAA receptor subunits, and it has been suggested that uncoupling is due to changes in the subunit composition of the receptor. To determine if uncoupling could be observed with expression of defined subunits, mouse Ltk cells stably transfected with GABAA receptors (bovine α1, β1, and γ2L subunits) were treated with flunitrazepam (Flu) or clonazepam. The increase in [3H]Flu binding affinity caused by GABA (GABA shift or coupling) was significantly reduced in cells treated chronically with the benzodiazepines, whereas the K D and B max of [3H]Flu binding were unaffected. The uncoupling caused by clonazepam treatment occurred rapidly with a t 1/2 of ∼30 min. The EC50 for clonazepam treatment was ∼0.3 µ M , and cotreatment with the benzodiazepine antagonist Ro 15-1788 (5.6 µ M ) prevented the effect of clonazepam. The uncoupling observed in this system was not accompanied by receptor internalization, is unlikely to be due to changes in receptor subunit composition, and probably represents posttranslational changes. The rapid regulation of allosteric coupling by benzodiazepine treatment of the stably transfected cells should provide insights to the mechanisms of coupling between GABAA and benzodiazepine receptors as well as benzodiazepine tolerance.  相似文献   

12.
Abstract : In α1, β2, and γ2 subunits of the γ-aminobutyric acid A (GABAA) receptor, a conserved lysine residue occupies the position in the middle of the predicted extracellular loop between the transmembrane M2 and M3 regions. In all three subunits, this residue was mutated to alanine. Whereas the mutation in α1 and β2 subunits results each in about a sixfold shift of the concentration-response curve for GABA to higher concentrations, no significant effect by mutation in the γ subunit was detected. The affinity for the competitive inhibitor bicuculline methiodide was not affected by the mutations in either the α1 subunit or the β2 subunit. Concentration-response curves for channel activation by pentobarbital were also shifted to higher concentrations by the mutation in the α and β subunits. Binding of [3H]Ro 15-1788 was unaffected by the mutation in the α subunit, whereas the binding of [3H]muscimol was shifted to lower affinity. Mutation of the residue in the α1 subunit to E, Q, or R resulted in an about eight-, 10-, or fivefold shift, respectively, to higher concentrations of the concentration-response curve for GABA. From these observations, it is concluded that the corresponding residues on the α1 and β2 subunits are involved more likely in the gating of the channel by GABA than in the binding of GABA or benzodiazepines.  相似文献   

13.
Abstract— The binding of [3H]muscimol, a potent GABA agonist, to crude synaptic membranes prepared from rat brain was studied using a filtration method to isolate membrane-bound ligand. Specific binding was found to be saturable and occurred to two binding sites of K d5 5 and 30 n m . Binding was Na+-independent and enhanced by both freezing and Triton treatment. Regional and subcellular distribution studies and pharmacological characterization of specific [3H]muscimol binding are consistent with binding to the synaptic GABA receptor.  相似文献   

14.
Abstract: γ-Aminobutyric acid (GABA) is a major inhibitory neurotransmitter in the mammalian retina, where it serves many roles in establishing complex response characteristics of ganglion cells. We now provide biochemical and physiological evidence that at least three subclasses of GABA receptors (A1, A2, and B) contribute to different types of synaptic integration. Receptor binding studies indicate that approximately three-fourths of the total number of [3H]GABA binding sites in retina are displaced by the GABAA receptor antagonist, bicuculline, whereas one-fourth are displaced by the GABA-B receptor agonist, baclofen. GABAA receptors can be described by a three-site binding model with KD values of 19 n M , 122 n M , and 5.7 μ M . Benzodiazepines and barbiturates potentiate binding to the GABAA site, which suggests that significant numbers of GABAA receptors are coupled to regulatory sites for these compounds and thus are classified as GABAA1 receptors. The response to pentobarbital appears to involve a conversion of low-affinity sites to higher-affinity sites, and is reflected in changes in the densities of sites at different affinities. Functional studies were used to establish which of the different receptor subclasses regulate release from cholinergic amacrine cells. Our results show that GABA suppresses light-evoked [3H]acetylcholine release via GABAA2 receptors not coupled to a benzodiazepine or barbiturate regulatory site, and enhances release via GABAB receptors. GABAA1 sites do not appear to control acetylcholine release in rabbit retina.  相似文献   

15.
Abstract— The uptake and binding of [3H]GABA and the binding of [3H]muscimol were measured in cell-free fractions of crayfish muscle. The uptake of GABA was saturable, of high affinity ( K m= 0.5μ m ), and inhibited by low concentrations of compounds believed to block GABA uptake specifically, such as nipecotic acid and 2,4,diaminobutyric acid. The GABA uptake activity was localized to sucrose gradient fractions enriched in sarcolemma as demonstrated by marker enzymes and electron microscopy. The binding of the potent GABAergic agonist muscimol was also localized to the sarcolemma. The binding was saturable, of high affinity (K D = 9 n m ), and inhibited by GABA (K 1 = 125 n m ) and by low concentrations of receptor-specific GABA analogues, such as isoguvacine, imidazole acetic acid, and 3-aminopropane sulfonic acid. The rank order for inhibition by GABA analogues of [3H]muscimol binding sites correlated very well with activity on GABA synapses in invertebrates, consistent with specific postsynaptic receptor labeling.  相似文献   

16.
Abstract: Depolarization-induced release of [3H] γ -aminobutyric acid ([3H]-GABA) from preloaded slices of rat cerebral cortex was inhibited by muscimol and THIP in a dose-dependent fashion. This inhibition of release was prevented by the GABA antagonists bicuculline and picrotoxin. These results confirm previous reports postulating the existence of GABA autoreceptors on GABAergic terminals. Since benzodiazapines are known to facilitate postsynaptic GABA actions, the effect of flunitrazepam on the inhibition of GABA release mediated through the autoreceptors has been examined. At a concentration of 1 μ m or 10 μ m , flunitrazepam had no effect on the IC50 values for muscimol or THIP in inhibiting stimulated GABA release. It thus seems that GABA autoreceptors are not functionally coupled to benzodiazepine receptors in rat cerebral cortex.  相似文献   

17.
Abstract: N -Methyl- d -asparate receptors (NMDARs) are a major target of ethanol effects in the nervous system. Haloperidol-insensitive, but dizocilpine (MK-801)-sensitive, binding of N -[1-(2-[3H]thienyl)cyclohexyl]piperidine ([3H]TCP) to synaptic membranes has the characteristics of ligand interaction with the ion channel of NMDARs. In the present studies, ethanol produced a concentration-dependent decrease in the maximal activation of [3H]TCP binding to synaptic membranes by NMDA and Gly, but a moderate change in the activation by l -Glu when l -Glu was present at concentrations < 100 µ M . However, ethanol (100 m M ) inhibited completely the activation of [3H]TCP binding produced by high concentrations of l -Glu (200–400 µ M ). It also inhibited strongly the activation of [3H]TCP binding by spermidine or spermidine plus Gly. In a purified complex of proteins that has l -Glu-, Gly-, and [3H]TCP-binding sites, ethanol (100 m M ) decreased significantly the maximal activation of [3H]TCP binding produced by either l -Glu or Gly. Activation constants ( K act) for l -Glu and Gly acting on the purified complex were 12 and 28 µ M, respectively. Ethanol had no significant effect on the K act of l -Glu but caused an increase in the K act of Gly. These studies have identified at least one protein complex in neuronal membranes whose response to both l -Glu and Gly is inhibited by ethanol. These findings may explain some of the effects of acute and chronic ethanol treatment on the function and expression of the subunits of this complex in brain neurons.  相似文献   

18.
Abstract: Barbiturates enhance the binding of [3H]flunitrazepam to benzodiazepine receptors solubilized with the detergent 3-[(3-cholamidopropyl)-dimethylammonio]propanesulfonate (CHAPS) from bovine cortex. The enhancement by the barbiturates is seen as a decrease in the dissociation constant, K d , for specific benzodiazepine binding, with no effect on the number of binding sites. The effect of the barbiturates is facilitated by chloride ions, is concentration-dependent, and has a specificity that correlates well with the anesthetic potency of barbiturates. [3H]Flunitrazepam binding activity is stable with storage at 4°C., but barbiturate enhancement of soluble benzodiazepine binding activity decayed rapidly ( t 1/2= 48 h). [3H]Muscimol binding (GABA receptor) activity was also enhanced by barbiturates. Agarose gel filtration column chromatography of the CHAPS-solubilized receptor proteins showed the same elution profile as receptors solubilized with sodium deoxycholate, and enhancement by barbiturates was observed for both the benzodiazepine and GABA binding activities.  相似文献   

19.
All known nicotinic receptor α subunits include a conserved disulfide bond that is essential for function and is a site for labeling via biochemical modification. In an effort to develop a universal ligand for all subtypes of nicotinic receptors, we previously studied the effects of arsenylation with two compounds, ρ-aminophenyldichloroarsine (APA) and bromoacetyl-ρ-aminophenylarsenòxide (BAPA) on nicotinic receptors from Torpedo electroplax. Here we apply these reagents to immunoisolated receptors containing α4, β2, and possibly other subunits from chick brain that bind [3H]cytisine with high affinity (KD∼5 nM). These are distinct from another receptor subtype that also binds [3H]cytisine and [3H]nicotine and can be arsenylated with APA, but instead contains α5,β2, and probably other subunits. Reduction of α4 β2 receptors with dithiothreitol blocked [3H]cytisine binding and this effect was reversed upon reoxidation by dithiobisnitrobenzoic acid. APA or BAPA prevented the dithiobisnitrobenzoic acid reactivation of dithiothreitol-treated receptors with IC50 values of 15 and 70 n M , respectively. However, the antiarsenical dimercaptopropanesulfonic acid restored function to APA- or BAPA- "arsenylated" receptors (EC50∼100 μ M ). APA-treated receptors remained blocked for up to 24 h, but treatment with dimercaptopropanesulfonic acid at any time restored [3H]cytisine binding. APA treatment of reduced receptors protected against irreversible alkylation by Bromoacetyl choline, indicating that arsenylation occurs at least in part in the agonist binding site. Thus, these reagents have similar effects on different nicotinic receptor subtypes from both muscle and nerves.  相似文献   

20.
Abstract: [3H] γ -Aminobutyric acid ([3H]GABA) binding to purified lipids was examined in an organic solvent-aqueous partition system. In addition, the [3H]GABA binding capacity in the partition system was compared with the capacity of lipids to alter sodium-dependent [3H]GABA uptake into synaptosomes isolated from rat whole brains. [3H]GABA was found to bind to all of the lipids studied in the organic solvent-aqueous partition system [phosphatidic acid (PA), phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylserine (PS), gangliosides, and sulfatide], although PS exhibited the greatest binding capacity. [3H]GABA uptake into synaptosomes was enhanced by PS (48.0%) but was not altered by any other lipid. PS enhancement of [3H]GABA uptake required the presence of sodium and was blocked by nipecotic acid (10 μ m ). These results suggest that PS may play a role in the sodium-dependent GABA reuptake process in the presynaptic nerve end.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号