首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 378 毫秒
1.
Acoustic microscopy (30-60 microm resolution) and nanoindentation (1-5 microm resolution) are techniques that can be used to evaluate the elastic properties of human bone at a microstructural level. The goals of the current study were (1) to measure and compare the Young's moduli of trabecular and cortical bone tissues from a common human donor, and (2) to compare the Young's moduli of bone tissue measured using acoustic microscopy to those measured using nanoindentation. The Young's modulus of cortical bone in the longitudinal direction was about 40% greater than (p<0.01) the Young's modulus in the transverse direction. The Young's modulus of trabecular bone tissue was slightly higher than the transverse Young's modulus of cortical bone, but substantially lower than the longitudinal Young's modulus of cortical bone. These findings were consistent for both measurement methods and suggest that elasticity of trabecular tissue is within the range of that of cortical bone tissue. The calculation of Young's modulus using nanoindentation assumes that the material is elastically isotropic. The current results, i.e., the average anisotropy ratio (E(L)/E(T)) for cortical bone determined by nanoindentation was similar to that determined by the acoustic microscope, suggest that this assumption does not limit nanoindentation as a technique for measurement of Young's modulus in anisotropic bone.  相似文献   

2.
PURPOSE: In a meta-analysis of the literature we evaluated the present knowledge of the material properties of cortical and cancellous bone to answer the question whether the available data are sufficient to realize anisotropic finite element (FE)-models of the proximal femur. MATERIAL AND METHOD: All studies that met the following criteria were analyzed: Young's modulus, tensile, compressive and torsional strengths, Poisson's ratio, the shear modulus and the viscoelastic properties had to be determined experimentally. The experiments had to be carried out in a moist environment and at room temperature with freshly removed and untreated human cadaverous femurs. All material properties had to be determined in defined load directions (axial, transverse) and should have been correlated to apparent density (g/cm(3)), reflecting the individually variable and age-dependent changes of bone material properties. RESULTS: Differences in Young's modulus of cortical [cancellous] bone at a rate of between 33% (58%) (at low apparent density) and 62% (80%) (at high apparent density), are higher in the axial than in the transverse load direction. Similar results have been seen for the compressive strength of femoral bone. For the tensile and torsional strengths, Poisson's ratio and the shear modulus, only ultimate values have been found without a correlation to apparent density. For the viscoelastic behaviour of bone only data of cortical bone and in axial load direction have been described up to now. CONCLUSIONS: Anisotropic FE-models of the femur could be realized for most part with the summarized material properties of bone if characterized by apparent density and load directions. Because several mechanical properties have not been correlated to these main criteria, further experimental investigations will be necessary in future.  相似文献   

3.
We studied the elastic properties of bone to analyze its mechanical behavior. The basic principles of ultrasonic methods are now well established for varying isotropic media, particularly in the field of biomedical engineering. However, little progress has been made in its application to anisotropic materials. This is largely due to the complex nature of wave propagation in these media. In the present study, the theory of elastic waves is essential because it relates the elastic moduli of a material to the velocity of propagation of these waves along arbitrary directions in a solid. Transducers are generally placed in contact with the samples which are often cubes with parallel faces that are difficult to prepare. The ultrasonic method used here is original, a rough preparation of the bone is sufficient and the sample is rotated. Moreover, to analyze heterogeneity of the structure we measure velocities in different points on the sample. The aim of the present study was to determine in vitro the anisotropic elastic properties of cortical bones. For this purpose, our method allowed measurement of longitudinal and transverse velocities (C(L) and C(T)) in longitudinal (fiber direction) and the radial directions (orthogonal to the fiber direction) of compact bones. Young's modulus E and Poisson's ratio nu, were then deduced from the velocities measured considering the compact bone as transversely isotropic or orthotropic. The results are in line with those of other methods.  相似文献   

4.
This work consists of the validation of a novel approach to estimate the local anisotropic elastic constants of the bone extracellular matrix using nanoindentation. For this purpose, nanoindentation on two planes of material symmetry were analyzed and the resulting longitudinal elastic moduli compared to the moduli measured with a macroscopic tensile test. A combined lathe and tensile system was designed that allows machining and testing of cylindrical microspecimens of approximately 4mm in length and 300 microm in diameter. Three bovine specimens were tested in tension and their outer geometry and porosity assessed by synchrotron radiation microtomography. Based on the results of the traction test and the precise outer geometry, an apparent longitudinal Young's modulus was calculated. Results between 20.3 and 27.6 GPa were found that match with previously reported values for bovine compact bone. The same specimens were then characterized by nanoindentation on a transverse and longitudinal plane. A longitudinal Young's modulus for the bone matrix was then derived using the numerical scheme proposed by Swadener and Pharr and the fabric-elasticity relationship by Zysset and Curnier. Based on the matrix modulus and a power law effective volume fraction, an apparent longitudinal Young's modulus was predicted for each microspecimen. This alternative approach provided values between 19.9 and 30.0 GPa, demonstrating differences between 2% and 13% to the values provided by the initial tensile test. This study therefore raises confidence in our nanoindentation protocol of the bone extracellular matrix and supports the underlying hypotheses used to extract the anisotropic elastic constants.  相似文献   

5.
The ability to assess the elastic and failure properties of cortical bone at the radial diaphysis has a clinical importance. A new generation of quantitative ultrasound (QUS) devices and peripheral quantitative computed tomography (p-QCT) has been developed to assess non-invasively bone material and structural properties at the distal radius. This anatomical site is characterized by a thin cortical thickness that complicates traditional mechanical testing methods on specimens. Until now, mechanical properties of cortical bone at distal radius (e.g., elastic modulus, yield stress and strain) remain rarely studied probably due to experimental difficulties. The present study introduces an inverse finite-element method strategy to measure the elastic modulus and yield properties of human cortical specimens of the radial diaphysis. Twenty millimeter-thick portions of diaphysis were cut from 40 human radii (ages 45-90) for biomechanical test. Subsequently the same portion was modeled in order to obtain a specimen-specific three dimensional finite-element model (3D-FEM). Longitudinal elastic constants at the apparent level and stress characterizations were performed by coupling mechanical parameters with isotropic linear-elastic simulations. The results indicated that the mean apparent Young's modulus for radial cortical bone was 16 GPa (SD 1.8) and the yield stress was 153 MPa (SD 33). Breaking load was 12,946 N (SD 3644), cortical thickness 2.9 mm (SD 0.6), structural effective strain at the yield (epsilon(y)=0.0097) and failure (epsilon(u)=0.0154) load were also calculated. The 3D-FEM strategy described here may help to investigate bone mechanical properties when some difficulties arise from machining mechanical sample.  相似文献   

6.
Errors induced by off-axis measurement of the elastic properties of bone   总被引:1,自引:0,他引:1  
Misalignment between the axes of measurement and the material symmetry axes of bone causes error in anisotropic elastic property measurements. Measurements of Poisson's ratio were strongly affected by misalignment errors. The mean errors in the measured Young's moduli were 9.5 and 1.3 percent for cancellous and cortical bone, respectively, at a misalignment angle of 10 degrees. Mean errors of 1.1 and 5.0 percent in the measured shear moduli for cancellous and cortical bone, respectively, were found at a misalignment angle of 10 degrees. Although, cancellous bone tissue was assumed to have orthotropic elastic symmetry, the possibility of the greater symmetry of transverse isotropy was investigated. When the nine orthotropic elastic constants were forced to approximate the five transverse isotropic elastic constants, errors of over 60 percent were introduced. Therefore, it was concluded that cancellous bone is truly orthotropic and not transversely isotropic. A similar but less strong result for cortical bone tissue was obtained.  相似文献   

7.
Elastic constants, including the elastic modulus, the shear modulus, and Poisson's ratio, were measured on human craniofacial bone specimens obtained from the supraorbital region and the buccal surfaces of the mandibles of unembalmed cadavers. Constants were determined using an ultrasonic wave technique in three directions relative to the surface of each sample: 1) normal, 2) tangential, and 3) longitudinal. Statistical analysis of these elastic constants indicated that significant differences in the relative proportions of elastic properties existed between the regions. Bone from the mandible along its longitudinal axis was stiffer than bone from the supraorbital region. Directional differences in both locations demonstrated that cranial bone was not elastically isotropic. It is suggested that differences in elastic properties correspond to regional differences in function. © 1993 Wiley-Liss, Inc.  相似文献   

8.
Damage accumulation plays a key role in weakening bones prior to complete fracture and in stimulating bone remodeling. The goal of this study was to characterize the degradation in the mechanical properties of cortical bone following a compressive overload. Longitudinally oriented, low-aspect ratio specimens (n=24) of bovine cortical bone were mechanically tested using an overload-hold-reload protocol. No modulus reductions greater than 5% were observed following overload magnitudes less than 0.73% strain. For each specimen, changes in strength and Poisson's ratio were greater (p=0.02) than that in modulus by 10.8- and 26.6-fold, respectively, indicating that, for the specimen configuration used in this study, longitudinal elastic modulus is one of the least sensitive properties to a compressive overload. Residual strains were also proportionately greater by 6.4-fold (p=0.01) in the transverse than axial direction. These results suggest that efforts to relate microcrack density and morphology to changes in compressive mechanical properties of cortical bone may benefit from considering alternative parameters to modulus reductions.  相似文献   

9.
An experimental compliance calibration method for measuring crack length in fracture toughness tests of cortical bone was developed. Calibration tests were conducted on twenty compact type fracture specimens machined from the mid-diaphysis of five pairs of equine third metacarpal bones. Specimens were oriented for crack propagation in a direction transverse to the longitudinal axis of the bone. Specimen compliance was determined from the load vs. crack opening displacement record over a range of crack lengths from 0.48 to 0.75 times the specimen width. The results demonstrate that the compliance calibration method developed for isotropic materials can be used to determine crack length in bone, which is transversely isotropic. However, specimens from lateral and dorsal regions exhibited significantly different compliance calibrations even after differences in elastic modulus were taken into account in the normalized compliance.  相似文献   

10.
At mechanical equilibrium, articular cartilage is usually characterized as an isotropic elastic material with no interstitial fluid flow. In this study, the equilibrium properties (Young's modulus, aggregate modulus and Poisson's ratio) of bovine humeral, patellar and femoral cartilage specimens (n=26) were investigated using unconfined compression, confined compression, and indentation tests. Optical measurements of the Poisson's ratio of cartilage were also carried out. Mean values of the Young's modulus (assessed from the unconfined compression test) were 0.80+/-0.33, 0.57+/-0.17 and 0.31+/-0.18MPa and of the Poisson's ratio (assessed from the optical test) 0.15+/-0.06, 0.16+/-0.05 and 0.21+/-0.05 for humeral, patellar, and femoral cartilages, respectively. The indentation tests showed 30-79% (p<0.01) higher Young's modulus values than the unconfined compression tests. In indentation, values of the Young's modulus were independent of the indenter diameter only in the humeral cartilage. The mean values of the Poisson's ratio, obtained indirectly using the mathematical relation between the Young's modulus and the aggregate modulus in isotropic material, were 0.16+/-0.06, 0.21+/-0.05, and 0.26+/-0.08 for humeral, patellar, and femoral cartilages, respectively. We conclude that the values of the elastic parameters of the cartilage are dependent on the measurement technique in use. Based on the similar values of Poisson's ratios, as determined directly or indirectly, the equilibrium response of articular cartilage under unconfined and confined compression is satisfactorily described by the isotropic elastic model. However, values of the isotropic Young's modulus obtained from the in situ indentation tests are higher than those obtained from the in vitro unconfined or confined compression tests and may depend on the indenter size in use.  相似文献   

11.
Young's modulus and Poisson's ratios of 6mm-sized cubes of equine cortical bone were measured in compression using a micro-mechanical loading device. Surface displacements were determined by electronic speckle pattern-correlation interferometry. This method allows for non-destructive testing of very small samples in water. Analyses of standard materials showed that the method is accurate and precise for determining both Young's modulus and Poisson's ratio. Material properties were determined concurrently in three orthogonal anatomic directions (axial, radial and transverse). Young's modulus values were found to be anisotropic and consistent with values of equine cortical bone reported in the literature. Poisson's ratios were also found to be anisotropic, but lower than those previously reported. Poisson's ratios for the radial-transverse and transverse-radial directions were 0.15+/-0.02, for the axial-transverse and axial-radial directions 0.19+/-0.04, and for the transverse-axial and radial-axial direction 0.09+/-0.02 (mean+/-SD). Cubes located only millimetres apart had significantly different elastic properties, showing that significant spatial variation occurs in equine cortical bone.  相似文献   

12.
The ability to determine trabecular bone tissue elastic and failure properties has biological and clinical importance. To date, trabecular tissue yield strains remain unknown due to experimental difficulties, and elastic moduli studies have reported controversial results. We hypothesized that the elastic and tensile and compressive yield properties of trabecular tissue are similar to those of cortical tissue. Effective tissue modulus and yield strains were calibrated for cadaveric human femoral neck specimens taken from 11 donors, using a combination of apparent-level mechanical testing and specimen-specific, high-resolution, nonlinear finite element modeling. The trabecular tissue properties were then compared to measured elastic modulus and tensile yield strain of human femoral diaphyseal cortical bone specimens obtained from a similar cohort of 34 donors. Cortical tissue properties were obtained by statistically eliminating the effects of vascular porosity. Results indicated that mean elastic modulus was 10% lower (p<0.05) for the trabecular tissue (18.0+/-2.8 GPa) than for the cortical tissue (19.9+/-1.8 GPa), and the 0.2% offset tensile yield strain was 15% lower for the trabecular tissue (0.62+/-0.04% vs. 0.73+/-0.05%, p<0.001). The tensile-compressive yield strength asymmetry for the trabecular tissue, 0.62 on average, was similar to values reported in the literature for cortical bone. We conclude that while the elastic modulus and yield strains for trabecular tissue are just slightly lower than those of cortical tissue, because of the cumulative effect of these differences, tissue strength is about 25% greater for cortical bone.  相似文献   

13.
The compressive stiffness of an elastic material is traditionally characterized by its Young's modulus. Young's modulus of articular cartilage can be directly measured using unconfined compression geometry by assuming the cartilage to be homogeneous and isotropic. In isotropic materials, Young's modulus can also be determined acoustically by the measurement of sound speed and density of the material. In the present study, acoustic and mechanical techniques, feasible for in vivo measurements, were investigated to quantify the static and dynamic compressive stiffness of bovine articular cartilage in situ. Ultrasound reflection from the cartilage surface, as well as the dynamic modulus were determined with the recently developed ultrasound indentation instrument and compared with the reference mechanical and ultrasound speed measurements in unconfined compression (n=72). In addition, the applicability of manual creep measurements with the ultrasound indentation instrument was evaluated both experimentally and numerically. Our experimental results indicated that the sound speed could predict 47% and 53% of the variation in the Young's modulus and dynamic modulus of cartilage, respectively. The dynamic modulus, as determined manually with the ultrasound indentation instrument, showed significant linear correlations with the reference Young's modulus (r(2)=0.445, p<0.01, n=70) and dynamic modulus (r(2)=0.779, p<0.01, n=70) of the cartilage. Numerical analyses indicated that the creep measurements, conducted manually with the ultrasound indentation instrument, were sensitive to changes in Young's modulus and permeability of the tissue, and were significantly influenced by the tissue thickness. We conclude that acoustic parameters, i.e. ultrasound speed and reflection, are indicative to the intrinsic mechanical properties of the articular cartilage. Ultrasound indentation instrument, when further developed, provides an applicable tool for the in vivo detection of cartilage mechano-acoustic properties. These techniques could promote the diagnostics of osteoarthrosis.  相似文献   

14.
Elevation of intraocular pressure has been correlated to changes in stiffness of trabecular meshwork (TM) in glaucomatous eyes although mechanical properties of the TM remain to be quantitatively determined. Data in the literature suggest that the TM cannot be considered mechanically as a uniform layer of isotropic elastic material, because the value of its Young’s modulus depends on the methods of measurements and can vary up to five orders of magnitude. To this end, we proposed a new theoretical framework for mechanical analysis of the TM, in which the inner wall of Schlemm’s canal and the juxtacanalicular tissue in the TM were treated as a uniform layer of isotropic elastic material, and the rest of the TM, i.e., the uveal and corneoscleral meshworks, were modeled as a uniform layer of transversely isotropic material. Using the model, we demonstrated that the large discrepancy in the apparent Young’s modulus reported in the literature could be caused by the anisotropy of the meshwork that was significantly stiffer in the longitudinal direction than in the transverse direction. The theoretical framework could be used to integrate existing data of the stiffness, investigate anisotropic behaviors of the tissues, and develop new methods to measure mechanical properties of the TM.  相似文献   

15.
Knowledge of elastic properties and of their variation in the cortical bone of the craniofacial skeleton is indispensable for creating accurate finite-element models to explore the biomechanics and adaptation of the skull in primates. In this study, we measured elastic properties of the external cortex of the rhesus monkey craniofacial skeleton, using an ultrasonic technique. Twenty-eight cylindrical cortical specimens were removed from each of six craniofacial skeletons of adult Macaca mulatta. Thickness, density, and a set of longitudinal and transverse ultrasonic velocities were measured on each specimen to allow calculation of the elastic properties in three dimensions, according to equations derived from Newton's second law and Hooke's law. The axes of maximum stiffness were determined by fitting longitudinal velocities measured along the perimeter of each cortical specimen to a sinusoidal function. Results showed significant differences in elastic properties between different functional areas of the rhesus cranium, and that many sites have a consistent orientation of maximum stiffness among specimens. Overall, the cortical bones of the rhesus monkey skull can be modeled as orthotropic in many regions, and as transversely isotropic in some regions, e.g., the supraorbital region. There are differences from human crania, suggesting that structural differences in skeletal form relate to differences in cortical material properties across species. These differences also suggest that we require more comparative data on elastic properties in primate craniofacial skeletons to explore effectively the functional significance of these differences, especially when these differences are elucidated through modeling approaches, such as finite-element modeling.  相似文献   

16.
Unexplained length-dependence of flexural rigidity and Young's modulus of microtubules is studied using an orthotropic elastic shell model. It is showed that vibration frequencies and buckling load predicted by the accurate orthotropic shell model are much lower than that given by the approximate isotropic beam model for shorter microtubules, although the two models give almost identical results for sufficiently long microtubules. It is this inaccuracy of the isotropic beam model used by all previous researchers that leads to reported lower flexural rigidity and Young's modulus for shorter microtubules. In particular, much lower shear modulus and circumferential Young's modulus, which only weaken flexural rigidity of shorter microtubules, are responsible for the observed length-dependence of the flexural rigidity. These results confirm that longitudinal Young's modulus of microtubules is length-independent, and the observed length-dependence of the flexural rigidity and Young's modulus is a result of strongly anisotropic elastic properties of microtubules which have a length-dependent weakening effect on flexural rigidity of shorter microtubules.  相似文献   

17.
The bone tissue of the canine mandible is elastically isotropic   总被引:3,自引:0,他引:3  
This paper reports experimental measurements which show that canine mandibular bone tissue is elastically isotropic. Earlier work has established that human, canine and bovine cortical bone tissue of the femur, tibia and skull are elastically anisotropic and therefore the reported isotropy of mandibular tissue was unexpected. The isotropic elastic moduli of the canine mandible are represented by a Young's modulus of 7.5 GPa and a Poisson's ratio of 0.4. Earlier work gave the three orthotropic Young's moduli of the cortical one of the canine femur as 12.8 GPa, 15.6 GPa and 20.1 GPa. The experimental technique employed is elastic wave propagation at ultrasonic frequencies.  相似文献   

18.
Structurally intact cancellous bone allograft is an attractive tissue form because its high porosity can provide space for delivery of osteogenic factors and also allows for more rapid and complete in-growth of host tissues. Gamma radiation sterilization is commonly used in cancellous bone allograft to prevent disease transmission. Commonly used doses of gamma radiation sterilization (25–35 kGy) have been shown to modify cortical bone post-yield properties and crack propagation but have not been associated with changes in cancellous bone material properties. The purpose of this study was to determine the effects of irradiation on the elastic and yield properties and microscopic tissue damage processes in dense cancellous bone. Cancellous bone specimens (13 control, 14 irradiated to 30 kGy) from bovine proximal tibiae were tested in compression to 1.3% apparent strain and examined for microscopic tissue damage. The yield strain in irradiated specimens (0.93±0.11%, mean±SD) did not differ from that in control specimens (0.90±0.11%, p=0.44). No differences in elastic modulus were observed between groups after accounting for differences in bone volume fraction. However, irradiated specimens showed greater residual strain (p=0.01), increased number of microfractures (p=0.02), and reduced amounts of cross-hatching type damage (p<0.01). Although gamma radiation sterilization at commonly used dosing (30 kGy) does not modify elastic or yield properties of dense cancellous bone, it does cause modifications in damage processes, resulting in increased permanent deformation following isolated overloading.  相似文献   

19.
The macroscopic mechanical properties of trabecular bone can be predicted by its architecture using theoretical relationships between the elastic and architectural properties. Microdamage caused by overloading or fatigue decreases the apparent elastic moduli of trabecular bone requiring these relationships to be modified to predict the damaged elastic properties. In the case of isotropic damage, the apparent level elastic properties could be determined by multiplying all of the elastic constants by a single scalar factor. If the damage is anisotropic, the elastic constants may change by differing factors and the material coordinate system could become misaligned with the fabric coordinate system. High-resolution finite element models were used to simulate damage overloading on seven trabecular bone specimens subjected to pure shear strain in two planes. Comparison of the apparent elastic moduli of the specimens before and after damage showed that the reduction of the elastic moduli was anisotropic. This suggests that the microdamage within the specimens was inhomogeneous. However, after damage the specimens exhibited nearly orthotropic material symmetry as they did before damage. Changes in the orientation of the orthotropic material coordinate system were also small and occurred primarily in the transverse plane. Thus, while damage in trabecular bone is anisotropic, the material coordinate system remains aligned with the fabric tensor.  相似文献   

20.
An elastic-plastic finite element analysis is performed on the AIA shear specimen to evaluate its effectiveness to yield ultimate shear strength values. The effect of geometry, material properties, and yield criteria are discussed in the light of applications to human femoral cortical bone. Specimen dimensions are noted as follows: W, width, D, hole diameter and H, distance between holes. As the H/D ratio increases the stress distribution tends more toward pure shear at the same time the overshoot in the shear distribution increases. An H/D ratio equal to 1.2-1.5 is optimal. The H/W parameter does not affect the overshoot noticeably but it does slightly affect the purity of shear. The material parameters do affect the performance of the shear specimen. However, the effect of the material parameters are far more pronounced in the anisotropic case than it is in the isotropic case. In the isotropic case, the Young modulus does not affect the overshoot. The increase in Poisson's ratio does slightly decrease the overshoot. For the anisotropic case, the increase in the ratio of shear modulus to Young modulus in the transverse direction (G/E2) results in an increase in the overshoot (in the shear distribution). The increase in the ratio of the Young modulus in the transverse direction to that of the axial direction (E2/E1) also results in an increase in the overshoot. Creating a notch at the top of the hole is shown to have the effect of decreasing the overshoot. Its effect on the purity of the shear is rather slight. It is found that plasticity is initiated at the sides of the two holes where the tensile normal stresses are maximum. The plastic region first expands around the perimeter of the hole then radially outward; and finally, it expands into the significant region. If the W/H parameter is less than 5, a sizable portion of the width of the specimen around the hole can go plastic with the significant region still being in the elastic state. Such a situation can cause tearing of the specimen across the width. A W/H ratio of 6 or more can prevent that danger. It is also found that the onset of plasticity brings about higher overshoot and higher purity of shear. The notched shear specimen performs better in actual tests and is more reliable in producing shear failures. The shear strength results obtained from AIA shear tests tend to confirm those shear strength results obtained from torsion tests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号