首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Abstract: Capsaicin stimulates cyclic GMP production via nitric oxide (NO) (or another nitrosyl factor) in dorsal root ganglion (DRG) neurons maintained in culture. The purpose of the present study was to characterize further capsaicin stimulation of cyclic GMP production in DRG cells maintained in culture, investigate other algesic and/or inflammatory agents for effects on cyclic GMP production, and examine cells responsible for NO production and cyclic GMP production. Capsaicin stimulation of cyclic GMP production in DRG cells was dose dependent, receptor mediated, and attenuated by hemoglobin. Prostaglandin E2, substance P, and calcitonin gene-related peptide did not affect basal, capsaicin-stimulated, or bradykinin-stimulated cyclic GMP production. Other inflammatory or algesic agents, including serotonin, histamine, ATP, glutamate, aspartate, and NMDA, did not affect cyclic GMP production. Pretreatment of DRG cells with lipopolysaccharide increased basal cyclic GMP production in neuronal but not in nonneuronal cultures and facilitated stimulation of cyclic GMP production by l -arginine. Capsaicin pretreatment of neuronal DRG cultures, which destroys capsaicin-sensitive (small diameter) afferent neurons, attenuated capsaicin- and bradykinin-stimulated cyclic GMP production but did not affect basal or sodium nitroprusside-stimulated cyclic GMP production. These results indicate that capsaicin elicits production of a nitrosyl factor via capsaicin-sensitive (small diameter) neurons. Capsaicin evoked cyclic GMP production in nonneuronal DRG cultures in the presence but not in the absence of apposed neuronal DRG cultures. Overall, these findings suggest that specific exogenous (or endogenous) substances may stimulate production of a nitrosyl factor(s) by a subset of DRG neurons, and nitrosyl factors produced by these neurons may affect cyclic GMP production in neighboring neuronal or non-neuronal cells.  相似文献   

2.
In the chick ciliary ganglion, neuronal number is kept constant between St. 29 and St. 34 (E6-E8) despite a large amount of cell death. Here, we characterize the source of neurogenic cells in the ganglion as undifferentiated neural crest-derived cells. At St. 29, neurons and nonneuronal cells in the ciliary ganglion expressed the neural crest markers HNK-1 and p75(NTR). Over 50% of the cells were neurons at St. 29; of the nonneuronal cells, a small population expressed glial markers, whereas the majority was undifferentiated. When placed in culture, nonneuronal cells acquired immunoreactivity for HuD, suggesting that they had commenced neuronal differentiation. The newly differentiated neurons arose from precursors that did not incorporate bromodeoxyuridine. To test whether these precursors could undergo neural differentiation in vivo, purified nonneuronal cells from St. 29 quail ganglia were transplanted into chick embryos at St. 9-14. Subsequently, quail cells expressing neuronal markers were found in the chick ciliary ganglion. The existence of this precursor pool was transient because nonneuronal cells isolated from St. 38 ganglia failed to form neurons. Since all ciliary ganglion neurons are born prior to St. 29, these results demonstrate that there are postmitotic neural crest-derived precursors in the developing ciliary ganglion that can differentiate into neurons in the appropriate environment.  相似文献   

3.
Ciliary neurotrophic factor (CNTF) is abundantly expressed in Schwann cells in adult mammalian peripheral nerves, but not in neurons. After peripheral nerve injury, CNTF released from disrupted Schwann cells is likely to promote neuronal survival and axonal regeneration. In the present study, we examined the expression and histochemical localization of CNTF in adult rat DRG in vivo and in vitro. In contrast to the restricted expression in Schwann cells in vivo, we observed abundant CNTF mRNA and protein expression in DRG neurons after 3 h, 2, 7, and 15 days in dissociated cell culture. At later stages (7 and 15 days) of culture, CNTF immunoreactivity was detected in both neuronal cell bodies and regenerating neurites. These results suggest that CNTF is synthesized and transported to neurites in cultured DRG neurons. Since we failed to observe CNTF immunoreactivity in DRG neurons in explant culture, disruption of cell–cell interactions, rather than the culture itself, may be an inducible factor for localization of CNTF in the neurons.  相似文献   

4.
Translational regulation of somatostatin in cultured sympathetic neurons   总被引:2,自引:0,他引:2  
K Spiegel  V Wong  J A Kessler 《Neuron》1990,4(2):303-311
Coculture of sympathetic neurons with ganglion nonneuronal cells elevated levels of preprosomatostatin mRNA but did not alter neuronal synthesis, content, or release of somatostatin. Treatment of sympathetic neurons with culture medium conditioned by exposure to ganglion nonneuronal cells similarly elevated preprosomatostatin mRNA. Treatment with conditioned medium elevated somatostatin levels in pure neuronal cultures, but not in neurons cocultured with nonneuronal cells. Conditioned medium also failed to increase peptide levels in neurons cultured on a substratum of killed nonneuronal cells, despite a large increase in preprosomatostatin mRNA. These observations suggest that contact of sympathetic neurons with nonneuronal cell membranes inhibits the increase in peptide synthesis, but not the increase in preprosomatostatin mRNA after treatment with conditioned medium. Thus neuronal interactions with nonneuronal cells regulate somatostatin metabolism at both the mRNA and peptide levels. Regulatory effects on the mRNA and the peptide are separable and do not necessarily occur in parallel, and translational controls may be the rate-limiting factors.  相似文献   

5.
During the ontogenesis of dorsal root ganglia (DRG), the immunoreactivity to substance P (SP) and calbindin D-28k (CaBP) appears in chickens at embryonic day 5 (E5) and E10 respectively. To establish the birthdates of primary sensory neurons expressing SP or CaBP, chick embryos were given repetitive intra-amniotic injections of [3H]-thymidine. The neuroblasts giving rise to SP-expressing neurons were labeled up to E6 while those generating CaBP-immunoreactive neurons stopped to incorporate [3H]-thymidine before E5.5. This finding indicates that neurons exhibiting distinct phenotypes may originate from neuroblasts which arrest to proliferate at close but distinct stages of development. To determine whether SP and CaBP are co-expressed or not in DRG neurons, chick embryos at E12, E18, and chickens two weeks after hatching were perfused and fixed to detect simultaneously SP- and CaBP-immunoreactivity in DRG sections. The results showed that SP and CaBP were transiently co-expressed by a subset of neurons at E12. Later, however, the SP-immunoreactivity was gradually lost by these ganglion cells, so that the SP- and CaBP-immunoreaction defined two distinct neuronal subpopulations after hatching. In conclusion, most CaBP-immunoreactive DRG cells derive from a subset of neurons in which SP and CaBP are transiently co-localized.  相似文献   

6.
The expression of the 240 ConA-binding glycoprotein (240 kDa), a marker of synaptic junctions isolated from the rat cerebellum, was studied by immunocytochemical techniques in forebrain and cerebellum from rat and chicken, and in chick dorsal root ganglia. Parallel studies were carried out either on tissue sections or in dissociated cell cultures. In all cases non neuronal cells were not immunostained. The tissue sections of cerebellum from rat and chick exhibited 240 kDa glycoprotein immunoreactivity, especially in the molecular layer, while the forebrain sections from rat and chick did not show any significant immunostaining. In contrast, in dissociated forebrain cell cultures, all neuronal cells expressed 240 kDa glycoprotein immunoreactivity, while glial cells remained totally unlabelled. In tissue sections of dorsal root ganglion (DRG), sensory neurons expressed the 240 kDa only after the embryonic day (E 10). A large number of small neurons in the dorsomedial part of DRG were immunostained with 240 kDa glycoprotein antiserum, whereas only a small number of neurons in the ventrolateral part of the ganglia displayed 240 kDa immunoreactivity. In dissociated DRG cells cultures (mixed or neuron-enriched DRG cell cultures) all the neuronal perikarya but not their processes were stained. These studies indicate that 240 kDa glycoprotein expression is completely modified in cultures of neurons of CNS or PNS since the antigen becomes synthetized in high amount by all cells independent of synapse formation. This demonstrates that the expression of 240 kDa is controlled by the cell environment.  相似文献   

7.
Neuronal precursor cells present in dorsal root ganglia (DRG) during early development have been previously shown to differentiate in vitro to neurons, as characterized by morphology, cell surface antigens, and electrophysiological properties (H. Rohrer, S. Henke-Fahle, T. El-Sharkawy, H. D. Lux, and H. Thoenen, 1985, Embo J. 4, 1709-1714). In the present study the conditions necessary for the initial differentiation and long-term survival of these cells were established, and the neurotransmitter phenotype of the newly differentiated neurons was analyzed. Neuronal precursor cells isolated from chick DRG at Embryonic Day 6 (E6) were found to require the presence of a polyornithine substrate coated with either laminin or fibronectin for initial neurite production and long-term survival. Neurons were unable to develop on polyornithine alone or on polyornithine coated with BSA. The survival and neurite outgrowth from neuronal precursor cells was not affected by the presence of nerve growth factor (NGF) during the first 9 hr in culture. NGF also had no effect on the proportion of cells expressing the neuron-specific Q211 antigen. However, after this initial differentiation period the neurons did require the presence of a survival factor. The neurons could be maintained for at least 6 days in culture both in the presence of NGF and in the presence of brain-derived neurotrophic factor (BDNF). At saturating concentrations of both survival factors no additive effects could be observed, indicating a complete overlap of NGF- and BDNF-responsiveness. Although the same proportion of cells survived with either NGF or BDNF during the first 3 days in culture, survival decreased in the presence of BDNF but not in the presence of NGF during the following 3 days in culture. The loss of BDNF responsiveness in vitro was also observed in vivo. After 6 days in culture about 70% of the neurons expressed substance P immunoreactivity, and approximately the same proportion was positive for myelin-associated glycoprotein immunoreactivity. The neurons did not express properties of adrenergic neurons such as tyrosine hydroxylase immunoreactivity or norepinephrine uptake. These findings indicate that the neuronal precursor cells from E6 DRG acquire the same characteristics in vitro as in their normal in vivo environment.  相似文献   

8.
A K Hall  S C Landis 《Neuron》1991,6(5):741-752
To determine whether postmigratory neural crest cells retain the capacity to give rise to multiple cell types, the clonal progeny of embryonic rat superior cervical ganglion (SCG) cells were examined in culture. Double labeling with BrdU and neurofilament antibodies demonstrated that neuron precursors from the E14.5 SCG continued to proliferate for several days in culture. Using the BAG retrovirus to examine the progeny of single cells, we obtained several kinds of distinct clones from SCG cultures after 3 days. At E14.5, during peak neurogenesis in vivo, neuron-containing clones composed of one to seven cells were common. At E17.5, after neurons have been born in vivo, most clones in vitro contained flat cells, primarily reflecting glial cell division. Even in cultures from E13.5 ganglia, mixed clones containing neurons and flat cells were rarely observed. These observations suggest that neuronal and nonneuronal cell precursors are specified during or before early gangliogenesis.  相似文献   

9.
The neuropeptide-immunoreactive (IR) and neurofilament-IR neurons are two major phenotypical classes in dorsal root ganglion (DRG). Targets of neuronal innervation play a vital role in regulating the survival and differentiation of innervating neurotrophin-responsive neurons. Monosialoganglioside (GM1) has been considered to have a neurotrophic factor-like activity. Both GM1 and target skeletal muscle (SKM) cells are essential for the maintenance of the function of neurons. However, whether target SKM cells and GM1, alone or associated, generate neuropeptide or neurofilament expression remains unclear. The aim of the present study is to investigate the effects of GM1 or/and SKM on DRG neuronal phenotypes. DRG neurons containing the neuropeptide substance P (SP) and neurofilament 200 (NF-200) were quantified using immunofluorescent labeling in cultures of DRG, which was dissected out at times before (at embryonic days 12.5, E12.5) and after (at E19.5) sensory neurons contact peripheral targets in vivo. DRG neurons were cultured in absence or presence of GM1 or/and SKM cells. In this experiment, we found that: (1) GM1 promoted expression of SP and NF-200 in E12.5 DRG cultures; (2) SKM cells promoted expression of NF-200 but not SP in E12.5 DRG cultures; (3) GM1 and target SKM cells had additive effects on expression of SP and NF-200 in E12.5 DRG cultures; and (4) SKM or/and GM1 did not have effects on expression of SP and NF-200 in E19.5 DRG cultures. These results suggested that GM1 could influence DRG, two major neuronal phenotypes, before sensory neurons contact peripheral targets in vivo. Target SKM cells could only influence neurofilament-expressed neuronal phenotype before sensory neurons contact peripheral targets in vivo. GM1 and SKM cells had the additive effects on two major DRG neuronal classes, which express neuropeptide or neurofilament when DRG cells were harvested before sensory neurons contact peripheral targets in vivo. These results offered new clues for a better understanding of the association of GM1 or/and SKM with neuronal phenotypes.  相似文献   

10.
Ciliary neuronotrophic factor (CNTF) requirements for neuronal survival in the intact ciliary ganglion (CG) have been investigated in organ culture. Exogenous CNTF was not essential for neuronal survival until embryonic Day 8. Three-day cultures from 5-day ganglia were similar with or without CNTF, showing numerous neurons and extensive neuritic development. In 3-day cultures from 8-day-old ganglia, however, no neurons survived without CNTF, and the ganglia contained only nonneuronal cells and cell debris. Similar ganglia cultured with CNTF contained many neurons, surrounded by nonneuronal cells, and abundant neuritic processes. Morphologic maturation of the neurons was less advanced in CNTF-supported ganglia than in their in vivo counterparts.  相似文献   

11.
Neuronal subpopulations of dorsal root ganglion (DRG) cells in the chicken exhibit carbonic anhydrase (CA) activity. To determine whether CA activity is expressed by DRG cells maintained in in vitro cultures, dissociated DRG cells from 10-day-old chick embryos were cultured on a collagen substrate. The influence exerted by environmental factors on the enzyme expression was tested under various conditions of culture. Neuron-enriched cell cultures and mixed DRG-cell cultures (including numerous non-neuronal cells) were performed either in a defined medium or in a horse serum-supplemented medium. In all the tested conditions, subpopulations of cultured sensory neurons expressed CA activity in their cell bodies, while their neurites were rarely stained; in each case, the percentage of CA-positive neurons declined with the age of the cultures. The number and the persistence of neurons possessing CA activity as well as the intensity of the reaction were enhanced by addition of horse serum. In contrast, the expression of the neuronal CA activity was not affected by the presence of non-neuronal cells or by the rise of CO2 concentration. Thus, the appearance and disappearance of neuronal subpopulations expressing CA activity may be decisively influenced by factors contained in the horse serum. The loss of CA-positive neurons with time could result from a cell selection or from genetic repression. Analysis of the time curves does not support a preferential cell death of CA-positive neurons but suggests that the eventual conversion of CA-positive neurons into CA-negative neurons results from a loss of the enzyme activity. These results indicate that the phenotypic expression of cultured sensory neurons is dependent on defined environmental factors.  相似文献   

12.
The axonal functions that act in the formation of the neuronal network have been shown to occur in close interdependence with the tissue that surrounds the growing axons. However, little is known about the molecular building blocks underlying axonal functions, although more than 400 axonal proteins have been identified. In view of the existence of such a large number of axonal proteins, we have initiated a project to determine the molecules involved in the implementation of particular axonal functions by a selective approach. On the assumption that plasticity in the expression of axonal functions in response to specific features of the local axonal environment may be based on changes in the expression of particular axonal proteins, the axonal proteins of dorsal root ganglion (DRG) neurons were screened for those whose expression responds to environmental influences. DRG neurons were grown in a compartmental cell system that offers separate access to neuronal somas and to their axons and the axons were locally exposed to different populations of cells from the peripheral or central nervous system. The axonal proteins were metabolically labeled and subjected to two-dimensional gel electrophoresis. Computerized quantitation of the individual axonal proteins revealed that the cocultured cells modulate the synthesis of a few axonal proteins of DRG neurons differentially. The data on the abundance of the newly expressed proteins under varying local environmental conditions were condensed as expression profiles. Comparison of expression profiles and cluster analysis of quantitative gel analysis data revealed that the environmentally modulated proteins subdivide into clusters with common distinct expression profiles under the influence of nonneuronal cells from the peripheral nervous system, nonneuronal cells of the central nervous system, and spinal cord cells, which are composed of neurons and nonneuronal cells. By means of this new, characteristic attribute assigned to environmentally modulated axonal proteins, working hypotheses were made as to their functional role.  相似文献   

13.
Transforming growth factor beta (TGF beta) influences the growth and differentiation of a wide variety of nonneuronal cells (nnc) during embryogenesis and in response to wounding. In the present study TGF beta 1 and TGF beta 2 were examined for their neurotrophic actions on neonatal rat dorsal root ganglion (DRG) neurons with ganglionic nnc in dissociated cultures. TGF beta 1 and TGF beta 2 each increased both neuronal survival and levels of the peptide neurotransmitter substance P (SP) expressed per neuron as well as per culture. TGF beta 1 was maximally effective at a concentration of 40 pM, whereas TGF beta 2 was about 10-fold less potent. Survival effects promoted by simultaneous treatment with both factors were not additive. TGF beta 1 also changed the morphology and distribution of DRG nnc which resulted in clustering of DRG neurons on top of the nnc. Cotreatment of the cultures with two different anti-nerve growth factor (NGF) antibodies eliminated the neurotrophic effects of TGF beta 1. However, treatment with TGF beta 1 did not alter NGF mRNA expression in the cultures nor did it change the amount of NGF in the medium. Further, TGF beta 1 greatly enhanced survival effects and SP stimulation promoted by exogenous NGF at concentrations up to 100 ng/ml. The neurotrophic effects of TGF beta 1 were significantly attenuated by decreasing the proportion of the ganglionic nnc, suggesting a role for these cells in mediating TGF beta 1 action on the neurons. It is hypothesized that the neurotrophic activity of TGF beta depended upon the presence of molecules immunologically related to NGF and that the effects of TGF beta were synergistic with NGF. These observations suggest that TGF beta may play a role in the differentiation and regeneration of DRG neurons in vivo.  相似文献   

14.
The amyloid precursor protein (APP) is a transmembrane protein whose abnormal processing is associated with the pathogenesis of Alzheimer's disease. In this study, we examined the expression and role of cell-associated APP in primary dorsal root ganglion (DRG) neurons. When dissociated DRG cells prepared from mouse embryos were treated with nerve growth factor (NGF), neuronal APP levels were transiently elevated. DRG neurons treated with an antibody against cell surface APP failed to mature and underwent apoptosis. When NGF was withdrawn from the cultures after a 36-h NGF treatment, virtually all neurons underwent apoptosis by 48 h. During the course of apoptosis, some neurons with intact morphology contained increased levels of APP immunoreactivity, whereas the APP levels were greatly reduced in apoptotic neurons. Furthermore, affected neurons contained immunoreactivities for activated caspase-3, a caspase-cleaved APP fragment (APPDeltaC31), and Abeta. Downregulation of endogenous APP expression by treatment with an APP antisense oligodeoxynucleotide significantly increased the number of apoptotic neurons in NGF-deprived DRG cultures. Furthermore, overexpression of APP by adenovirus vector-mediated gene transfer reduced the number of apoptotic neurons deprived of NGF. These results suggest that endogenous APP is upregulated to exert an antiapoptotic effect on neurotrophin-deprived DRG neurons and subsequently undergoes caspase-dependent proteolysis.  相似文献   

15.
The purpose of the present study was to investigate whether didanosine (ddI) directly causes morphological and ultrastructural abnormalities of dorsal root ganglion (DRG) neurons in vitro. Dissociated DRG cells and organotypic DRG explants from embryonic 15-day-old Wistar rats were cultured for 3 days and then exposed to ddI (1 μg/ml, 5 μg/ml, 10 μg/ml, and 20 μg/ml) for another 3 days and 6 days, respectively. Neurons cultured continuously in medium served as normal controls. The diameter of the neuronal cell body and neurite length were measured in dissociated DRG cell cultures. Neuronal ultrastructural changes were observed in both culture models. ddI induced dose-dependent decreases in neurite number, length of the longest neurite in each neuron, and total neurite length per neuron in dissociated DRG cell cultures with 3 days treatment. There were no morphological changes seen in organotypic DRG cultures even with longer exposure time (6 days). But ddI induced ultrastructural changes in both culture models. Ultrastructural abnormalities included loss of cristae in mitochondria, clustering of microtubules and neurofilaments, accumulation of glycogen-like granules, and emergence of large dense particles between neurites or microtubules. Lysosome-like large particles emerged inconstantly in neurites. ddI induced a neurite retraction or neurite loss in a dose-dependent manner in dissociated DRG neurons, suggesting that ddI may partially contribute to developing peripheral neuropathy. Cytoskeletal rearrangement and ultrastructural abnormalities caused by ddI in both culture models may have a key role in neurite degeneration.  相似文献   

16.
The neurotoxic effect of capsaicin has been shown to be selective on a subpopulation of small dorsal root ganglion neurons in newborn animals. The aim of this study was to provide evidence of the long lasting effect of capsaicin and its ultrapotent analog resiniferatoxin (RTX) on sensory peptidergic neurons maintained in organotypic cultures. The effects of the two irritants were examined on neurons that contained substance P (SP) and calcitonin gene-related peptide (CGRP). Exposure of the cultures to 10 microM capsaicin and 100 nM RTX for periods of 2 days or longer resulted in almost complete elimination of SP-immunoreactive (IR) neurites and reduction, but not elimination, of CGRP-IR neurites. In addition, both 10 microM capsaicin and 100 nM RTX significantly reduced the number of SP- and CGRP-IR cell bodies within DRG explants. Capsaicin in 100 microM concentration produced complete elimination of SP-IR fibers and a greater decrease in the number of CGRP-IR fibers, but failed to completely eliminate IR cell bodies. Exposure of the cultures to the irritants in the same concentrations for 90 min did not produce a measurable effect on SP- or CGRP-IR in neurites or cell bodies. It is important to establish that the effect of capsaicin and RTX on cultured neurons was of long duration (longer than 4 days) and is therefore different from depletion of peptides. These findings demonstrate that processes of cultured sensory neurons are much more sensitive to capsaicin and RTX than cell bodies. Furthermore, our results show that SP-IR neuronal elements are more sensitive to capsaicin than CGRP-IR elements. These data suggest that cultured sensory neurons express the functional properties of differentiated sensory neurons in vivo.  相似文献   

17.
Vasoactive intestinal peptide (VIP) expression increases in sympathetic neurons when they are grown in dissociated cell or explant cultures and when they are axotomized in vivo. In dissociated cell culture, the magnitude of the VIP increase was reduced when nonneuronal cells were removed and medium conditioned by ganglionic nonneuronal cells increased VIP in neuron-enriched cultures. Antiserum Against cholinergic differentiation factor (also leukemia inhibitory factor; CDF/LIF), but not against ciliary neurotrophic factor, immunoprecipitated this activity. Medium conditioned by sympathetic ganglion explants also contained a VIP-stimulatory molecule that was immunoprecipitated by CDF/LIF antiserum, and CDF/LIF antiserum partially blocked VIP induction in explants. CDF/LIF mRNA was increased in dissociated cell cultures, in ganglion explants and in vivo after axotomy. Our results suggest that CDF/LIF released from ganglionic nonneuronal cells plays an important role in regulating VIP after axotomy. 1994 John Wiley & Sons, Inc.  相似文献   

18.
An overlap between subpopulations of nerve growth factor (NGF)-responsive and capsaicin-sensitive dorsal root ganglion (DRG) sensory neurons has been suggested from a number of in vivo studies. To examine this apparent link in more detail, we compared the effects of capsaicin on adult rat DRG neurons cultured in the presence or absence of NGF. Capsaicin sensitivity was assessed histochemically by a cobalt staining method, by measuring capsaicin-induced 45Ca2+ uptake, and by electrophysiological recording of capsaicin-evoked membrane currents. When cultured with NGF, approximately 50% of these adult DRG neurons were capsaicin-sensitive, whereas adult sympathetic neurons or ganglionic nonneuronal cells were insensitive. DRG cultures grown in the absence of NGF, however, were essentially unresponsive to capsaicin. Capsaicin sensitivity could be regained fully within 4-6 days of replacement of NGF. These results indicate that, at least in vitro, NGF can modify the capsaicin sensitivity of adult DRG neurons.  相似文献   

19.
20.
Explants of the ganglion trigeminale from chick embryos were cultivated in Maximow chambers in the presence of 10-6...10-8 M substance P (SP . 3CH3COOH.4H2O). 1. In SP-treated cultures the index of areas covered by the explants was increased in shorttime tests. 2. The density of cells was related to the type of medio-dorsal (MD) and ventro-lateral (VL) neuroblasts. The density of SP-treated VL cells was not altered. The density of MD cells decreased. 3. The percentage of dark neuroblasts was decreased under the influence of SP. 4. A stimulation of VL neuroblasts did not take place. 5. The diameters of MD pericarya and the areas of MD cell nuclei and the areas of nuclei from nonneuronal cells increased. 6. The possible role of SP as a factor controlling In-vitro-processes is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号