首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
N(G)-nitro-D-arginine-methyl ester (D-NAME) is considered to be an inactive enantiomer of L-NAME and is generally used as the negative control for NO synthase inhibition with L-NAME. With the aim to compare the effects of 4-week L-NAME and D-NAME treatments on hemodynamic and cardiovascular structural parameters, four groups of male Wistar rats were investigated: the controls and groups administered 40 and 20 mg/kg/day of L-NAME and 40 mg/kg/day of D-NAME. At the end of the experiment, myocardial NO synthase activity decreased by 42, 24 and 25%; aortic NO synthase activity decreased by 35, 15 and 13% vs. controls in the L-NAME 40, L-NAME 20 and D-NAME 40 groups, respectively. The DNA concentrations in the myocardium and the aorta increased significantly after L-NAME and D-NAME treatments. The inhibition of NO synthase was accompanied by a significant elevation in systolic blood pressure in all three groups. The LVW/BW ratio increased by 27, 14 and 13% vs. controls in the L-NAME 40, L-NAME 20 and D-NAME 40 groups, respectively. The aortic wall mass, measured as the cross-sectional area, increased by 45, 17 and 25% vs. controls in the L-NAME 40, L-NAME 20 and D-NAME 40 groups, respectively. Myocardial fibrosis represented 0.94% in the controls, but 7.96, 4.70 and 5.25% in L-NAME 40, L-NAME 20 and D-NAME 40 groups, respectively. It is concluded that D-NAME, although less affective than L-NAME, inhibits NO synthase activity resulting in hemodynamic and structural changes in the cardiovascular system similar to the changes induced by half the dose of L-NAME. Thus, the consideration of D-NAME as an inactive enantiomer and its use as the negative control needs to be reevaluated.  相似文献   

2.
The present experiments were carried out to determine the role of nitric oxide in influencing systemic and renal hemodynamics in conscious young sheep. Parameters of cardiovascular function were measured before and for 4 h after intravenous injection of either L-NAME (NG-nitro-L-arginine methyl ester) or D-NAME (N(G)-nitro-D-arginine methyl ester) at doses of 10, 20, or 40 mg/kg in 13 conscious, chronically instrumented young sheep aged 43 +/-5 days. Blood pressure increased and heart rate decreased in a dose-dependent manner following administration of L-NAME. Renal vascular resistance was increased for 10 min following a dose of 10 mg/kg of L-NAME and for 120 min following a dose of 40 mg/kg of L-NAME. The renal vasodilatory response to close arterial injection of 1 microg/kg of acetylcholine was attenuated by L-NAME in a dose-dependent manner. These experiments provide the first information that under normal physiological conditions in conscious young animals, nitric oxide influences systemic and renal hemodynamics.  相似文献   

3.
Experiments were carried out to determine the role of nitric oxide in mediating autonomic and behavioral thermoregulatory control in rat pups on postnatal days 1-2, 5-6, and 10-11. For an experiment, each pup received a subcutaneous injection of vehicle, NG-nitro-D-arginine methyl ester (D-NAME; 100 mg/kg), or NG-nitro-L-arginine methyl ester (L-NAME; 100 mg/kg) before being placed in a metabolic chamber or in a thermocline with a linear temperature gradient of 23 to 43 degrees C. In the metabolic chamber, oxygen consumption and core temperature were measured as ambient temperature was decreased from 40 to 15 degrees C over a 60-min period. Decreasing ambient temperature elicited an increase in oxygen consumption in all age groups that received vehicle or d-NAME. The lower critical temperature and peak oxygen consumption upon exposure to cold after vehicle were 41 +/- 10 ml x kg(-1) x min(-1) at 30 degrees C, 43 +/- 12 ml x kg(-1) x min(-1) at 28 degrees C, and 55 +/- 11 ml x kg(-1) x min(-1) at 25 degrees C in the 1- to 2-, 5- to 6-, and 10- to 11-day-old pups, respectively. Administration of L-NAME abolished the oxygen consumption response to cold in the 1- to 2- and 5- to 6-day-old pups and significantly attenuated the oxygen consumption response to cold in the 10- to 11-day-old pups. Selected ambient temperature in the thermocline was not significantly affected by prior administration of D-NAME or L-NAME compared with vehicle. Thus our data provide evidence that the nitric oxide system plays a role in mediating autonomic but not behavioral thermoregulatory control in rat pups during early postnatal maturation.  相似文献   

4.
The aim of the present study was to determine the effect of angiotensin-converting enzyme inhibitor captopril on cGMP and cAMP concentration in the left ventricle and aorta after NO synthase inhibition by 4-week-lasting N(G)-nitro-L-arginine-methyl ester (L-NAME) treatment. Five groups of rats were investigated: controls, L-NAME in the dose 20 mg/kg/day (L-NAME 20), L-NAME in the dose 40 mg/kg/day (L-NAME 40), captopril in the dose 100 mg/kg/day, L-NAME 40 mg/kg/day together with captopril 100 mg/kg/day. Captopril completely prevented L-NAME-induced hypertension and LV hypertrophy development. Compared to the controls, cGMP concentration in the L-NAME 20 and L-NAME 40 groups was decreased by 13% and 22%, respectively, in the left ventricle and by 27% and 56% in the aorta, respectively. Captopril did not influence this decrease of cGMP concentration. Cyclic AMP concentration in the aorta of L-NAME 20 group increased by 17%. In the L-NAME 40 group, cAMP concentration increased by 17% in the left ventricle and by 34% in the aorta compared to controls. This increase was enhanced in rats given L-NAME together with captopril. Captopril alone had no effect on cAMP concentration. We conclude that captopril does not affect the concentration of cGMP, however, it has more than the additive effect on the cAMP concentration increase in the cardiovascular system during long-term NO synthase inhibition.  相似文献   

5.
To test whether nitric oxide (NO) participates in cyclosporine A (CsA)-induced neurotoxicity including convulsions, we examined the effect of an NO synthase inhibitor on convulsions induced by combined treatment with CsA and bicuculline in mice and the effect of CsA on NO production in the dorsal hippocampus using an in vivo microdialysis method in rats. CsA (200 mg/kg, i.p.) significantly increased the intensity of convulsions induced by an intracerebroventricular injection of bicuculline (25 pmol) in mice. This facilitation was blocked by N omega -nitro-L-arginine methyl ester (L-NAME), an NO synthase inhibitor, but not by N omega -nitro-D-arginine methyl ester (D-NAME), an inactive form of L-NAME (10 mg/kg, i.p.). CsA (20-50 mg/kg, i.p.) dose-dependently increased NO 2 - levels in dialysates obtained with microdialysis in the rat dorsal hippocampus. This enhanced NO 2 - formation was blocked by L-NAME but not by D-NAME (50 mg/kg, i.p.). These findings suggest that CsA stimulates NO production and induces convulsions as a result of an interaction between NO and the gamma-aminobutyric acid (GABA) system in the hippocampus.  相似文献   

6.
Protective effects of NOS inhibitors and free radical scavengers in cerebral ischemia are well documented. The present study was undertaken to determine the possible effects of NOS inhibition on brain antioxidants. Levels of both enzymatic [glutathione peroxidase (GPx), catalase and superoxide dismutase (SOD)] and non-enzymatic [reduced glutathione (GSH)] antioxidants following nitric oxide synthase (NOS) inhibition by N(G)-nitro-L-arginine methyl ester (L-NAME), D-NAME or 7-nitroindazole (7-NI) have been investigated. NOS activity and antioxidant levels in the rat cerebellum and medulla were estimated 1 h after treatment with L-NAME (10, 30 and 100 mg/kg, i.p.), D-NAME (100 mg/kg, i.p.) or 7-NI (25 mg/kg, i.p.). L-NAME and 7-NI inhibited NOS activity in a dose-dependent manner. D-NAME also exhibited significant NOS inhibition. The activity of SOD and the GSH level remained unaltered following NOS inhibition. However, L-NAME and D-NAME at 100 mg/kg attenuated GPx activity in the cerebellum, though 7-NI had no effect. L-NAME inhibited catalase activity in medulla only at 30 mg/kg, but had no effect in cerebellum. However, 7-NI (25 mg/kg), D-NAME and L-NAME at 100 mg/kg did not affect catalase activity in the rat brain. Thus, NOS inhibition by the three agents did not have major effects on brain antioxidant levels.  相似文献   

7.
Abstract

Protective effects of NOS inhibitors and free radical scavengers in cerebral ischemia are well documented. The present study was undertaken to determine the possible effects of NOS inhibition on brain antioxidants. Levels of both enzymatic [glutathione peroxidase (GPx), catalase and superoxide dismutase (SOD)] and non-enzymatic [reduced glutathione (GSH)] antioxidants following nitric oxide synthase (NOS) inhibition by NG-nitro-L-arginine methyl ester (L-NAME), D-NAME or 7-nitro-indazole (7-NI) have been investigated. NOS activity and antioxidant levels in the rat cerebellum and medulla were estimated 1 h after treatment with L-NAME (10, 30 and 100 mg/kg, i.p.), D-NAME (100 mg/kg, i.p.) or 7-NI (25 mg/kg, i.p.). L-NAME and 7-NI inhibited NOS activity in a dose-dependent manner. D-NAME also exhibited significant NOS inhibition. The activity of SOD and the GSH level remained unaltered following NOS inhibition. However, L-NAME and D-NAME at 100 mg/kg attenuated GPx activity in the cerebellum, though 7-NI had no effect. L-NAME inhibited catalase activity in medulla only at 30 mg/kg, but had no effect in cerebellum. However, 7-NI (25 mg/kg), D-NAME and L-NAME at 100 mg/kg did not affect catalase activity in the rat brain. Thus, NOS inhibition by the three agents did not have major effects on brain antioxidant levels.  相似文献   

8.
9.
The purpose of this study was to determine the role of nitric oxide in the maintenance of basal lingual blood flow in the anesthetized rat. By using laser-Doppler flowmetry, blood flow was measured from the tongue before and after treatment with the nonselective inhibitor of nitric oxide synthase, L-NAME (0.2, 2.0, and 20 mg/kg), or the selective neuronal nitric oxide synthase inhibitor, 7-nitroindazole (40 mg/kg). Other groups of rats were treated with saline, D-NAME (2.0 mg/kg), L-arginine (200 mg/kg), L-arginine + L-NAME (200 + 2.0 mg/kg), or the 7-nitroindazole vehicle. L-NAME produced a dose-related depression in blood flow in the tongue (concurrent with increased arterial blood pressure), which was attenuated by prior administration of L-arginine. Lingual blood flow depression was not seen after administration of the inactive stereoisomer, D-NAME. In addition, the neuronally specific nitric oxide synthase inhibitor, 7-nitroindazole, failed to produce a significant depression of lingual blood flow. These results suggest that the tonic release of nitric oxide from the vascular endothelium plays an important role in maintaining basal blood flow in the tongue and that neuronally released nitric oxide is not involved in maintaining basal circulation in this vascular bed.  相似文献   

10.
The aim of the present study was to investigate the interrelationship of the kinin system, nitric oxide and eicosanoids in the acute phase of antigen-induced arthritis (AIA) in rabbits. The arthritis was induced in immunized rabbits and the following parameters were evaluated 24 hours later: leukocyte influx (total and differential white cell count), vascular permeability (Evans's blue method), and synovial PMN cell infiltrate. PGE2 and LTB4 (radioimmunoassay) levels were quantified in the synovial fluid. The animals were pre-treated with 20mg/kg/day during 14 days with L-NAME or D-NAME and/or Enalapril (0.12 mg/kg/day-14 days), and/or the B2 antagonist of Bradykinin HOE 140 (0.9 mg/kg). Our results showed that L-NAME was effective in the prevention of AIA with reduction of all Inflammatory parameters analyzed. Enalapril partially reverted the L-NAME anti-inflammatory effects. The simultaneous treatment with HOE 140 abolished this reversion and returned the inflammatory parameters to the levels observed in L-NAME treated animals. Our results suggest that pressoric alterations induced by L-NAME could not account for all its anti-inflammatory action in this model of experimental arthritis. Additionally the contribution of the kinin system in AIA was characterized as well as its interaction with eicosanoids and nitric oxide.  相似文献   

11.
L-NAME-induced protein remodeling and fibrosis in the rat heart   总被引:3,自引:0,他引:3  
The aim of the present study was to determine whether NO deficiency itself or rather the elevation of systolic blood pressure is responsible for the protein and structural remodeling of the heart during hypertension induced by long-term treatment by nitric oxide synthase inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME). Three groups of rats were investigated. The first group served as control. In the second group L-NAME was given in the dose of 20 mg/kg/day in the drinking water and in the third group L-NAME was given in the dose of 40 mg/kg/day during 4 weeks. While L-NAME treatment in both doses caused essentially the same increase in systolic blood pressure (SBP), NO synthase activity and cGMP concentration in the left ventricle decreased by 17% and 13%, respectively in the 20 mg/kg/day L-NAME group and by 69% and 27%, respectively in the 40 mg/kg/day L-NAME group. The protein profile of the left ventricle in both L-NAME groups was characterized by an increased concentration of metabolic proteins. Nevertheless, a significant increase in the concentration of pepsin-soluble collagenous proteins and the concentration of hydroxyproline in pepsin-insoluble collagenous proteins was found only in the group receiving 40 mg/kg/day L-NAME. The morphometric evaluation revealed a significant increase in myocardial fibrosis in both L-NAME groups. However, this was more pronounced in the 40 mg/kg/day L-NAME group. It is concluded that NO deficiency resulted in significant enhancement of fibrotic tissue growth in proportion to the administered L-NAME dose, while SBP was increased similarly in both L-NAME groups. Thus, NO deficiency rather than hemodynamic changes appears to be crucially involved in collagenous protein and fibrotic tissue changes of the left ventricle in hypertension induced by L-NAME.  相似文献   

12.
Davidov T  Weiss HR  Tse J  Scholz PM 《Life sciences》2006,79(17):1674-1680
The consequences of chronic nitric oxide synthase (NOS) blockade on the myocardial metabolic and guanylyl cyclase stimulatory effects of exogenous nitric oxide (NO) were determined. Thirty-three anesthetized open-chest rabbits were randomized into four groups: control, NO donor S-nitroso-N-acetyl-penicillamine (SNAP, 10(-4 )M), NOS blocking agent N(G)-nitro-L-arginine methyl ester (L-NAME, 20 mg/kg/day) for 10 days followed by a 24 hour washout and L-NAME for 10 days followed by a 24 hour washout plus SNAP. Myocardial O(2) consumption was determined from coronary flow (microspheres) and O(2) extraction (microspectrophotometry). Cyclic GMP and guanylyl cyclase activity were determined by radioimmunoassay. There were no baseline metabolic, functional or hemodynamic differences between control and L-NAME treated rabbits. SNAP in controls caused a reduction in O(2) consumption (SNAP 5.9+/-0.6 vs. control 8.4+/-0.8 ml O(2)/min/100 g) and a rise in cyclic GMP (SNAP 18.3+/-3.8 vs. control 10.4+/-0.9 pmol/g). After chronic L-NAME treatment, SNAP caused no significant changes in O(2) consumption (SNAP 7.1+/-0.8 vs. control 6.4+/-0.7) or cyclic GMP (SNAP 14.2+/-1.8 vs. control 12.1+/-1.3). In controls, guanylyl cyclase activity was significantly stimulated by SNAP (216.7+/-20.0 SNAP vs. 34.4+/-2.5 pmol/mg/min base), while this increase was blunted after L-NAME (115.9+/-24.5 SNAP vs. 24.9+/-4.7 base). These results demonstrated that chronic NOS blockade followed by washout blunts the response to exogenous NO, with little effect on cyclic GMP or myocardial O(2) consumption. This was related to reduced guanylyl cyclase activity after chronic L-NAME. These results suggest that, unlike many receptor systems, the NO-cyclic GMP signal transduction system becomes downregulated upon chronic inhibition.  相似文献   

13.
The metabolites of arginine were recently shown to be involved in cardiovascular control. The study addresses the general cardiovascular response of anaesthetized rats to agmatine, a decarboxylated arginine. The relation between two arginine metabolic pathways governed by arginine decarboxylase and nitric oxide synthase was investigated. Intravenous administration of agmatine 30 and 60 microM/0.1 ml saline elicited remarkable hypotension of 42.6+/-4.6 and 70.9+/-6.5 mm Hg, respectively. The hypotension was characterized by long duration with half-time of return 171.6+/-2.9 and 229.2+/-3.8 s, respectively. The time of total blood pressure BP recovery was about 10 min. Dose-dependent relaxation to agmatine was also found in aorta rings in vitro. Both doses of agmatine administered 60-180 min after NO synthase inhibition L-NAME 40 mg/kg i.v. caused greater hypotension 59.0+/-7.6 and 95.8 8.8 mm Hg P<0.01 both compared to animals with intact NO synthase, but this was accompanied by a significant shortening of the half-time of BP return. If agmatine was administered to hypertensive NO-deficient rats treated with 40 mg/kg/day L-NAME for 4 weeks, similar significant enhancement of hypotension was observed at both agmatine doses, again with a significant shortening of half-time of BP return. It can be summarized that the long-lasting hypotension elicited by agmatine was amplified after acute or chronic NO synthase inhibition, indicating a feedback relation between the two metabolic pathways of arginine.  相似文献   

14.
Recent studies have shown that nitric oxide (NO) biosynthesis increases in pregnancy and that inhibition of nitric oxide synthase (NOS) induces some pathological processes characteristic of preeclampsia. The current project sought to study the effect of the NOS inhibitor Nomega-nitro-L-arginine methyl ester (L-NAME, 10 microg x min(-1), sc for 7 days) on plasma volume, plasma atrial natriuretic factor (ANF), plasma endothelin-1 (ET), and plasma renin activity (PRA) during gestation in conscious rats. NOS inhibition caused mean arterial pressure to increase in both virgin and 21-day pregnant rats. Plasma volume fell in the pregnant rats [L-NAME, 4.5 +/- 0.3 mL x 100 g(-1) body wt. (n = 7) vs. D-NAME, 6.8 +/- 0.2 mL x 100 g(-1) body wt. (n = 10); P < 0.05] but not in the virgin rats [L-NAME, 4.3 +/- 0.1 mL x 100 g(-1) body wt. (n = 6) vs. D-NAME, 4.8 +/- 0.2 mL x 100 g(-1) body wt. (n = 8)]. There was no effect of NOS inhibition on plasma ANF levels or PRA in either the virgin or pregnant rats. However, L-NAME did decrease plasma ET levels in the pregnant rats [L-NAME, 19.6 +/- 1.6 pg x mL(-1) (n = 8) vs. D-NAME, 11.6 +/- 2.5 pg x mL(-1) (n = 9); P < 0.05]. Our results confirm that NO is involved in cardiovascular homeostasis in pregnancy; NOS inhibition selectively reduces plasma volume in pregnant rats, thus mimicking a major pathophysiological perturbation of preeclampsia. However, it does not induce the hormonal changes characteristic of preeclampsia, namely the decrease in PRA and increase in plasma ET and ANF levels.  相似文献   

15.
The acute cardiovascular effects of an aqueous fraction of the ethanolic extract of the leaves (AFL) of Albizia inopinata (Harms) G. P. Lewis (Leguminosae) were studied in rats using a combined in vivo and in vitro approach. In conscious, unrestrained rats, AFL (5, 10 and 20 mg/kg(-1) body wt. i.v., randomly) produced a significant and dose-dependent hypotension associated with increases in heart rate and cardiac output, and with a strong reduction in total peripheral resistances. The hypotensive response to AFL (20 mg/kg(-1) body wt.) was attenuated significantly after nitric oxide (NO) synthase blockade (L-NAME, 20 mg/kg(-1) body wt. i.v.). Furthermore, under these conditions, the associated tachycardia was inhibited completely. In isolated rat aortic rings, increasing concentrations of AFL (10, 20, 40 and 80 microg/ml(-1)) were able to antagonize the effects of phenylephrine- (1 microM) and KCl- (80 mM) induced contractions (IC50 value 65 +/- 4 and 54 +/- 6 microg/ml(-1), respectively). The smooth muscle-relaxant activity of AFL was inhibited similarly either removal of the vascular endothelium or by L-NAME (10 and 100 microM), but was not affected significantly by atropine (1 microM) or indomethacin (10 microM). In isolated rat atrial preparations, AFL (30, 100, 300 and 500 microg/ml(-1)) produced concentration-related negative inotropic and chronotropic effects (IC50 value = 274 +/- 53 and 335 +/- 23 microg/ml(-1), respectively). These results suggest that in rats, the hypotensive effect of AFL is due to a peripheral vasodilation, at least partly secondary to the release of NO by the vascular endothelium. The direct cardio-depressant actions of AFL are of little importance in the systemic effects of the extract.  相似文献   

16.
Microinjection of acetylcholine chloride (ACh) in the nucleus of the solitary tract (NTS) of awake rats caused a transient and dose-dependent hypotension and bradycardia. Because it is known that cardiovascular reflexes are affected by nitric oxide (NO) produced in the NTS, we investigated whether these ACh-induced responses depend on NO in the NTS. Responses to ACh (500 pmol in 100 nl) were strongly reduced by ipsilateral microinjection of the NOS inhibitor NG-nitro-L-arginine methyl ester (L-NAME; 10 nmol in 100 nl) in the NTS: mean arterial pressure (MAP) fell by 50 +/- 5 mmHg before L-NAME to 9 +/- 4 mmHg, 10 min after L-NAME, and HR fell by 100 +/- 26 bpm before L-NAME to 20 +/- 10 bpm, 10 min after L-NAME (both P < 0.05). Microinjection of the selective inhibitor of neuronal nitric oxide synthase (nNOS), 1-(2-trifluoromethylphenyl) imidazole (TRIM; 13.3 nmol in 100 nl), in the NTS also reduced responses to ACh: MAP fell from 42 +/- 3 mmHg before TRIM to 27 +/- 6 mmHg, 10 min after TRIM (P < 0.05). TRIM also tended to reduce ACh-induced bradycardia, but this effect was not statistically significant. ACh-induced hypotension and bradycardia returned to control levels 30-45 min after NOS inhibition. Control injections with D-NAME and saline did not affect resting values or the response to ACh. In conclusion, injection of ACh into the NTS of conscious rats induces hypotension and bradycardia, and these effects may be mediated at least partly by NO produced in NTS neurons.  相似文献   

17.
The nitric oxide synthase inhibitor N(G)-nitro-L-arginine methyl ester (l-NAME) increased vascular resistance (VR) 10% above baseline of 3.08+/-0.08 (n=11) mmHg/mL/min at 10 mg/kg and 20% above 3.05+/-0.08 (n=9) at 50 mg/kg in anesthetized toads (Bufo marinus). Blood pressure was unaffected by either dose of L-NAME. Blood flow decreased at the higher dose of L-NAME. L-arginine (300 mg/kg) reversed the effects of L-NAME on VR and blood flow in toads treated with 10 mg/kg but not with 50 mg/kg. Injection of 50 mg/kg L-NAME into empty-bladder toads produced a 10% decrease in water uptake, J(v), resulting in a J(v) of 1,267+/-11 cm(3)/cm(2)/s x 10(-7) (n=9) compared to 1,385+/-12 (n=8) for controls. Injection of 10 microg/kg angiotensin II (ANG II) increased J(v) 15% across the pelvic patch (J(v), cm(3)/cm(2)/s x 10(-7)), resulting in a J(v) of 1,723+/-12 cm(3)/cm(2)/s x 10(-7) (n=8) compared to 1,471+/-12 (n=8) for controls. It is hypothesized that during cutaneous drinking blood flow into the capillary bed of the pelvic patch is regulated by nitric oxide and ANG II.  相似文献   

18.
Amphetamine and chlorpromazine modify cerebral insulin levels in rats   总被引:2,自引:0,他引:2  
Rats treated with chlorpromazine (CPZ) (1 mg/kg/day i.p.) experienced a marked decline in cerebral insulin levels (0.057 +/- 0.01 ng/g wet weight) with respect to a control group (0.38 +/- 0.05 ng/g wet weight), while rats given D-amphetamine bitartrate (AMPH) chronically (20 mg/kg/day p.o.) showed a rise in cerebral insulin (0.55 +/- 0.04 ng/g wet weight). Combined treatment with both drugs at the same dosages produced lower cerebral insulin levels (0.46 +/- 0.10 ng/g wet weight) than in the AMPH animals. In the groups of rats treated with CPZ and with AMPH + CPZ, there was a slight elevation in serum insulin levels. Serum glucose values did not vary.  相似文献   

19.
We aimed to compare the effects of chronic and acute administration of structurally different antihypertensives, diuretics - indapamide and hydrochlorothiazide, ACE inhibitor - captopril and indapamide+captopril combination on endothelium-dependent relaxation of femoral artery isolated from nitric oxide (NO)-deficient rats. In the chronic experiment, femoral artery was isolated from Wistar rats receiving L-NAME (40 mg/kg/day) solely or with indapamide (1 mg/kg/day), hydrochlorothiazide (10 mg/kg/day), captopril (10 mg/kg/day), and indapamide+captopril combination for seven weeks. In the acute in vitro experiment, the incubation medium with femoral artery isolated from L-NAME-hypertensive rats was supplemented with investigated antihypertensives in the same concentration 10(-4) mol/l. Interestingly, chronic L-NAME treatment did not cause a reduction of vasorelaxation. Indapamide+captopril elevated relaxation above the control level and completely prevented blood pressure increase induced by L-NAME. Acute incubation with captopril only or indapamide+captopril improved relaxation of femoral artery isolated from L-NAME-hypertensive rats, while the incubation with all antihypertensives increased vasorelaxation of femoral artery isolated from control Wistar rats. In conclusion, NO might be involved in the indapamide- and hydrochlorothiazide-induced improvement of vasorelaxation, while different vasorelaxing factors (prostacyclin, EDHF) contribute to the captopril-induced improvement of vasorelaxation. During the chronic treatment additive and synergic effects of indapamide and captopril may contribute to the prevention of hypertension and increase of vasorelaxation.  相似文献   

20.
Two experiments were conducted during mid-gestation to examine effects in ewes of propylthiouracil (PTU) treatment alone or with melatonin on serum thyroid hormones, postpartum reproduction, and lamb performance. In the first experiment, beginning on day 0 (first day of treatment when all animals were 72.2+/-0.9 days of gestation), ewes received daily treatments (gavage) consisting of either 0mg (n=6) or 40 mg (n=6) PTU/kg body weight/day for 15 days. After 15 days, the 40 mg dosage was decreased to 20mg/kg body weight for an additional 20 days (35 days of PTU). Serum thyroxine (T4) did not differ (P>0.10) between groups through day 4; but on day 5, control females had a serum value of 67 ng/ml compared with 46 (+/-5)ng/ml for PTU-treated ewes (P=0.02). On the last day that 40 mg of PTU was administered, serum T4 averaged 67 and 7 (+/-5)ng/ml (P<0.001) in the two respective groups. Serum T4 remained low and was 80 and 1 ng/ml (P<0.001) in control and treated ewes on day 34. Serum T4 rose gradually after PTU but remained different from that observed in control ewes through day 48. Lambs from control and treated ewes had similar (P=0.46) T4 values at birth but lambs from PTU-treated ewes had lower (P=0.03) birth weights than did those from control ewes. Serum progesterone (P4) after parturition indicated a lack of cyclicity in all ewes. In the second experiment, beginning on day 0 (76.8+/-4.7 days of gestation), ewes received PTU as in Experiment 1. In addition, after 15 days of PTU, melatonin was given (i.m. injections at 5mg/day) for 30 days. Propylthiouracil decreased (P0.60) for lambs born to control and treated ewes. Female offspring of PTU+melatonin-treated dams reached puberty, became anestrus, and returned to cyclicity at similar (P>0.10) times to contemporary ewe lambs. Results indicate that 40/20mg PTU alone or with melatonin does not induce cyclicity after lambing in spring lambing ewes and has little effect on offspring performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号