首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Summary A monoclonal antibody that recognizes a 140 kDa peripheral plasma membrane protein in pericytes of nervous tissues of the rat is described. Microvessels of brain cortex and perineurium of peripheral nerves are shown to react positively to this antibody. The antigen is absent in brain regions that lack a blood-brain barrier, i.e., choroid plexuses and area postrema. Antigen expression starts as early as day 18 of embryonic development. By means of immuno-electron microscopy the 140 kDa antigen was detected as clusters along the entire circumference of cerebral pericytes. The same antigenic determinant is also expressed in apical domains of plasma membranes of a variety of transporting epithelia, such as hepatocytes, enterocytes of the small intestine, and epithelial cells of proximal tubules of the kidney. We postulate the 140 kDa protein as being a constituent of the pericytes involved in regulative functions of the blood-brain barrier.  相似文献   

2.
The blood-brain barrier consists of the cerebral microvascular endothelium, pericytes, astrocytes and neurons. In this study we analyzed the differentiation stage dependent influence of primary porcine brain capillary pericytes on the barrier integrity of primary porcine brain capillary endothelial cells. At first, we were able to induce two distinct differentiation stages of the primary pericytes in vitro. TGFβ treated pericytes expressed more α-SMA and actin while desmin, vimentin and nestin expression was decreased when compared to bFGF induced cells. Further analysis of α-SMA revealed that most of the pericytes differentiated with TGFβ expressed functional α-SMA while only few cells expressed functional α-SMA in the presence of bFGF. In addition the permeability factors VEGF, MMP-2 and MMP-9 were higher secreted by the α-SMA positive phenotype indicating a proangiogenic role of this TGFβ induced pericyte differentiation stage. Higher level of VEGF, MMP-2 and MMP-9 were as well detected in the TGFβ pretreated pericyte coculture with endothelial cells when compared to the influence of the bFGF pretreated pericytes. The TEER measurement of the barrier integrity of endothelial cells revealed that bFGF induced α-SMA negative pericytes stabilize the barrier integrity while α-SMA positive pericytes differentiated by TGFβ decrease the barrier integrity. These results together reveal the potential of pericytes to regulate the endothelial barrier integrity in a differentiation stage dependant pathway.  相似文献   

3.
The blood-brain barrier (BBB) is composed of the cerebral microvascular endothelium, which, together with astrocytes, pericytes, and the extracellular matrix (ECM), contributes to a "neurovascular unit". It was our objective to clarify the impact of endogenous extracellular matrices on the barrier function of BBB microvascular endothelial cells cultured in vitro. The study was performed in two consecutive steps: (i) The ECM-donating cells (astrocytes, pericytes, endothelial cells) were grown to confluence and then removed from the growth substrate by a protocol that leaves the ECM behind. (ii) Suspensions of cerebral endothelial cells were seeded on the endogenous matrices and barrier formation was followed with time. In order to quantify the tightness of the cell junctions, all experiments were performed on planar gold-film electrodes that can be used to read the electrical resistance of the cell layers as a direct measure for endothelial barrier function (electric cell-substrate impedance sensing, ECIS). We observed that endogenously isolated ECM from both, astrocytes and pericytes, improved the tightness of cerebral endothelial cells significantly compared to ECM that was derived from the endothelial cells themselves as a control. Moreover, when cerebral endothelial cells were grown on extracellular matrices produced by non-brain endothelial cells (aorta), the electrical resistances were markedly reduced. Our observations indicate that glia-derived ECM - as an essential part of the BBB - is required to ensure proper barrier formation of cerebral endothelial cells.  相似文献   

4.
Summary The endothelial cells of mammalian brain capillaries, which form the anatomical basis of the blood-brain barrier, have been investigated by immunocytochemical methods to determine the distribution of the glucose-transport protein. A monoclonal antibody raised against the intact human erythrocyte glucose-transport protein and polyclonal antibodies raised against a synthetic peptide corresponding to the C-terminal sequence of the human erythrocyte glucose-transport protein were used for immunofluorescent staining of isolated human and bovine cerebral cortex microvessels. The pattern of fluorescence with both antibodies demonstrated the antigen to the distributed throughout the plasma membrane of the capillary endothelial cells. These results provide further evidence for the homology between the human erythrocyte and brain capillary glucose-transport protein, and confirm its abundance in brain capillaries.  相似文献   

5.
Cerebral endothelial cells form the selective permeability barrier between brain and blood by virtue of their impermeable tight junctions and the presence of specific carrier systems. These specialized properties of brain capillaries are reflected in the presence of proteins that are not found in other capillaries of the body. gamma-Glutamyltranspeptidase (GGT) has been widely used as a marker for brain capillaries and differentiated properties of brain endothelial cells. By using histochemical and biochemical methods we have investigated the expression of GGT in isolated capillaries, cultured brain endothelial cells and pericytes, and cocultures of astrocytes and brain endothelial cells. It was surprising that the majority of GGT activity was associated with pericytes, but not endothelial cells, suggesting that GGT is a specific marker for brain pericytes. The remaining GGT activity that was associated with endothelial cells rapidly disappeared from cultured cells but was reinduced in cocultures with astrocytes. Our results emphasize the need for pure endothelial cells for the investigation of blood-brain barrier characteristics.  相似文献   

6.
Summary Two endothelial cell lines were derived from grafts of the central nervous system using retrovirus mediated gene transfer to introduce the polyoma middle-T oncogene into fetal rat brain endothelial cells and transplantation of these cells into adult rat brain. In this report, we further characterize these cells and the effect of dexamethasone on the expression of specific enzymatic markers. These cells take up acetylated low density lipoprotein, leucine, and glucose, and express Factor VIII-related antigen, angiotensin converting enzyme, alkaline phosphatase, gamma-glutamyltranspeptidase, and as yet undescribed aminopeptidase A and B-like enzymes. When grown on semi-permeable membranes, these transformed cells do not spontaneously retain small hydrophilic molecules. In culture, one of the lines (EC 193) forms a confluent monolayer of spindle-shaped cells homogenously expressing gamma-glutamyltranspeptidase at a level comparable to primary cells. The other cell line (EC 219) grows as clusters of elongated cells, and gamma-glutamyltranspeptidase activity is expressed mainly in cells forming the clusters. This clustered pattern changes to a confluent one after culture on type-I collagen. Dexamethasone increases angiotensin-converting enzyme activity, and decreases the expression of gamma-glutamyltranspeptidase and aminopeptidase A, whereas the aminopeptidase B activity is little modified. Inhibition of aminopeptidase A activity by amastatin, potentiates angiotensin II effects on DNA synthesis. These results indicate that retrovirally transformed brain endothelial cells are a useful model for studying the blood-brain barrier in vitro and that dexamethasone, an agent with the potential to reduce brain edema, directly affects some blood-brain barrier properties in these endothelial cell lines.  相似文献   

7.
The P-glycoprotein efflux system located on the apical membrane of brain capillary endothelial cells functions as part of the blood-brain barrier. In this study, primary cultures of bovine brain microvessel endothelial cells (BMECs) were investigated for the presence of a P-glycoprotein system and its contribution in regulating ivermectin distribution across the blood-brain barrier. Results of rhodamine 123 uptake studies with cyclosporin A and verapamil as substrates indicated that a functional efflux system was present on BMECs. Immunoblot analysis with the C219 monoclonal antibody to the product of the multidrug resistant member 1(MDR1) gene also confirmed the expression of MDR1 in the BMECs. Unbound ivermectin was shown to significantly increase the uptake of rhodamine 123 in BMECs, however, the drug only modestly enhanced the transcellular passage of rhodamine. The results of these studies affirmed that unbound ivermectin is an inhibitor of the MDR1 efflux system in BMECs.  相似文献   

8.
The P-glycoproteinmdr is expressed not only in tumoral cells, but also in nontransformed cells, including the specialized endothelial cells of brain capillaries which build up the blood-brain barrier. Since all previously identified blood-brain barrier markers are rapidly lost when cerebral capillary endothelial cells are maintained in primary culture, we have investigated whether P-glycoprotein (P-gp) would follow the same rule, in order to address the influence of the cerebral environment on the specific P-gp expression in the brain endothelium. As compared to freshly isolated purified cerebral capillaries, P-glycoprotein was detected by immunochemistry at a high level in 5–7 day primary cultures. In our culture conditions, P-glycoprotein was immunodetected at a lower molecular weight than that found in freshly isolated capillaries. Enzymatic deglycosylation led to the same 130 kDa protein for both fresh and cultured samples, suggesting that P-gp post-translational modifications were altered in primary cultures. However, studies on the uptake and efflux of the P-gp substrate [3H]vinblastine, and on the effect of variousmdr reversing agents on the uptake and efflux, clearly indicated that the efflux pump function of the P-glycoprotein was maintained in primary cultures of bovine cerebral capillary endothelial cells. P-Glycoprotein may thus represent the first blood-brain barrier marker which is maintained in cerebral endothelial cells cultured in the absence of factors originating from the brain parenchyma.Abbreviations BBB blood-brain barrier - BCEC brain capillary endothelial cells - -GT -glutamyltranspeptidase - HBSS Hank's balanced salt solution - Mab monoclonal antibody - mdr multidrug resistance - P-gp P-glycoprotein  相似文献   

9.
The expression of gamma-glutamyl transpeptidase (GGT) is a specific property of the brain capillary endothelium that constitutes the blood-brain barrier. We report here the detection of GGT, not only in endothelial cells, but also in pericytes, demonstrating that a brain capillary-specific pericyte population exists. We raised antibodies to GGT using a porcine brain microvessel GGT-protein-A (staphylococcal protein A) fusion protein as antigen which was expressed in Escherichia coli. The immunohistochemical analysis of the subcapillary distribution of GGT in porcine brain cortex and cerebellum sections by both light and electron microscopy revealed the expression of GGT in the capillary-adjacent pericytes in addition to the GGT-positive endothelial layer. We confirmed these data for cultured porcine brain microvascular endothelial cells and pericytes. GGT immunofluorescence could be detected in both cell types in culture. Endothelial cells exhibited a weak staining, whereas pericytes were strongly positive for GGT. Due to the high phagocytotic activity of pericytes and their location on the abluminal surface of the microvessels, we propose a possible protective or detoxifying function of GGT in cerebrovascular pericytes.  相似文献   

10.
The mechanism of blood-brain barrier breakdown in the complex pathogenesis of cerebral malaria is not well understood. In this study, primary cultures of porcine brain capillary endothelial cells (PBCEC) were used as in vitro model. Membrane-associated malaria antigens obtained from lysed Plasmodium falciparum schizont-infected erythrocytes stimulated human peripheral blood mononuclear cells (PBMC) to secrete tumor necrosis factor alpha. In co-cultivation with the brain endothelial cell model, the malaria-activated PBMC stimulated the expression of E-selectin and ICAM-1 on the PBCEC. Using electric cell-substrate impedance sensing, we detected a significant decrease of endothelial barrier function within 4h of incubation with the malaria-activated PBMC. Correspondingly, immunocytochemical studies showed the disruption of tight junctional complexes. Combination of biochemical and biophysical techniques provides a promising tool to study changes in the blood-brain barrier function associated with cerebral malaria. Moreover, it is shown that the porcine endothelial model is able to respond to human inflammatory cells.  相似文献   

11.
Though the compromised blood-brain barrier (BBB) is a pathological hallmark of Japanese encephalitis-associated neurological sequelae, the underlying mechanisms and the specific cell types involved are not understood. BBB characteristics are induced and maintained by cross talk between brain microvascular endothelial cells and neighboring elements of the neurovascular unit. In this study, we show a potential mechanism of disruption of endothelial barrier integrity during the course of Japanese encephalitis virus (JEV) infection through the activation of neighboring pericytes. We found that cultured brain pericytes were susceptible to JEV infection but were without signs of remarkable cytotoxicity. JEV-infected pericytes were found to release biologically active molecules which activated ubiquitin proteasome, degraded zonula occludens-1 (ZO-1), and disrupted endothelial barrier integrity in cultured brain microvascular endothelial cells. Infection of pericytes with JEV was found to elicit elevated production of interleukin-6 (IL-6), which contributed to the aforementioned endothelial changes. We further demonstrated that ubiquitin-protein ligase E3 component n-recognin-1 (Ubr 1) was a key upstream regulator which caused proteasomal degradation of ZO-1 downstream of IL-6 signaling. During JEV central nervous system trafficking, endothelial cells rather than pericytes are directly exposed to cell-free viruses in the peripheral bloodstream. Therefore, the results of this study suggest that subsequent to primary infection of endothelial cells, JEV infection of pericytes might contribute to the initiation and/or augmentation of Japanese encephalitis-associated BBB breakdown in concerted action with other unidentified barrier disrupting factors.  相似文献   

12.
Primary culture of capillary endothelium from rat brain   总被引:11,自引:0,他引:11  
To provide an in vitro system for studies of brain capillary function we developed a method for culture of brain capillary endothelial cells. Capillaries were isolated from rat brain and enzymatically treated to remove the basement membrane and contaminating pericytes. Subsequent Percoll gradient centrifugation resulted in a homogeneous population of capillary endothelial cells that attached to a collagen substrate and incorporated [3H]thymidine. Evidence for the endothelial nature of these cells was provided by the presence of Factor VIII antigen and angiotensin converting enzyme activity and by the failure of platelets to adhere to the cell surface. In addition, the cells were joined together by tight junctions. Thus, primary cultures of these cells retained both endothelial and blood-brain barrier features.  相似文献   

13.
Capillaries derived from the perineural vascular plexus invade brain tissue early in embryonic development. Considerably later they differentiate into blood-brain barrier (BBB)-forming blood vessels. In the chick, the BBB as defined by impermeability for the protein horseradish peroxidase develops around embryonic day 13. We have previously found that brain endothelial cells start to express a number of proteins at around the same time, suggesting that these proteins play a role in BBB function. Here we describe a 74 kd protein defined by the monoclonal antibody HT7 that is expressed on the surface of chick embryonic blood cells and brain endothelial but on no other endothelial cells. This protein is not detectable on early embryonic brain endothelium, but is expressed by these cells on embryonic day 10. It is absent in choroid plexus endothelial cells which represent permeable fenestrated endothelial cells. The antigen is expressed on choroid plexus epithelium which is the site of the blood-cerebrospinal fluid barrier. Since it is also found in basolateral membranes of kidney tubules, it may be involved in specific carrier mechanisms. Embryonic mouse brain tissue transplanted on the chick chorio-allantoic membrane induces the expression of this antigen on endothelial cells derived from the chorio-allantois. Brain tissue can therefore induce in endothelial cells in vivo the expression of a molecule characteristic of brain endothelium.  相似文献   

14.
Summary— A major antigen of the brush border membrane of Torpedo marmorata kidney was identified and purified by immunoprecipitation. The sequence of its 18 N terminal amino acids was determined and found to be very similar to that of mammalian aminopeptidase N (EC 3.4.11.2). Indeed aminopeptidase N activity was efficiently immunoprecipitated by monoclonal antibody 180K1. The purified antigen gives a broad band at 180 kDa after SDS-gel electrophoresis, which, after treatment by endoglycosidase F, is converted to a thinner band at 140 kDa. This antigen is therefore heavily glycosylated. Depending on solubilization conditions, both the antigen and peptidase activity were recovered either as a broad peak with a sedimentation coefficient of 18S (2% CHAPS) or as a single peak of 7.8S (1% CHAPS plus 0.2 % C12E9), showing that Torpedo aminopeptidase N behaves as an oligomer stabilized by hydrophobic interactions, easily converted into a 160 kDa monomer. The antigen is highly concentrated in the apical membrane of proximal tubule epithelial cells (600 gold particles/μm2 of brush border membrane) whereas no labeling could be detected in other cell types or in other membranes of the same cells (basolatéral membranes, vacuoles or vesicles). Monoclonal antibodies prepared here will be useful tools for further functional and structural studies of Torpedo kidney aminopeptidase N.  相似文献   

15.
The brain is partially protected from chemical insults by a physical barrier mainly formed by the cerebral microvasculature, which prevents penetration of hydrophilic molecules in the cerebral extracellular space. This results from the presence of tight junctions joining endothelial cells, and from a low transcytotic activity in endothelial cells, inducing selective permeability properties of cerebral microvessels that characterize the blood-brain barrier. The endothelial cells provide also, as a result of their drug-metabolizing enzymes activities, a metabolic barrier against potentially penetrating lipophilic substances. It has been established that in cerebrovascular endothelial cells, several families of enzymes metabolize potentially toxic lipophilic substrates from both endogenous and exogenous origin to polar metabolites, which may not be able to penetrate further across the blood-brain barrier. Enzymes of drug metabolism present at brain interfaces devoid of blood-brain barrier, like circumventricular organs, pineal gland, and hypophysis, that are potential sites of entry for xenobiotics, display higher activities than in cerebrovascular endothelial cells, and conjugation activities are very high in the choroid plexus. Finally, xenobiotic metabolism normally results in detoxication, but also in some cases in the formation of pharmacologically active or neurotoxic products, possibly altering some blood-brain barrier properties.  相似文献   

16.
Pericyte involvement in capillary sprouting during angiogenesis in situ   总被引:21,自引:0,他引:21  
Summary To investigate the participation of microvascular pericytes in the process of capillary sprouting, we examined whole-mount preparations of the rat mesentery by use of a double immunofluorescence approach. Angiogenesis was induced by intraperitoneal injections of either the mast cell-degranulating substance compound 48/80 or tumor cell-conditioned medium. Capillary sprouts were visualized by staining with rhodaminconjugated phalloidin and pericytes were simultaneosly stained by an antibody to the intermediate filament protein desmin. Developing pericytes were negative for the smooth-muscle isoform of -actin, bbut were clearly reactive for desmin. Pericytes appear to be involved in the carliest stages of capillary sprouting. Pericytes were regularly found lying at and in front of the advancing tips of endothelial sprouts. At many sites pericytes were seen to bridge the gap between the leading edges of opposing endothelial sprouts, which were apparently preparing to merge, suggesting that pericytic processes may serve as guiding structures aiding outgrowth of endothelial cells.  相似文献   

17.
Two mouse monoclonal antibodies (mAb), AJ2 and J143, define two related human cell surface protein complexes, very common antigen 1 (VCA-1) and very common antigen 2 (VCA-2). In the present report, these complexes have been defined with respect to: (i) subunit arrangement; (ii) monoclonal antibody binding sites; (iii) carbohydrate content; (iv) homology to other cell surface protein complexes; and (v) possible functional roles. Analysis of the antigens from a human melanoma cell line, MeWo, reveals that VCA-1 is a noncovalently linked heterodimer of 170- and 140 (designated 1401)-kDa polypeptides. mAb AJ2 reacts with an epitope on the 1401-kDa polypeptide. VCA-2 is composed of the same 1401-kDa polypeptide as VCA-1 and another 170-kDa species; this 170-kDa species consists of a second distinct 140-kDa (designated 140(2)) and a 30-kDa polypeptide which are disulfide-bonded. Indirect evidence indicates that mAb J143 reacts with an epitope on this 170-kDa complex. Peptide mapping has shown that the complexes are members of a family of cell surface proteins that include antigens present on activated T cells (designated very late activation antigens). Since VCA-2 is found predominantly on the basal membrane of adherent cells and its expression increases 12-fold when HUT-102 lymphoblastoid cells are grown as an adherent cell culture, we suggest that VCA-2 plays a role in cellular adherence.  相似文献   

18.
In an approach toward the identification of hitherto unknown proteins involved in the function of the blood-brain barrier, we constructed a pig brain microvessel-derived cDNA library that is enriched in blood-brain barrier specific sequences by means of subtractive cloning. Sequence analysis of selected clones revealed that one of the cDNAs encoded porcine apolipoprotein (apo) A-1. The identity of apo A-1 mRNA was further confirmed by in vitro translation of RNA from brain microvascular endothelial cells and subsequent immunoprecipitation with an antibody against human apo A-1. We further investigated the expression of apo A-1 mRNA in several tissues and in endothelial cells of the pig. It is shown that cultured brain microvascular endothelial cells provide an in vitro model to study the expression and function of apo A-1 in the microvasculature of the brain.  相似文献   

19.
The analysis of the authors and published data allowed to conclude that the blood-brain barrier was a complex structural-functional system. Its basic components are endothelial cells, basal membrane, pericytes, tissue basophils, and astrocytes. The role of these structural elements in the permeability of blood-brain barrier has been studied. Organ-specific peculiarities of the brain tissue basophils have been established in rats, cats, and dogs. The astrocyte-capillary complexes were found to be very reactive, and at the same time, very plastic CNS structures.  相似文献   

20.
Neurovascular injury comprises a wide spectrum of pathophysiology that underlies the progression of brain injury after cerebral ischemia. Recently, it has been shown that activation of the integrin-associated protein CD47 mediates the development of blood–brain barrier injury and edema after cerebral ischemia. However, the mechanisms that mediate these complex neurovascular effects of CD47 remain to be elucidated. Here, we compare the effects of CD47 signaling in brain endothelial cells, astrocytes, and pericytes. Exposure to 4N1 K, a specific CD47-activating peptide derived from the major CD47 ligand thrombospondin-1, upregulated two major neurovascular mediators, vascular endothelial growth factor (VEGF) and matrix metalloproteinase-9 (MMP-9), in brain endothelial cells and astrocytes. No changes were detected in pericytes. These findings may provide a potential mechanism for CD47-induced changes in blood–brain barrier homeostasis, and further suggest that CD47 may be a relevant neurovascular target in stroke.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号