首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The growth conditions are known to influence the bacterial adhesion to different kinds of surfaces. In the present study the adhering ability of Stenotrophomonas maltophilia, on growth in nutrient rich media (Tryptic Soy Broth (TSB)) and minimal media (Luria Bertani (LB)) was checked by viable cell count and spectrophotometric method. TSB grown S. maltophilia showed higher adhesion compared to bacteria grown in LB broth, to both biotic and abiotic surfaces. However, when bacteria were grown in LB broth supplemented with different concentrations of glucose, under aerobic conditions, the bacteria grown at lower glucose concentration (2 gm/l) showed maximum adhesion to abiotic surfaces (polystyrene microtiter plate) compared to biotic surfaces (mouse trachea, mouse tracheal mucus and HEp-2 cells line). Maximum adhesion to biotic surfaces was seen with cells grown at 4 gm/l of glucose concentration. On the contrary if the cell was grown under microaerophilic conditions maximum adhesion to abiotic and biotic surfaces was achieved with bacteria grown at 1 gm/l and 2 gm/l of glucose concentration respectively. A negative correlation was observed between glucose concentrations and pH of media, the latter declined faster under microaerophilic conditions as compared to aerobic condition.  相似文献   

2.
The growth conditions are known to influence the bacterial adhesion to different kinds of surfaces. In the present study the adhering ability of S. maltophilia, on growth in nutrient rich media (Tryptic Soy Broth (TSB)) and minimal media (Luria Bertani (LB)) was checked by viable cell count and spectrophotometric method. TSB grown S. maltophilia showed higher adhesion compared to bacteria grown in LB broth, to both biotic and abiotic surfaces. However, when bacteria were grown in LB broth supplemented with different concentrations of glucose, under aerobic conditions, the bacteria grown at lower glucose concentration (2 gm/l) showed maximumadhesion to abiotic surfaces (polystyrene microliter plate) compared to biotic surfaces (mouse trachea, mouse tracheal mucus and HEp-2 cells line). Maximum adhesion to biotic surfaces was seen with cells grown at 4 gm/l of glucose concentration. On the contrary if the cell was grown under microaerophilic conditions maximum adhesion to abiotic and biotic surfaces was achieved with bacteria grown at 1 gm/l and 2 gm/l of glucose concentration respectively. A negative correlation was observed between glucose concentrations and pH of media, the latter declined faster under microaerophilic conditions as compared to aerobic condition.  相似文献   

3.
Bifidobacteria are gaining commercial significance due to their probiotic properties. However, little is still known about the production of these bacteria and their behavior in bioreactors. Two Bifidobacterium longum strains were sensitive to light when grown in a transparent (glass) bioreactor under microaerophilic growth conditions (i.e. no gases added and slow mixing). The sensitivity was less clear the more anaerobic the initial conditions were. In a darkened bioreactor in microaerophilic conditions, the two strains grew with maximum specific growth rates of 0.36 h(-1) and 0.48 h(-1). In an illuminated bioreactor neither strain grew. In comparison, Lactobacillus reuteri was not sensitive to light under the same conditions.  相似文献   

4.
The purple nonsulfur bacterium Rhodospirillum rubrum has been employed to study physiological adaptation to limiting oxygen tensions (microaerophilic conditions). R. rubrum produces maximal levels of photosynthetic membranes when grown with both succinate and fructose as carbon sources under microaerophilic conditions in comparison to the level (only about 20% of the maximum) seen in the absence of fructose. Employing a unique partial O(2) pressure (pO(2)) control strategy to reliably adjust the oxygen tension to values below 0.5%, we have used bioreactor cultures to investigate the metabolic rationale for this effect. A metabolic profile of the central carbon metabolism of these cultures was obtained by determination of key enzyme activities under microaerophilic as well as aerobic and anaerobic phototrophic conditions. Under aerobic conditions succinate and fructose were consumed simultaneously, whereas oxygen-limiting conditions provoked the preferential breakdown of fructose. Fructose was utilized via the Embden-Meyerhof-Parnas pathway. High levels of pyrophosphate-dependent phosphofructokinase activity were found to be specific for oxygen-limited cultures. No glucose-6-phosphate dehydrogenase activity was detected under any conditions. We demonstrate that NADPH is supplied mainly by the pyridine-nucleotide transhydrogenase under oxygen-limiting conditions. The tricarboxylic acid cycle enzymes are present at significant levels during microaerophilic growth, albeit at lower levels than those seen under fully aerobic growth conditions. Levels of the reductive tricarboxylic acid cycle marker enzyme fumarate reductase were also high under microaerophilic conditions. We propose a model by which the primary "switching" of oxidative and reductive metabolism is performed at the level of the tricarboxylic acid cycle and suggest how this might affect redox signaling and gene expression in R. rubrum.  相似文献   

5.
There is growing concern about the relevance of in vitro antimicrobial susceptibility tests when applied to isolates of P. aeruginosa from cystic fibrosis (CF) patients. Existing methods rely on single or a few isolates grown aerobically and planktonically. Predetermined cut-offs are used to define whether the bacteria are sensitive or resistant to any given antibiotic. However, during chronic lung infections in CF, P. aeruginosa populations exist in biofilms and there is evidence that the environment is largely microaerophilic. The stark difference in conditions between bacteria in the lung and those during diagnostic testing has called into question the reliability and even relevance of these tests. Artificial sputum medium (ASM) is a culture medium containing the components of CF patient sputum, including amino acids, mucin and free DNA. P. aeruginosa growth in ASM mimics growth during CF infections, with the formation of self-aggregating biofilm structures and population divergence. The aim of this study was to develop a microtitre-plate assay to study antimicrobial susceptibility of P. aeruginosa based on growth in ASM, which is applicable to both microaerophilic and aerobic conditions. An ASM assay was developed in a microtitre plate format. P. aeruginosa biofilms were allowed to develop for 3 days prior to incubation with antimicrobial agents at different concentrations for 24 hours. After biofilm disruption, cell viability was measured by staining with resazurin. This assay was used to ascertain the sessile cell minimum inhibitory concentration (SMIC) of tobramycin for 15 different P. aeruginosa isolates under aerobic and microaerophilic conditions and SMIC values were compared to those obtained with standard broth growth. Whilst there was some evidence for increased MIC values for isolates grown in ASM when compared to their planktonic counterparts, the biggest differences were found with bacteria tested in microaerophilic conditions, which showed a much increased resistance up to a > 128 fold, towards tobramycin in the ASM system when compared to assays carried out in aerobic conditions. The lack of association between current susceptibility testing methods and clinical outcome has questioned the validity of current methods. Several in vitro models have been used previously to study P. aeruginosa biofilms. However, these methods rely on surface attached biofilms, whereas the ASM biofilms resemble those observed in the CF lung. In addition, reduced oxygen concentration in the mucus has been shown to alter the behavior of P. aeruginosa and affect antibiotic susceptibility. Therefore using ASM under microaerophilic conditions may provide a more realistic environment in which to study antimicrobial susceptibility.  相似文献   

6.
The purple nonsulfur bacterium Rhodospirillum rubrum has been employed to study physiological adaptation to limiting oxygen tensions (microaerophilic conditions). R. rubrum produces maximal levels of photosynthetic membranes when grown with both succinate and fructose as carbon sources under microaerophilic conditions in comparison to the level (only about 20% of the maximum) seen in the absence of fructose. Employing a unique partial O2 pressure (pO2) control strategy to reliably adjust the oxygen tension to values below 0.5%, we have used bioreactor cultures to investigate the metabolic rationale for this effect. A metabolic profile of the central carbon metabolism of these cultures was obtained by determination of key enzyme activities under microaerophilic as well as aerobic and anaerobic phototrophic conditions. Under aerobic conditions succinate and fructose were consumed simultaneously, whereas oxygen-limiting conditions provoked the preferential breakdown of fructose. Fructose was utilized via the Embden-Meyerhof-Parnas pathway. High levels of pyrophosphate-dependent phosphofructokinase activity were found to be specific for oxygen-limited cultures. No glucose-6-phosphate dehydrogenase activity was detected under any conditions. We demonstrate that NADPH is supplied mainly by the pyridine-nucleotide transhydrogenase under oxygen-limiting conditions. The tricarboxylic acid cycle enzymes are present at significant levels during microaerophilic growth, albeit at lower levels than those seen under fully aerobic growth conditions. Levels of the reductive tricarboxylic acid cycle marker enzyme fumarate reductase were also high under microaerophilic conditions. We propose a model by which the primary “switching” of oxidative and reductive metabolism is performed at the level of the tricarboxylic acid cycle and suggest how this might affect redox signaling and gene expression in R. rubrum.  相似文献   

7.
8.
The effect of air on the response of salmonellas in conductance media   总被引:2,自引:0,他引:2  
The effect of air on the conductance response of salmonellas in three selective media was investigated. When assays were carried out aerobically, the time to observe a presumptive positive in all media was reduced and the conductance change was larger than in assays done under microaerophilic conditions. Low (102/ml) numbers of pre-enriched salmonellas were detected only under aerobic conditions.  相似文献   

9.
To evaluate the viability of Helicobacter pylori cultured under anaerobic conditions, H. pylori strain TK1029 was grown on blood agar in a microaerophilic environment at 37 degrees C for 4 days, and subsequently cultured under anaerobic conditions for 1 to 35 days. Colony formation by bacteria on blood agar plates cultured under anaerobic conditions was observed only for up to 4 days of microaerophilic incubation. By Gram staining, the morphological form of the bacteria was shown to be predominantly coccoid. However, bacteria cultured under anaerobic conditions for 15 to 35 days formed colonies on blood agar after pre-incubation of bacteria with PBS, but not without pre-incubation. These results suggest that H. pylori survives long-term culture under anaerobic conditions and that both pre-incubation in non-nutrient solution and high density of bacterial concentration might be important for recovery of H. pylori cultured for a prolonged time under anaerobic conditions.  相似文献   

10.
Extracts of the crude bacteroid fraction of symbiotically grown Bradyrhizobium japonicum were much more active in oxidizing protoporphyrinogen to protoporphyrin than were extracts of cells grown under free-living conditions, especially when assayed in atmospheres containing only traces of oxygen. This correlates with the higher heme content of the microaerophilic nodules. Furthermore, the high level of oxidative activity in the crude bacteroid fraction was associated with an uncharacterized membrane fraction, probably of plant origin, that was separable from the bacteroids by Percoll gradient centrifugation.  相似文献   

11.
Rhodopseudomonas viridis was grown in liquid culture at 30 degrees C anaerobically in light (generation time, 13 h) and under microaerophilic growth conditions in the dark (generation time, 24 h). The bacterium could be cloned at the same temperature anaerobically in light (1 week) and aerobically in the dark (3 to 4 weeks) if oxygen was limited to 0.1%. Oxygen could not be replaced by dimethyl sulfoxide, potassium nitrate, or sodium nitrite as a terminal electron acceptor. No growth was observed anaerobically in darkness or in the light when air was present. A variety of additional carbon sources were used to supplement the standard succinate medium, but enhanced stationary-phase cell density was observed only with glucose. Conditions for induction of the photosynthetic reaction center upon the change from microaerophilic to phototrophic growth conditions were investigated and optimized for a mutant functionally defective in phototrophic growth. R. viridis consumed about 20-fold its cell volume of oxygen per hour during respiration. The MICs of ampicillin, kanamycin, streptomycin, tetracycline, 1-methyl-3-nitro-1-nitrosoguanidine, and terbutryn were determined.  相似文献   

12.
Molecular dissection of the mechanisms underlying Helicobacter pylori infection suffers from the lack of in vitro systems mimicking in vivo observations. A system was developed whereby human epithelial cells (Caco-2) grown as polarized monolayers and bacteria can communicate with each other under culture conditions optimal for each partner. Caco-2 cells grown on filter supports were inserted in a vertical position into diffusion chambers equilibrated with air and 5% CO(2) at their basolateral surface (aerophilic conditions) and 5% CO(2), 5% O(2), 90% N(2) (microaerophilic conditions) in the apical compartment. Remarkably, the epithelial polarized layer was stable under these asymmetric culture conditions for at least 24 h, and the presence of Caco-2 cells was necessary to maintain H. pylori growth. In contrast to previous studies conducted with non-polarized Caco-2 cells and other cell lines kept under aerophilic conditions, we found H. pylori-dependent stimulation of cytokine secretion (MCP-1 (monocyte chemoattractant protein-1), GRO-alpha (growth-regulated oncogene-alpha), RANTES (regulated on activation normal T cell expressed and secreted)). This correlated with nuclear translocation of NF-kappaB p50 and p65 subunits. Tyrosine phosphorylation of nine cellular proteins was induced or enhanced; we identified p120(RasGAP), p190(RhoGAP), p62dok (downstream of tyrosine kinases), and cortactin as H. pylori-inducible targets. Moreover, reduction of H. pylori urease expression was observed in adherent bacteria as compared with bacteria in suspension. In addition to mimicking several observations seen in the inflamed gastric mucosa, the novel in vitro system was allowed to underscore complex cellular events not seen in classical in vitro analyses of microaerophilic bacteria-epithelial cell cross-talk.  相似文献   

13.
Mg2+ level affected growth, xylitol and ethanol production by P. stipitis grown under microaerophilic conditions. Low Mg2+ level (1 mM) directed the C flux from ethanol to xylitol, with no effect on xylose consumption rate. The addition of pyrazole, an alcohol dehydrogenase (ADH) inhibitor, had the same effect, even in conditions of Mg2+ excess (4 mM), indicating a negative interaction between ADH and Mg2+ ions (p < 0.01). Cells grown either with pyrazole or Mg limitation increased their intracellular NADH concentration about 3 times, but displayed no significant differences in ADH specific activities (1,000 U/mg protein, +/- 10%). In contrast, no interaction was measured between Mg and antimycin A, excluding the possibility that Mg2+ limitation interferes with respiration.  相似文献   

14.
Abstract The nonheterocystous, filamentous cyanobacterium, Plectonema boryanum fixes nitrogen only under microaerophilic conditions. The organization of nitrogen fixation genes ( nifH, D, K ) in Plectonema was determined by using cloned fragments from the Anabaena nif genes as probes in Southern hybridizations. Regions of Plectonema DNA were homologous to Anabaena nifH, nifD , and nifK genes, and the resulting pattern of hybridization was used to construct a map of nifH, D, K DNA isolated from Plectonema cells grown under non-nitrogen fixing conditions (combined nitrogen and O2 present). The nifH and nifD genes are on the same 3 kbp Hin dIII fragment, and nifK is on a 1 kbp Hin dIII fragment. All three nif fragments are adjacent to one another on a 12 kbp Cla I fragment.  相似文献   

15.
Four different azo dyes were decolourized and biodegraded in a sequential microaerophilic–aerobic treatment by a facultative Klebsiella sp. strain VN-31, a bacterium isolated from activated sludge process of the textile industry. Dye decolourization was performed under microaerophilic conditions until no colour was observed (decolourization percentage >94%). The medium was then aerated to promote the biodegradation of the amines produced. The presence of aromatic amine in the microaerophilic stage and its absence in the aerobic stage demonstrate azo bond reduction and an oxidative biodegradation process, respectively. Total Organic Carbon (TOC) reduction for the growth medium plus dyes was ~50% in the microaerophilic stage and ~80% in the aerobic stage. The degradation products were also characterized by FT-IR and UV–vis techniques and their toxicity measured using Daphnia magna. The results provide evidence that the successive microaerophilic/aerobic stages, using a single Klebsiella sp. strain VN-31 in the same bioreactor, were able to form aromatic amines by the reductive break down of the azo bond and to oxidize them into non-toxic metabolites.  相似文献   

16.
Aim: The goal of this study was to compare the degradation of hexahydro‐1,3,5‐trinitro‐1,3,5‐triazine (RDX) by three Rhodococcus strains under anaerobic, microaerophilic (<0·04 mg l?1 dissolved oxygen) and aerobic (dissolved oxygen (DO) maintained at 8 mg l?1) conditions. Methods and Results: Three Rhodococcus strains were incubated with no, low and ambient concentrations of oxygen in minimal media with succinate as the carbon source and RDX as the sole nitrogen source. RDX and RDX metabolite concentrations were measured over time. Under microaerophilic conditions, the bacteria degraded RDX, albeit about 60‐fold slower than under fully aerobic conditions. Only the breakdown product, 4‐nitro‐2,4‐diazabutanal (NDAB) accumulated to measurable concentrations under microaerophilic conditions. RDX degraded quickly under both aerated and static aerobic conditions (DO allowed to drop below 1 mg l?1) with the accumulation of both NDAB and methylenedinitramine (MEDINA). No RDX degradation was observed under strict anaerobic conditions. Conclusions: The Rhodococcus strains did not degrade RDX under strict anaerobic conditions, while slow degradation was observed under microaerophilic conditions. The RDX metabolite NDAB was detected under both microaerophilic and aerobic conditions, while MEDINA was detected only under aerobic conditions. Impact and Significance of the Study: This work confirmed the production of MEDINA under aerobic conditions, which has not been previously associated with aerobic RDX degradation by these organisms. More importantly, it demonstrated that aerobic rhodococci are able to degrade RDX under a broader range of oxygen concentrations than previously reported.  相似文献   

17.
This article describes the culture of epithelial cells from anterior and posterior midgut regions of adult Dendroctonus valens. Culture conditions were established, and cell adherence was improved by means of a new technique that allowed the cells to grow between two glass coverslips. Cytoplasmic projections occur as anterior midgut cells grow to confluence; these projections were not observed in cells of the posterior midgut. The optimal culture medium for the maintenance of these epithelial cells was Roswell Park Memorial Institute 1640 medium at 25 degrees C. Cells in Grace's medium died in 24 h. Cultures did not require CO(2) atmosphere, but culture development was favored by the microaerophilic environment and the dark conditions in which the cells were grown, between the coverslips.  相似文献   

18.
Vital Staining of Mycoplasma and L-Forms with Chlorazol Black E   总被引:1,自引:0,他引:1       下载免费PDF全文
Vital staining of Mycoplasma colonies was attempted because other dye visualization techniques kill the organisms and preclude reisolation for further studies. The lipophilic amphoteric dye Chlorazol Black E (CBE) was the most successful of 14 vital dyes tested on Mycoplasma hominis, M. pharyngis, M. fermentans, M. arthritidis, M. salivarium, M. pneumoniae, and L-forms of Staphylococcus aureus when used in 1:1,000 (w/v) saline dilution as the sterile suspension medium for inoculation of Hayflick's medium under both aerobic and microaerophilic (Fortner method) conditions. Colonies of all species stain homogeneously in the periphery and center portion, the latter being more refractive under positive phase contrast. All stained colonies were successfully subcultured. The most striking and promising result of the use of CBE as a tool for physiological study of Mycoplasma was a very significant increase in diameter of all colonies except those of M. pneumoniae grown with CBE: 1.5 x for M. hominis and 5 x for L-form S. aureus. This size increase in M. hominis is proportional to the concentration down to a 1:50,000 dilution only under microaerophilic conditions. Whether this increase in colony size is due to an increased number of cells, to larger cells, or to the adsorption of CBE on the lipid membrane is unknown at present.  相似文献   

19.
A facultative Staphylococcus arlettae bacterium, isolated from an activated sludge process in a textile industry, was able to successfully decolourize four different azo dyes under microaerophilic conditions (decolourization percentage >97%). Further aeration of the decolourized effluent was performed to promote oxidation of the degradation products. The degradation products were characterized by FT-IR and UV–vis techniques and their toxicity with respect to Daphnia magna was measured. The amine concentrations as well as the total organic carbon (TOC) levels were monitored during the biodegradation process. The presence of aromatic amine in the microaerophilic stage and its absence in the aerobic stage indicated the presence of azoreductase activity and an oxidative biodegradation process, respectively. TOC reduction was ~15% in the microaerophilic stage and ~70% in the aerobic stage. The results provided evidence that, using a single Staphylococcus arlettae strain in the same bioreactor, the sequential microaerophilic/aerobic stages were able to form aromatic amines by reductive break-down of the azo bond and to oxidize them into non-toxic metabolites.  相似文献   

20.
Effects of different microaerophilic conditions on cell growth, glucose consumption, hydrogen production and cellular metabolism of wild Enterobacter aerogenes strain and polyphosphate kinase (PPK) overexpressing strain were systematically studied in this paper, using NaH(2)PO(4) as the phosphate sources. Under different microaerophilic conditions, PPK-overexpressing strain showed better cell growth, glucose consumption and hydrogen production than the wild strain. In the presence of limited oxygen (2.1%) and by PPK overexpression, the hydrogen production per liter of culture, the hydrogen production per cell and the hydrogen yield per mol of glucose increased by 20.1%, 12.3% and 10.8%, respectively, compared with the wild strain under strict anaerobic conditions. Metabolic analysis showed that the increase of the total hydrogen yield was attributed to the improvement of NADH pathway. The result of more reductive cellular oxidation state balance also further demonstrated that, under proper initial microaerophilic conditions and by PPK overexpression, the cell could adjust the cellular redox states and make more energy flow into hydrogen production pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号