首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
Plant growth, biomass allocation and autofragmentation were investigated in response to root and shoot competition in the submersed macrophyte Myriophyllum spicatum L. growing in two sediment environments. Biomass accumulation and allocation were significantly affected by sediment fertility, with a higher total biomass observed in fertile sediment (average: 4.69 g per plant vs. 1.12 g per plant in infertile sediment). Root-to-shoot ratios were 0.34 and 0.06 in the infertile and fertile sediments, respectively, reflecting the high investment placed on roots under infertile conditions. In the presence of root, shoot, and full competition, whole plant biomass decreased by 18%, 12% and 24% in the infertile sediments, and 23%, 25% and 33% in the fertile sediments, respectively. Root weight ratios (RWRs) increased with root competition by 38% (P < 0.001) and 12% (P = 0.002), while leaf weight ratios (LWRs) decreased with shoot competition by 6% (P = 0.042) and 5% (P = 0.001) in the infertile and fertile sediments, respectively. A total of 406 autofragments were harvested in the fertile sediments, but none were obtained from the infertile sediments. In the control, autofragment number and biomass was 166% and 175% higher compared to the competition treatment. Root and shoot competition resulted in a 21% (P = 0.043) and 18% (P = 0.098) decrease in the autofragment biomass, respectively. These results indicated that M. spicatum responds to different sediment fertility by changing its allocation patterns. Moreover, both root and shoot competition influenced plant growth and autofragmentation, while sediment nutrient availability played an important role in M. spicatum autofragmentation.  相似文献   

2.
Lizhi Wang 《农业工程》2013,33(5):282-286
Plant growth, biomass allocation, root distribution and plant nutrient content were investigated in the submerged macrophyte Potamogeton crispus growing in heterogeneous sediments. Three experimental sediments heterogeneous in nutrient content and phosphorus release capacity were used: sandy loam with low nutrient content (A), clay with intermediate nutrient content (B), and clay with high nutrient content (C). Biomass accumulation was significantly affected by the sediment type, and was highest in clay C (1.23 mg per plant dry weight) but lowest in sandy loam (0.69 mg per plant dry weight). The root:shoot ratios in treatments A, B and C were 0.30, 0.14 and 0.09, respectively. P. crispus allocated more biomass to roots in sandy loam compared with the other sediments. The average root numbers in sediments A, B and C were 16, 19 and 20, respectively, and the total root lengths in sediments A, B and C were 238.84, 200.36 and 187.21 cm, respectively. Almost 90% of the root biomass was distributed in the 0–15 cm depth in sediments B and C, compared with 64.53% in sediment A. The rank order of plant nitrogen and phosphorus concentrations in the sediment types was C > B > A. These results indicate that both sediment structure and nutrient availability influence the growth and distribution of the root system of P. crispus.  相似文献   

3.
《Aquatic Botany》2007,86(2):191-196
The effect of nutrient addition on the growth of E. najas was evaluated in a dose response experiment using sand amended with phosphorus (P) and nitrogen (N), and in enrichment trials with N and P amendments to natural sediments. Plants, water and sediment came from lagoons of the Upper Paraná River Floodplain and from Itaipu Reservoir (Brazil). Relative growth rates (RGRs) of E. najas shoots, based on dry mass (DM), varied from 0.03 to 0.060 d−1 for both nutrients. Root:shoot biomass ratios were related to sediment exchangeable P (r = −0.419; P = 0.03) and N (r = −0.54; P = 0.006), however root RGR was not related to sediment nutrient concentrations. When natural sediments were amended with N and P, neither shoot nor root RGRs differed among treatments for substrata from either the reservoir or the floodplain lagoons (P > 0.05). Comparison of nutrient concentrations measured in natural sediments collected from several sites in both the Upper Paraná River Floodplain (range 49–213 μg P g−1 DM; 36–373 μg N g−1 DM) and Itaipu Reservoir (range 43–402 μg P g−1 DM; 7.9–238 μg N g−1 DM) showed that sediment N and P from these systems usually exceeded minimum requirements necessary for E. najas growth, as measured in the dose response experiment. Together, these results indicate that E. najas, at least in early stages of development, responds to sediment nutrient amendments and relies upon bottom sediments to meet its N and P requirements and that for at least two Brazilian ecosystems, growth of this species is not limited by insufficient sediment N or P. Thus, reducing N and P in water is not enough to control E. najas growth in short time periods in these ecosystems.  相似文献   

4.
《Aquatic Botany》2007,87(4):299-306
This study comprised (1) a field survey of intertidal seagrass (Zostera capricorni) biomass, cover and photosynthetic potential and sediment characteristics at a range of contrasting sites in three New Zealand harbours, and (2) a microcosm experiment comparing plant responses to sediments from extant versus historical seagrass sites. The field survey showed that the sediment physico-chemical characteristics were generally consistent with the limited previous reports for Zostera environments, although the total P concentration range was higher (0.08–0.72 mg P g−1). Overall, 52% of variation in seagrass cover was explained by sediment water content (R = 0.54) and organic content (R = −0.56). Twenty-two percent of variation in seagrass biomass was explained by sediment total P and redox potential (both R = −0.35). Intra-harbour seagrass–sediment relationships were more significant (explaining up to 82% of plant variation) but harbour-specific. In the microcosm experiment, threefold higher Z. capricorni biomass was maintained on extant than historical sediments but not conclusively linked to measure sediment characteristics. Overall, the results of this study demonstrate that significant relations can exist between estuarine sediment conditions and Z. capricorni growth responses, and suggest that detrimental change in sediment conditions may be a contributing factor in seagrass decline.  相似文献   

5.
《Aquatic Botany》2007,86(1):9-13
Plant growth, biomass allocation and root distribution were investigated in the submerged macrophyte Vallisneria natans growing in heterogeneous sediments. Experimentally heterogeneous sediment environments were constructed by randomly placing 4 cm of clay or sandy loam into the top (0–4 cm) or bottom (4–8 cm) layer within an experimental tray, providing two homogeneous and two heterogeneous treatments. Biomass accumulation was significantly affected by the experimental treatments: higher in the homogeneous sediment of clay (32 mg per plant) and the two heterogeneous treatments (about 27 mg per plant), but lower in the homogeneous sediment of sandy loam (15 mg per plant). Root: shoot ratio was also different among the four treatments. Compared with the treatments of clay in the top layer, plants allocated more biomass to roots at the treatments of sandy loam in the top layer. Heterogeneous sediments significantly affected root distribution pattern. Compared with the treatments of sandy loam in the bottom layer, root number (7–8 versus 13–14) and total root length (3.6–4.0 cm versus 29.5–40.0 cm) in the bottom layer were significantly higher in the treatments with clay in the bottom layer. These results indicate that both sediment structure and nutrient availability influence growth and root system distribution of V. natans.  相似文献   

6.
《Aquatic Botany》2008,88(4):299-306
This study comprised (1) a field survey of intertidal seagrass (Zostera capricorni) biomass, cover and photosynthetic potential and sediment characteristics at a range of contrasting sites in three New Zealand harbours, and (2) a microcosm experiment comparing plant responses to sediments from extant versus historical seagrass sites. The field survey showed that the sediment physico-chemical characteristics were generally consistent with the limited previous reports for Zostera environments, although the total P concentration range was higher (0.08–0.72 mg P g−1). Overall, 52% of variation in seagrass cover was explained by sediment water content (R = 0.54) and organic content (R = −0.56). Twenty-two percent of variation in seagrass biomass was explained by sediment total P and redox potential (both R = −0.35). Intra-harbour seagrass–sediment relationships were more significant (explaining up to 82% of plant variation) but harbour-specific. In the microcosm experiment, threefold higher Z. capricorni biomass was maintained on extant than historical sediments but not conclusively linked to measure sediment characteristics. Overall, the results of this study demonstrate that significant relations can exist between estuarine sediment conditions and Z. capricorni growth responses, and suggest that detrimental change in sediment conditions may be a contributing factor in seagrass decline.  相似文献   

7.
Sediment may play an important role during the submerged macrophyte decline in the eutrophication progress. In order to investigate the response in root morphology and nutrient contents of submerged macrophytes Myriophyllum spicatum to sediment, five sediment types were treated and used (five types of sediment were used in the experiment: treatment 1 was nature sediment + sand, a 50:50 (v/v) mixture, treatment 2 was the studied sediment only, treatment 3 was sediment + nitrogen (N, NH4Cl 400 mg kg?1), treatment 4 was sediment + phosphorus (P, NaH2PO4 300 mg kg?1); treatment 5 was sediment + phosphorus (P, NaH2PO4 600 mg kg?1)). The results show that the root N content was only significantly affected by adding N in sediments and P was elevated by adding N and P. The root mass and its percentage increased at first, the peak values were reached at 35 d, and then decreased. The root growth was restrained by adding sand and N in sediments, root senescence process was delayed at the later experimental time by adding P in sediments. The increase of root volume showed a similar trend to that of root growth, except for plant with P addition where root volume remained high after 35 d. The root volume decreased while the main root number increased significantly by adding sand in sediments. The mean root length and main root diameter were reduced by adding P in sediments. The compatible sediment nutrient condition is necessary to restore submerged macrophytes in a degraded shallow lake ecosystem, and the effect of sediment on the root morphology and nutrient content is one of the important aspects restricting the restoration of submerged macrophytes.  相似文献   

8.
《Aquatic Botany》2005,81(1):85-96
Rooted submerged macrophytes can absorb significant amounts of nutrients from both sediment and water. We investigated root morphology of Vallisneria natans in mesocosm plastic bins, in response to three types of sediment (sandy loam, clay, and a 50:50 (v/v) mixture of the two sediments) and two levels of water-column nutrient (well water and nutrient medium). Compared to the plants grown in the clay or mixed sediments, root diameter decreased (0.39–0.41 versus 0.36–0.37 mm) but total root length per plant increased (0.87–1.27 versus 1.14–1.62 m) when grown in sandy loam. Increase of nutrient availability in water column led to decreased specific root length (306–339 versus 258–281 m g−1). However, both sediment type and water-column nutrient had no impacts on root number (ranged from 19 to 24 number of roots per plant). Root weight ratio, root:leaf mass ratio and root:leaf length ratio generally decreased with enhanced nutrient availability in sediment or water. Plant growth was affected by sediment type alone (P < 0.05), rather than water-column nutrient (P > 0.05). However, plant N and P contents were significantly impacted by both sediment type (P  0.001) and water-column nutrient (P < 0.05). Increase of nutrient availability in sediment or water led to increased plant N (ranged from 2.47 to 4.77 mg g−1) and P concentrations (ranged from 42.8 to 62.0 mg g−1). These results indicate that considerable variation in root morphology of V. natans exists in response to the fertility of the sediment it is rooted in.  相似文献   

9.
Endometrial gland development occurs during the proliferative phase of a woman’s menstrual cycle, laying the foundation for the subsequent receptive, secretory phase when pregnancy is established. Idiopathic infertility has been rarely investigated with respect to the proliferative phase endometrium. We investigated whether gland development and/or altered secretion of cytokines during the proliferative phase is associated with infertility. Area of the glandular epithelium (GE) was measured in proliferative phase endometrial tissue collected from fertile (n = 18) and infertile (n = 14) women. Cytokines were measured in proliferative phase uterine lavage of fertile (n = 15) and infertile (n = 15) women. Immunohistochemistry determined cellular localisation of transforming growth factor alpha (TGFα) and interferon gamma (IFNγ) in proliferative phase endometrial tissue. For statistical analysis the cohort was divided into women <35 years and ⩾35 years. There were no significant differences in GE area of infertile and fertile women. C-C motif chemokine 11 (P = 0.048), TGFα (P = 0.049), IFNγ (P = 0.033) and interleukin-1 alpha (P = 0.047) were significantly elevated in uterine lavage from infertile women <35 years compared to fertile but not in women ⩾35 years. TGFα and IFNγ localised predominantly to GE in both the fertile and infertile endometrium. The potential impact of this altered proliferative phase environment on subsequent receptivity is discussed.  相似文献   

10.
Oil spills may considerably damage sensitive coastal wetlands. In this study, the tolerance limits of a dominant coastal salt marsh plant, Juncus roemerianus, to diesel oil and its phytoremediation effectiveness in wetland environments were investigated in the greenhouse. J. roemerianus was transplanted into salt marsh sediment contaminated with diesel fuel at concentrations of 0, 20, 40, 80, 160, 320, and 640 mg diesel g?1 dry sediment. Plant stem density, shoot height, aboveground biomass and belowground biomass were detrimentally impacted at high oil dosages even 1 year after transplantation. Tolerance limits were estimated between 160 and 320 mg g?1 based on various plant variables. Importantly, J. roemerianus enhanced oil degradation; at the 40 mg/g diesel dosage, concentrations of residual total petroleum hydrocarbons (TPH) in the sediment planted with J. roemerianus were significantly lower than those of unplanted sediments 1 year after treatment initiation. Furthermore, concentrations of total targeted polycyclic aromatic hydrocarbons (PAHs) and n-alkanes in the J. roemerianus planted treatment were, respectively, about 3% and 15% of the unplanted treatment. Concentration reduction in all categories of hydrocarbons suggested that J. roemerianus effectively phytoremediated the diesel-contaminated wetlands.  相似文献   

11.
《Aquatic Botany》2007,86(1):62-68
This glasshouse study examined the effect of three damage types on plant growth and nutrient allocation of the invasive aquatic plant, alligator weed (Alternanthera philoxeroides). The damage included: repeated leaf removal, a single application of herbicide, and one-time shoot removal. Damage types were meant to simulate the effects of insect herbivory, chemical, and mowing/grazing, respectively. Response variables included plant biomass and both the concentration and abundance of nutrients. Complete shoot removal and herbicide treatments caused an initial decline in growth rate, followed by several weeks of increasing rates and finally a second decline during the fourth week. Plants from control and repeated leaf removal treatments showed a steady increase in growth rate from the treatment application to the final harvest, but control plants were accumulating biomass three times faster than repeated defoliation plants by the fifth week (9.7 and 3.5 g week−1, respectively). Not surprisingly, all treatments led to lower total cumulative biomass 5 weeks after treatment application (mean 30.8 g) when compared with controls (49.0 g). However, despite the repeated leaf removal and complete shoot removal treatments removing similar quantities of biomass (mean 8.0 and 7.5 g respectively), repeated removal of leaves produced less total biomass (26.2 g) and led to less cumulative above ground biomass (20.1 g) than the other treatments (mean total = 33.1 g, mean above ground = 25.7 g). Repeated leaf removal also produced less below ground biomass (6.1 g) than the shoot removal treatment (8.5 g) and had the greatest negative effect on nitrogen and potassium abundance in plant tissues after 5 weeks. In addition, it reduced the amount of phosphorous to a lower level than herbicide treated or control plants. These results indicate that repeated leaf removal was the treatment most effective in reducing biomass and depleting nutrients in A. philoxeroides plants.  相似文献   

12.
Most nutrient solution studies on the interactions between silicon (Si) and cadmium (Cd) are short term. Here we reported a long-term experiment in which rice (Oryza sativa L.) was cultured for 105 days and harvested at four different growth stages to measure biomass accumulation and Cd uptake and distribution in shoots and roots. Exogenous Si increased shoot biomass by 61–238% and root biomass by 48–173% when the culture solution was free of Cd. When 2 μmol L?1 Cd was added, Si supply increased shoot and root biomass by 125–171% and by 100–106% compared to the zero-Si treatment. Increasing the Cd concentration to 4 μmol L?1 decreased the beneficial effects of Si on root and shoot biomass. Silicon supply decreased shoot Cd concentrations by 30–50% and Cd distribution ratio in shoot by 25.3–46%, compared to the treatment without Si supply. Additionally, lower Si supply or more serious Cd stress would lead to roots with bigger biomass and higher Si concentration. Energy-dispersive X-ray microanalysis showed that both Si and Cd accumulated synchronously in the border and middle of phytoliths of the shoots. We conclude that Si enhances plant growth and decreases Cd accumulation in shoots and thereby helps to lower the potential risks of food contamination.  相似文献   

13.
Most biodiversity experiments have been conducted in grassland ecosystems with nitrogen limitation, while little research has been conducted on relationships between plant biomass production, substrate nitrogen retention and plant diversity in wetlands with continuous nitrogen supply. We conducted a plant diversity experiment in a subsurface vertical flow constructed wetland for treating domestic wastewater in southeastern China. Plant aboveground biomass production ranged from 20 to 3121 g m?2 yr?1 across all plant communities. In general, plant biomass production was positively correlated with species richness (P = 0.001) and functional group richness (P = 0.001). Substrate nitrate concentration increased significantly with increasing plant species richness (P = 0.046), but not with functional group richness (P = 0.550). Furthermore, legumes did not affect biomass production (P = 0.255), retention of substrate nitrate (P = 0.280) and ammonium (P = 0.269). Compared to the most productive of the corresponding monocultures, transgressive overyielding of mixed plant communities did not occur in most polycultures. Because greater diversity of plant community led to higher biomass production and substrate nitrogen retention, thus we recommend that plant biodiversity should be incorporated in constructed wetlands to improve wastewater treatment efficiency.  相似文献   

14.
Three emergent macrophytes (Zizania latifolia (Turcz) Hand.-Mazz., Phragmites australis (Cav.) Trin. ex Steud. and Typha angustifolia Linn.) and three different sediments from Lake Dianchi of Yunnan province, China, were studied through orthogonal pot-planting experiment in order to compare the ability of the three emergent macrophytes in dealing with the contaminated sludge and to evaluate the possibility of purifying the sediment through aquatic plant rehabilitation. The results show that the number of sprouts and biomass of all the species growing in the sediment of site 3 were higher than those growing in the sediment of sites 1 and 2; the plants growing in the sediment of site 3 also exhibited the highest root activities; in each sediment, the sequence of root activity of the species was: Z. latifolia > P. australi > T. angustifolia; TP content in the sediments grown with different plants reduced significantly than those of control. These results indicated that these emergent plants were able to grow well in the contaminated sediment though it is black with a strong odor. Z. latifolia shows the highest root activity in the sediment of site 3, from which we can deduce that this plant should be the preferred pioneer species for purifying the sediment. According to their biomass and TN content and TP content, Z. latifolia, P. australi and T. angustifolia retained TN 16.6, 29.8, 12.8, and TP 2.2, 3.6, 3.9 g m?2, respectively. Based on the climate of Dianchi valley, these plants can be harvested twice in a year. Thus, the amount of nutrient can be removed almost doubly. Therefore, the sludge can be purified through macrophytes restoration and not through sediment dredging, which was proved to be expensive and invalid in the large shallow lakes.  相似文献   

15.
《Aquatic Botany》2004,80(3):177-191
Lack of submerged vegetation was studied in a small, shallow, alkaline, clear-water lake with high nitrate concentration (mean 9 mg NO3–N L−1) and profuse filamentous green algae (FGA) (mainly Spirogyra sp.). A laboratory microcosm and two lake enclosure experiments were carried out using Elodea nuttallii (Planchon) St John. E. nuttallii grew about 1.7 times as well in sediment from its place of origin compared with sediment from the lake. Differential water quality had no effect, and neither sediment nor water prevented growth in the lake. Nutrient addition reduced plant growth by more than 55% because of shading from epiphytic filamentous green algae (shoot dry weight versus epiphytic algal dry weight, r = −0.491, P < 0.05). Transplanted Elodea plants grew better in enclosures in the lake than in laboratory conditions with lake water and sediment (P < 0.001, t-test). Rare Elodea individuals in the lake indicate the presence of plant propagules in the lake sediment, but excessive growth of filamentous green algae (summer mean 3.2 g dry weight m−2) significantly hamperd plant growth (shoot length reduced from 29 ± S.E.M. 1 to 25 ± 1 cm) and bird herbivory significantly reduced survival (from 82 ± 7 to 40 ± 6%) and shoot growth (from 78 ± 6 to 18 ± 5 cm) and thus eliminates establishment of even modest plant beds. Fish disturbance and sediment stability were not important. Restoration of submerged plants may require reduction of nitrate input, control of filamentous green algae and protection from birds.  相似文献   

16.
Previous investigations have been demonstrated that night-time water flux may increase or remain unchanged at low mineral nutrient availability. At the same time, it is a well-known fact that night-time water flux is relatively high in fast-growing species, which typically grow in fertile soil. To test the impact of soil nutrient deficiency on night-time water flux and fine-root acclimation in saplings of hybrid aspen (Populus tremula L. × Populus tremuloides Michx.), a growth chamber experiment was carried out. We set up a hypothesis that night-time sap flux density (F) and night-time water use percentage from daytime water use (NWU) are more intense in fertile conditions, in order to enhance or sustain the high intrinsic growth potential of hybrid aspen. The main limiting element in the low nutrient availability treatment (low-n) was nitrogen. The nitrogen concentrations of leaves and fine-roots exhibited the strongest (R2 = 0.95; P < 0.001) positive relationship with NWU and foliar biomass. Both the night-time F and NWU were several times higher in the case of fertilized soil (high-n treatment) compared to low-n treatment (P < 0.01). The differences in nocturnal (and in diurnal) F disappeared at the end of the period of sap flow measurements, when the foliage area of trees was almost full-grown. Endogenous increase in water flux during predawn hours was observable only in the high-n treatment. Significantly greater NWU (P < 0.01) and specific fine-root length (P < 0.05), but smaller fine-root biomass (P < 0.05) in saplings of the high-n treatment potentially allow plants to use mass flow in soil more efficiently for transportation nutrients towards roots and to decrease construction costs for fine-root biomass production. Our results suggest that decreased night-time water flux as a result of strong nutrient (especially nitrogen) deficit could be characteristic to fast-growing tree species, which are adapted to grow in fertile soil.  相似文献   

17.
BackgroundGastric cancer is the fourth most common cancer in the world. Environmental and genetic factors both play critical roles in the etiology of gastric cancer. Hundreds of SNPs have been identified to have association with the risk of gastric cancer in many races. In this study, 25 SNPs in genes for IL-10, IL-1B, MTRR, TNF-а, PSCA, PLCE1 and NOC3L were analyzed to further evaluate their associations with gastric cancer susceptibility in the Chinese Han population.MethodsTwo hundred and seventy nine gastric cancer patients and 296 healthy controls were recruited in this study. SNP genotyping was conducted using Sequenom MassARRAY RS1000. Data management and statistical analyses were conducted by Sequenom Typer 4.0 Software and Pearson's χ2 test.ResultsOne protective allele and three risk alleles for gastric cancer patients were found in this study. The allele “G” of rs1801394 in MTRR showed an association with a decreased risk of gastric cancer: odds ratio (OR) = 0.74, 95% confidence interval (95% CI) = 0.57–0.97, P = 0.030 in the additive model; OR = 0.495, 95% CI = 0.26–0.95, P = 0.034 in the recessive model. The other three SNPs, the allele “C” of rs1800871 in IL10 (OR = 1.33, 95% CI = 1.04–1.90; P = 0.026 in the additive model; OR = 1.46, 95% CI = 1.04–2.06; P = 0.030 in the recessive model), the allele “A” of rs2976391 in PSCA (OR = 1.30, 95% CI = 1.01–1.66; P = 0.041 in the additive model and OR = 1.48, 95% CI = 1.04–2.11, P = 0.028 in the recessive model), and the allele “G” of rs17109928 in NOC3L gene (OR = 1.34, 95% CI = 1.01–1.78; P = 0.042 by additive model analysis; OR = 1.47, 95% CI = 1.04–2.07, P = 0.028 by dominant model analysis), showed an association with an increased risk of gastric cancer.ConclusionsThese results indicate the importance of four gastric cancer susceptibility polymorphisms of IL-10, NOC3L, PSCA and MTRR in the Chinese Han population, which could be used in the determination of gastric cancer risk in clinical practice.  相似文献   

18.
There has been less understanding of relations of microbial community patterns with plant diversity in constructed wetlands. We conducted a single full-scale subsurface vertical flow constructed wetland (SVFCW, 1000 m2) study focusing on domestic wastewater processing. This study measured the size and structure of microbial community using fumigation extraction and BIOLOG Ecoplate? techniques, to examine the effects of macrophyte diversity on microbial communities that are critical in treatment efficiency of constructed wetlands. We also determined the relationship of plant diversity (species richness) with its biomass production under disturbance of the same wastewater supply. Linear regression analysis showed that plant biomass production strongly correlated with plant species richness (R = 0.407, P < 0.001). Increase in plant species richness increased microbial biomass carbon and nitrogen (R = 0.494, P < 0.001; R = 0.465, P < 0.001) and utilization of amino acids on Ecoplates (R = 0.235, P = 0.03), but limited the utilization of amine/amides (R = ?0.338, P = 0.013). Principal components analysis (PCA) showed that the diversity and community-level physiological profiles (CLPP) of microbial community at 168 h of incubation strongly depended on the presence or absence of plant species in the SVFCW system, but not on the species richness. This is the first step toward understanding relations of plant diversity with soil microbial community patterns in constructed wetlands, but the effect of species diversity on microbial community should be further studied.  相似文献   

19.
Anthropogenic modifications of sediment load can cause ecological degradation in stream and river ecosystems. However, in practice, identifying when and where sediment is the primary cause of ecological degradation is a challenging task. Biological communities undergo natural cycles and variation over time, and respond to a range of physical, chemical and biological pressures. Furthermore, fine sediments are commonly associated with numerous other pressures that are likely to influence aquatic biota. The use of conventional, non-biological monitoring to attribute cause and effect would necessitate measurement of multiple parameters, at sufficient temporal resolution, and for a significant period of time. Biomonitoring tools, which use low-frequency measurements of biota to gauge and track changes in the environment, can provide a valuable alternative means to detecting the effects of a given pressure. In this study, we develop and test an improved macroinvertebrate, family-level and mixed-level biomonitoring tool for fine sediment. Biologically-based classifications of sediment sensitivity were supplemented by using empirical data of macroinvertebrate abundance and percentage fine sediment, collected across a wide range of temperate river and stream ecosystems (model training dataset n = 2252) to assign detailed individual sensitivity weights to taxa. An optimum set of weights were identified by non-linear optimisation, as those that resulted in the highest Spearman’s rank correlation coefficient between the index (called the Empirically-weighted Proportion of Sediment-sensitive Invertebrates index; E-PSI) scores and deposited fine sediment in the model training dataset. The family and mixed-level tools performed similarly, with correlations with percentage fine sediment in the test dataset (n = 84) of rs = −0.72 and rs = −0.70 p < 0.01. Testing of the best performing family level version, over agriculturally impacted sites (n = 754) showed similar correlations to fine sediment (rs = −0.68 p < 0.01). The tools developed in this study have retained their biological basis, are easily integrated into contemporary monitoring agency protocols and can be applied retrospectively to historic datasets. Given the challenges of non-biological conventional monitoring of fine sediments and determining the biological relevance of the resulting data, a sediment-specific biomonitoring approach is highly desirable and will be a useful addition to the suite of pressure-specific biomonitoring tools currently used to infer the causes of ecological degradation.  相似文献   

20.
《Small Ruminant Research》2010,94(2-3):149-156
Twenty-four high percentage Kiko crossbred male kids (body weight (BW), 27.8 ± 2.2 kg) were stratified by BW and randomly allocated to one of four experimental treatment groups (n = 6). Diets contained different levels of the condensed tannin (CT) containing forage sericea lespedeza (SL, Lespedeza cuneata) dried meal replacing alfalfa (Medicago sativa) pellets (ALF). Experimental treatments included: the control diet – 0% SL and 30% ALF; 10% SL and 20% ALF; 20% SL and 10% ALF; or 30% SL and 0% ALF as fed. Sericea lespedeza whole plant dried meal, incorporated in the grain mix portion of the diet and the mix was fed daily at 70% of total feed offered, with the remaining 30% consisting of bermudagrass (Cynodon doctylon) hay (BGH). Animals were fed once a day and the intake was adjusted every 3–4 days so that a 4–6% was refused (grain mix/SL and hay). Body weights were taken at the beginning, mid, and end of the study and blood was collected twice, at the beginning and at the end of the study, for complete analysis. The performance period lasted 63 days and at the completion of the study, goats were harvested and carcass characteristics measured. There was no difference in initial or final BW of goats; however, average daily gain (ADG) was higher (quadratic, P = 0.01) in goats consuming either all ALF or SL diets. Average daily dry matter (DM) and CT intake increased (linear, P = 0.04 and P < 0.0001, respectively) as the level of SL increased in the diet; however, body weight gain:feed (G:F, kg/kg dry matter) was lower for 10 or 20% SL diets (quadratic, P = 0.002). Scrotal circumference tended to decrease (quadratic, P = 0.07) in goats fed 10 or 20% SL and height at withers decreased (linear, P = 0.05) with addition of SL. Adjusted body fat thickness decreased (linear, P = 0.02) with added SL. Dressing percentages were low and ranged from 37.6 to 39.1 ± 1.5 for all diets. White blood cells decreased (linear, P = 0.05) and lymphocytes % increased (linear, P = 0.05) with added SL. Serum creatinine kinase and alanine aminotransferase increased (linear, P = 0.01 and P = 0.001, respectively) and serum amylase decreased (linear, P = 0.01) as the level of SL increased. In conclusion, addition of SL up to 30% or CT up to 22.2 mg/kg DM in the diet did not adversely affect growth performance of goats, and it produced lower fat in the carcass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号