首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied the interactions of Na+, Li+, and amiloride on the Na+/H+ antiporter in brush-border membrane vesicles from rabbit renal cortex. Cation-mediated collapse of an outwardly directed proton gradient (pHin = 6.0; pHout = 7.5) was monitored with the fluorescent amine, acridine orange. Proton efflux resulting from external addition of Na+ or Li+ exhibited simple saturation kinetics with Hill coefficients of 1.0. However, kinetic parameters for Na+ and Li+ differed (Km for Li+ = 1.2 +/- 0.1 mM; Km for Na+ = 14.3 +/- 0.8 mM; Vmax for Li+ = 2.40 +/- 0.07 fluorescence units/s/mg of protein; Vmax for Na+ = 7.10 +/- 0.24 fluorescence units/s/mg of protein). Inhibition of Na+/H+ exchange by Li+ and amiloride was also studied. Li+ inhibited the Na+/H+ antiporter by two mechanisms. Na+ and Li+ competed with each other at the cation transport site. However, when [Na+] was markedly higher than [Li+], [( Na+] = 90 mM; [Li+] less than 1 mM), we observed noncompetitive inhibition (Vmax for Na+/H+ exchange reduced by 25%). The apparent Ki for this noncompetitive inhibition was congruent to 50 microM. In addition, 2-30 mM intravesicular Li+, but not Na+, resulted in trans inhibition of Na+/H+ exchange. Amiloride was a mixed inhibitor of Na+/H+ exchange (Ki = 30 microM, Ki' = 90 microM) but was only a simple competitive inhibitor of Li+/H+ exchange (Ki = 10 microM). At [Li] = 1 mM and [amiloride] less than 100 microM, inhibition of Na+/H+ exchange by a combination of the two inhibitors was always less than additive. These results suggest the presence of a cation-binding site (separate from the cation-transport site) which could be a modifier site of the Na+/H+ antiporter.  相似文献   

2.
In our routine screening of chemicals that would inhibit cardiac sarcolemmal Na+/H+ antiporter, we discovered that some of the opioids produced inhibition of cardiac sarcolemmal Na+/H+ antiporter in micromolar concentrations. Using U-50,488H, a selective kappa-opioid agonist, we characterized the nature of interaction between opioids and the Na+/H+ antiporter. The inhibitory effect of U-50,488H on Na+/H+ antiporter was immediate and reversible, and was not mediated through the interaction with the opioid receptors but due to the direct interaction of U-50,488H with the Na+/H+ antiporter. The kinetic data show that in the presence of U-50,488H the Km for Na+ was increased from 2.5 +/- 0.2 to 5.0 +/- 0.3 mM, while the Vmax (52.0 +/- 5.0 nmol.mg-1.min-1) remained the same. These results suggest that U-50,488H and Na+ compete for the same site on the antiporter. When testing the effect of U-50,488H on other transport systems of cardiac sarcolemma, we found that U-50,488H also inhibited Na+/Ca2+ antiporter and Na+/K+ pump but at much higher concentrations suggesting that U-50,488H shows some degree of selectivity for cardiac sarcolemmal Na+/H+ antiporter. When we compared the inhibitory potency of U-50,488H with amiloride and its analog, namely 5-(N,N-hexamethylene)amiloride, we found that U-50,488H (IC50 = 100 +/- 15 microM) was threefold more potent than amiloride (IC50 = 300 +/- 20 microM) but it was three-fold less potent than the amiloride analog (IC50 = 30 +/- 10 microM) in inhibiting cardiac sarcolemmal Na+/H+ antiporter. These results show that although U-50,488H is more potent than amiloride, the inhibitory characteristics of U-50,488H on cardiac sarcolemmal Na+/H+ antiporter are similar to amiloride.  相似文献   

3.
Inhibitors of Na+/H+ exchange from the amiloride series are known to accumulate within the cell and cause an inhibition of a variety of cellular functions. In order to render the amiloride molecule impermeable to cells, we have synthesized a potent amiloride analog, 5-N-(3-aminophenyl)amiloride (compound A35, Ki = 60 nM). The isothiocyanate derivative of A35 (A35-NCS) was coupled to soluble dextrans of 15-20 kDa that have been derivatized with diaminoalkane spacer groups. Dextran-bound amiloride derivatives showed good inhibition of Na+/H+ exchange in human foreskin fibroblasts and A431 cells. Among several spacer groups tested, dextran derivatized with ethylenediamine showed the highest inhibitory activity. The intrinsic inhibitory potency of this polymer increased with increasing degree of substitution with A35, approaching that of free A35 with substitution of approximately 3 mol of A35 per mole of dextran. Coupling to dextran largely diminished side effects of the amiloride derivative on cells such as the inhibition of protein synthesis. A35-dextran was an effective inhibitor of serum-induced reinitiation of DNA synthesis in human foreskin fibroblasts in a bicarbonate-free medium, pH 7.1, but had little effect when either the pH of the medium was more alkaline or when the medium contained a bicarbonate buffer. These findings suggest that the selective inhibition of Na+/H+ antiport by A35-dextran prevents the reinitiation of DNA synthesis when the external conditions are such that the antiporter activity is required for the establishment of a permissive intracellular pH. Polymer-bound amiloride analogs should be useful as selective inhibitors in studies of the physiological role of the Na+/H+ antiporter, as well as for affinity purification of the antiporter.  相似文献   

4.
Rapidly growing pig-kidney-derived epithelial cells, LLC-PK1, lack detectable amiloride-sensitive Na+/H+ exchange activity when assayed directly. A large 22Na uptake is induced when the cells are acid-loaded prior to assay by incubation with buffer containing ammonium chloride or nigericin. The acid-stimulated sodium uptake is sensitive to amiloride, with half-maximal inhibition at 3.5-4.5 microM in buffer containing 15 mM sodium ion. There is simple competitive interaction between amiloride and sodium ion when the amiloride concentration is below 25 microM and the sodium ion concentration is above 20 mM. Derivatives of amiloride which carry substituents on the 5-amino group are 35- to 175-fold more inhibitory than amiloride itself.  相似文献   

5.
The microvillous membrane of the human placental syncytiotrophoblast contains an amiloride-inhibitable, electroneutral, Na+/H+ antiporter. The kinetic characteristics of this antiporter have been investigated to determine its response to alterations in intracellular and extracellular H+ and Na+ concentrations. Antiporter activity was measured using a pH-sensitive fluorescent probe entrapped in placental microvillous vesicles. We report here on the kinetic characterization of the antiporter, a transporter which displays simple, saturable kinetics for the external site but complex kinetics at the internal site. Measurement of the external Na+ and H+ dependences demonstrated that Na+ and H+ compete for binding to a single external binding site which displays saturation kinetics. The external Km determined for Na+ was 8.2 +/- 4.0 mM, while the external pK was 7.29 +/- 0.02. The Vmax calculated from these experiments was 0.57 +/- 0.10 nequiv./s per mg membrane protein. By contrast, the internal dependences for both Na+ and H+ showed significant deviations from simple linear kinetics. Decreasing internal pH to 6.0 stimulated Na+/H+ exchange to a greater degree than predicted for a single-site saturable binding model, in a manner which suggested allosteric activation. At the other extreme, Na+/H+ exchange ceased above an internal pH of 7.1, despite the existence of an inwardly-directed Na+ gradient. Increasing intracellular Na+ caused inhibition of Na+/H+ exchange but the intracellular Na+ dependence showed that the effect is due to a mechanism more complex than simple, competitive inhibition between Na+ and H+. These results show that the microvillous Na+/H+ antiporter is insensitive to changes in extracellular Na+ and H+ concentrations in the physiological range. Changes in intracellular Na+ and H+ however are likely to cause marked changes in antiporter activity. These characteristics suggest that cellular Na+ and H+ concentrations are tightly controlled in the placental syncytiotrophoblast and that the Na+/H+ antiporter may play a significant role in their regulation.  相似文献   

6.
A sodium ion gradient (inside low) across the cytoplasmic membrane of Methanosarcina barkeri was required for methanogenesis from methanol. This could be concluded from the following results. (a) Inhibition of the Na+/H+ antiporter by K+ or amiloride led to an inhibition of methanogenesis from methanol. (b) Upon addition of the sodium ionophore monensin the Na+ gradient was abolished and at the same time methanogenesis from methanol was inhibited. (c) Methanogenesis was impaired when the Na+ gradient had the opposite orientation (inside high). All these inhibitory effects were not observed when H2 was present in addition to methanol indicating that the oxidation of methanol to CO2 was driven by a sodium-motive force. In accordance with this, a methanol-dependent influx of Na+ and a corresponding decrease of the membrane potential could be observed, when the Na+/H+ antiporter was inhibited by amiloride. This influx was indicative of the presence of a Na+ transport system which was functional when the oxidation of methanol had to be driven, but was not functional when H2 was present for reduction of methanol to methane.  相似文献   

7.
Amiloride and its structural analogs, ethylisopropyl amiloride, benzamil, and dichlorobenzamil, inhibit both the specific [3H]C18-PAF binding to rabbit platelet membranes and PAF-induced aggregation of gel-filtered rabbit platelets. Detailed analysis of binding inhibitions demonstrate that ethylisopropyl amiloride is a competitive inhibitor with an equilibrium dissociation constant (KB) of 23 microM. The concentration of amiloride and its analogs needed to inhibit the PAF-induced aggregation is high and there exists no correlation between their inhibitory activities of platelet aggregation and those of Na+/H+ antiporter. However, the inhibitory effects on the PAF-induced aggregation are parallel to those on the specific [3H]C18-PAF binding. The inhibitory effects of amiloride and its analogs on the activation of platelets are at the PAF-receptor binding step, rather than at the Na+/H+ antiporter.  相似文献   

8.
The purpose of this study is to assess the effect of an apparent alteration in intracellular pH and the effect of amiloride on the activity of the Na+/H+ antiporter in perfused rat kidney. Rat kidney-Na+ retention was determined using tracer 22Na in perfusate composed of HCl-glycine buffer (pH 3.80 to pH 5.92) or NH4OH-glycine buffer (pH 6.22-7.95) containing Na+ to match physiologic concentrations. Plotting renal Na+ retention for 10 min versus pH in absence of amiloride showed two classical uncompetitive activator curves for H+, one curve from pH 4.19 to 5.10 and another from pH 6.22 to 7.95. H+ acts as an uncompetitive reversible binding substrate with the receptor triggering activation of the exchanger already sequestered with Na+, thus yielding two Ka values for the exchanger suggesting non-first order kinetics. Using an equation derived for uncompetitive-activation binding of Nao+ and Hi+, plotting [mM Na+ mg protein-1 10 min-1]-1 versus [H+], two linear plots are observed on Cartesian coordinates with abscissa intersecting at 47 +/- 1 microM, pKa = 4.32 +/- 0.02 (pH 4.19-5.10) and 4.21 +/- 0.02 microM, pKa = 5.38 +/- 0.01 (pH 6.22-7.95), respectively. Perfusing buffer containing 2 mM amiloride, completely inactivated the antiporter showing stronger inhibition between pH 3.80 and 5.92. Results suggest the presence of two uncompetitive binding sites for H+ with the Na+/H+ exchanger. One is a high affinity binding site at physiological intracellular apparent pH, and another is a low affinity binding site at ischaemic apparent pH, implying the existence of two titration sites for intracellular pH regulation.  相似文献   

9.
The fluorescence of 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein (BCECF) has been used to follow the Na+/H+ antiport activity of isolated heart mitochondria as a Na+-dependent extrusion of matrix H+. The antiport activity measured in this way shows a hyperbolic dependence on external Na+ or Li+ concentration when the external pH (pHo) is 7.2 or higher. The apparent Km for Na+ decreases with increasing pHo to a limit of 4.6 mM. The Ki for external H+ as a competitive inhibitor of Na+/H+ antiport averages 3.0 nM (pHo 8.6). The Vmax at 24 degrees C is 160 ng ion of H+ min-1 (mg of protein)-1 and does not vary with pHo. Li+ reacts with the antiporter with higher affinity, but much lower Vmax, and is a competitive inhibitor of Na+/H+ antiport. The rate of Na+/H+ antiport is optimal when the pHi is near 7.2. When pHo is maintained constant, Na+-dependent extrusion of matrix H+ shows a hyperbolic dependence on [H+]i with an apparent Km corresponding to a pHi of 6.8. The Na+/H+ antiport is inhibited by benzamil and by 5-N-substituted amiloride analogues with I50 values in the range from 50 to 100 microM. The pH profile for this inhibition seems consistent with the availability of a matrix binding site for the amiloride analogues. The mitochondrial Na+/H+ antiport resembles the antiport found in the plasma membrane of mammalian cells in that Na+, Li+, and external H+ appear to compete for a common external binding site and both exchanges are inhibited by amiloride analogues.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
A spontaneous mutant of Methanothermobacter thermautotrophicus resistant to the Na+/H+ antiporter inhibitor amiloride was isolated. The Na+/H+ exchanger activity in the mutant cells was remarkably decreased in comparison with wild-type cells. Methanogenesis rates in the mutant strain were higher than wild-type cells and resistant to the inhibitory effect of 2 mM amiloride. In contrast, methanogenesis in wild-type cells was completely inhibited by the same amiloride concentration. ATP synthesis driven by methanogenic electron transport or by an electrogenic potassium efflux in the presence of sodium ions was significantly enhanced in the mutant cells. ATP synthesis driven by potassium diffusion potential was profoundly inhibited in wild-type cells by the presence of uncoupler 3,3',4',5- tetrachlorosalicylanilide and sodium ions, whereas c. 50% inhibition was observed in the mutant cells under the same conditions.  相似文献   

11.
We examined the effects of quinidine, amiloride and Li+ on the kinetics of Na+-H+ exchange in microvillus membrane vesicles isolated from the rabbit renal cortex. Quinidine reversibly inhibited the initial rate of Na+-H+ exchange (I50 200 microM). The plot of 1/V versus [quinidine] was curvilinear, with Hill coefficient greater than 1.0, indicating that the drug interacts at two or more inhibitory sites or at a single site on at least two different conformations of the transporter. Quinidine decreased the Vmax for Na+-H+ exchange and increased the Km for Na+, indicating a mixed-type mechanism of inhibition. In contrast, plots of 1/V versus [amiloride] and 1/V versus [Li+] were linear, indicating single inhibitory sites; amiloride and Li+ each increased the Km for Na+ with no effect on Vmax, indicating a competitive mechanism of inhibition. Addition of Li+ increased the intercept with no change in slope of the 1/V versus [amiloride] plot, indicating that Li+ and amiloride are mutually exclusive inhibitors of Na+-H+ exchange. Addition of quinidine increased the slopes of the plots of 1/V versus [amiloride] and 1/V versus [Li+], indicating that the binding of quinidine is not mutually exclusive with the binding of amiloride and Li+. Results from this and previous studies are consistent with the concept that the inhibitor amiloride and the transportable substrates Na+, H+, Li+, and NH+4 all mutually compete for binding to a single site, the external transport site of the renal Na+-H+ exchanger. However, our findings indicate that quinidine interacts with the Na+-H+ exchanger on at least one additional site that is not shared by Na+, Li+, or amiloride.  相似文献   

12.
Net H+ fluxes across the plasma membrane of Chinese hamster lung fibroblasts (CC139) were monitored by pH-stat titration. Na+-depleted cells release H+ upon addition of Na+. Conversely Na+- or Li+-loaded cells take up H+ from the medium when shifted to a Na+,Li+-free medium. This reversible Na+ (or Li+)-dependent H+ flux is inhibited by amiloride and does not occur in digitonin-permeabilized cells. A similar Na+/H+ exchanger was identified in vascular smooth muscle cells, corneal and aortic endothelial cells, lens epithelial cells of bovine origin, and human platelets. Kinetic studies carried out with CC139 cells indicate the following properties: 1) half-saturation of the system is observed at pH = 7.8, in the absence of Na+; 2) external Na+ stimulates H+ release and inhibits H+ uptake in a competitive manner (Ki = 2-3 mM); 3) amiloride is a competitive inhibitor for Na+ (Ki congruent to 1 microM) and a noncompetitive inhibitor for H+; 4) a coupling ratio of 1.3 +/- 0.3 for the H+/Li+ exchange suggests a stoichiometry of 1:1. We conclude that CC139 cells possess in their plasma membrane a reversible, electroneutral, and amiloride-sensitive Na+/H+ antiporter, with two distinct and mutually exclusive binding sites for Na+ and H+. The rapid stimulation of the Na+/H+ antiporter in G0/G1-arrested CC139 cells upon addition of growth factors, together with the fact that intracellular H+ concentration is, under physiological conditions, around the apparent K0.5 of the system, strongly suggests a key role of this antiport in pHi regulation and mitogen action.  相似文献   

13.
We studied the effect of the carboxyl group-specific reagent N,N'-dicyclohexylcarbodiimide on the Na+/H+ exchanger present in microvillus membrane vesicles isolated from rabbit renal cortices. Pretreatment of membrane vesicles with dicyclohexylcarbodiimide resulted in irreversible inhibition of Na+/H+ exchange which was not due to vesicle disruption or collapse of imposed pH gradients. Inhibition by dicyclohexylcarbodiimide followed pseudo-first-order kinetics, resulted primarily from a decrease in binding affinity for substrate, was pH-dependent in a manner consistent with reaction with carboxyl groups, and was greater than inhibition by hydrophilic carbodiimides. Substrates Na+ and Li+ and the competitive inhibitor amiloride protected against inhibition by dicyclohexylcarbodiimide in a pH-dependent fashion. Finally, we demonstrated amiloride-sensitive covalent binding of radiolabeled dicyclohexylcarbodiimide to a 100-kDa protein. In conclusion, a catalytically important carboxyl group is located in a relatively hydrophobic microenvironment at or near the external transport site of the renal Na+/H+ exchanger; and the transporter itself, or a subunit thereof, may be a 100-kDa protein.  相似文献   

14.
Amiloride-sensitive Na+-H+ antiporter in Escherichia coli.   总被引:1,自引:0,他引:1       下载免费PDF全文
In everted vesicles of Escherichia coli, delta pH caused by H+ efflux through the Na+/H+ antiporter was measured by using a fluorescent dye. Amiloride inhibited the activity of the Na+/H+ antiporter. Kinetic studies showed that amiloride competed with Na+. The inhibition constant of 40 microM was obtained.  相似文献   

15.
A new method based on the toxicity of low intracellular pH (pHi) was developed to isolate fibroblast variants overexpressing Na+/H+ antiport activity. Chinese hamster lung fibroblasts (CCL39) were incubated for 60 min in medium containing 50 mM NH4Cl. Removal of external NH+4 induced a rapid and lethal intracellular acidification when the Na+/H+ antiporter was inhibited during the 60 min of the pHi recovery phase. The inhibition was provoked either by adding 5-(N-methyl,N-propyl)amiloride (MPA, LD50 = 0.3 microM) or by reducing external [Na+] (LD50 = 25 mM). Progressively increasing the MPA concentration during the acid-load selection led to the isolation of two stable variants: AR40 and AR300, resistant, respectively, to 40 and 300 microM MPA. In response to an acid-load, these variants display a much higher rate of pHi recovery due to an overexpression of Na+/H+ antiport activity. In addition, AR40 and AR300 have an altered Na+/H+ antiporter: in AR300 cells K0.5 of MPA for inhibiting Na+/H+ exchange is shifted from 5 X 10(-8) to 1.5 X 10(-6) M, Km (Na+) is decreased 2-fold, and Vmax is increased 4.5-fold. Alternatively reducing Na+ concentration of the pHi recovery saline medium in a stepwise manner led to the selection of another class of variants (DD8 and DD12) also characterized by an altered Na+/H+ antiporter and an increased expression level. The 10-fold increased rate of amiloride-sensitive Na+ influx of DD12 is accounted for by a 4-fold increase in Vmax and a 2.5-fold increase in affinity for Na+ or Li+ at the external site. Interestingly, the affinity for the amiloride analog MPA and for external H+ is unchanged in DD12. In conclusion, the genetic approach presented here: provides a general and specific method for selecting variants of the Na+/H+ antiporter with increased expression levels and/or with structural alterations and demonstrates that the external Na+- and amiloride-binding sites are not identical, since they can be genetically altered independently of each other.  相似文献   

16.
Amiloride is a potent inhibitor of the Na+/H+ antiport. Inhibition is generally competitive with extracellular Na+ and therefore believed to result from binding to the outward-facing transport site. It is not known whether amiloride can interact with the internal aspect of the antiport. This question was addressed by trapping the drug inside resealed dog red cell ghosts. The antiport, which is quiescent in resting ghosts, was activated by acid-loading the cytoplasm. This was accomplished by exchanging extracellular Cl- for internal HCO-3 through capnophorin, the endogenous anion exchanger. The activity of the Na+/H+ antiport was detected as an increase in cell volume, resulting from the net osmotic gain associated with coupled Na+/H+ and Cl-/HCO-3 exchange, or as the uptake of 22Na+. Intracellular amiloride, at concentrations in excess of 100 microM, failed to inhibit Na+/H+ exchange. This is approximately 10 times higher than the concentration required for half-maximal inhibition when amiloride is added externally. Independent experiments demonstrated that failure of internal amiloride to inhibit exchange was not due to leakage of the inhibitor, to differences in pH, or to binding or inactivation of amiloride by the soluble contents. It was concluded that the antiport is functionally asymmetric with respect to amiloride. This implies that the transport site undergoes a conformational change upon translocation across the membrane or, alternatively, that a second site required for amiloride binding is only accessible from the outside.  相似文献   

17.
Phorbol-12,13-dibutyrate, epidermal growth factor, and insulin raised the intracellular pH ([pH]i), presumably through the activation of a Na+/H+ antiporter. Addition of amiloride or replacement of extra-cellular Na+ by choline which abolishes the cytoplasmic alkalinization prevented the stimulation of hexose transport by these agents. Furthermore, monensin, a Na+/H+ ionophore which increases the [pH]i, stimulated hexose transport. This stimulation was also prevented by the replacement of extra-cellular Na+ by choline. These observations suggest that stimulation of the Na+/H+ antiporter may have stimulated the increase in hexose transport.  相似文献   

18.
We examined the effects of external H+ on the kinetics of Na+-H+ exchange in microvillus membrane vesicles isolated from the rabbit renal cortex. The initial rate of Na+ influx into vesicles with internal pH 6.0 was optimal at external pH 8.5 and was progressively inhibited as external pH was reduced to 6.0. A plot of 1/V versus [H+]o was linear and yielded apparent KH = 35 nM (apparent pK 7.5). In vesicles with internal pH 6.0 studied at external pH 7.5 or 6.6, apparent KNa was 13 or 54 mM, Ki for inhibition of Na+ influx by external Li+ was 1.2 or 5.2 mM, Ki for inhibition by external NH4+ was 11 or 50 mM, and Ki for inhibition by external amiloride was 7 or 25 microM, respectively. These findings were consistent with competition between each cation and H+ at a site with apparent pK 7.3-7.5. Lastly, stimulation of 22Na efflux by external Na+ (i.e. Na+-Na+ exchange) was inhibited as external pH was reduced from 7.5 to 6.0, also consistent with competition between external H+ and external Na+. Thus, in contrast with internal H+, which interacts at both transport and activator sites, external H+ interacts with the renal microvillus membrane Na+-H+ exchanger at a single site, namely the external transport site, where H+, Na+, Li+, NH4+, and amiloride all compete for binding.  相似文献   

19.
Amiloride and its analogs as tools in the study of ion transport   总被引:23,自引:0,他引:23  
Amiloride inhibits most plasma membrane Na+ transport systems. We have reviewed the pharmacology of inhibition of these transporters by amiloride and its analogs. Thorough studies of the Na+ channel, the Na+/H+ exchanger, and the Na+/Ca2+ exchanger, clearly show that appropriate modification of the structure of amiloride will generate analogs with increased affinity and specificity for a particular transport system. Introduction of hydrophobic substituents on the terminal nitrogen of the guanidino moiety enhances activity against the Na+ channel; whereas addition of hydrophobic (or hydrophilic) groups on the 5-amino moiety enhances activity against the Na+/H+ exchanger. Activity against the Na+/Ca2+ exchanger and Ca2+ channel is increased with hydrophobic substituents at either of these sites. Appropriate modification of amiloride has produced analogs that are several hundred-fold more active than amiloride against specific transporters. The availability of radioactive and photoactive amiloride analogs, anti-amiloride antibodies, and analogs coupled to support matrices should prove useful in future studies of amiloride-sensitive transport systems. The use of amiloride and its analogs in the study of ion transport requires a knowledge of the pharmacology of inhibition of transport proteins, as well as effects on enzymes, receptors, and other cellular processes, such as DNA, RNA, and protein synthesis, and cellular metabolism. One must consider whether the effects seen on various cellular processes are direct or due to a cascade of events triggered by an effect on an ion transport system.  相似文献   

20.
Voltage-activated H(+)-selective currents were studied in cultured adult rat alveolar epithelial cells and in human neutrophils using the whole-cell configuration of the patch-clamp technique. The H+ conductance, gH, although highly selective for protons, was modulated by monovalent cations. In Na+ and to a smaller extent in Li+ solutions, H+ currents were depressed substantially and the voltage dependence of activation of the gH shifted to more positive potentials, when compared with the "inert" cation tetramethylammonium (TMA+). The reversal potential of the gH, Vrev, was more positive in Na+ solutions than in inert ion solutions. Amiloride at 100 microM inhibited H+ currents in the presence of all cations studied except Li+ and Na+, in which it increased H+ currents and shifted their voltage-dependence and Vrev to more negative potentials. The more specific Na(+)-H+ exchange inhibitor dimethylamiloride (DMA) at 10 microM similarly reversed most of the suppression of the gH by Na+ and Li+. Neither 500 microM amiloride nor 200 microM DMA added internally via the pipette solution were effective. Distinct inhibition of the gH was observed with 1% [Na+]o, indicating a mechanism with high sensitivity. Finally, the effects of Na+ and their reversal by amiloride were large when the proton gradient was outward (pHo parallel pHi 7 parallel 5.5), smaller when the proton gradient was abolished (pH 7 parallel 7), and absent when the proton gradient was inward (pH 6 parallel 7). We propose that the effects of Na+ and Li+ are due to their transport by the Na(+)-H+ antiporter, which is present in both cell types studied. Electrically silent H+ efflux through the antiporter would increase pHi and possibly decrease local pHo, both of which modulate the gH in a similar manner: reducing the H+ currents at a given potential and shifting their voltage- dependence to more positive potentials. A simple diffusion model suggests that Na(+)-H+ antiport could deplete intracellular protonated buffer to the extent observed. Evidently the Na(+)-H+ antiporter functions in perfused cells, and its operation results in pH changes which can be detected using the gH as a physiological sensor. Thus, the properties of the gH can be exploited to study Na(+)-H+ antiport in single cells under controlled conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号