首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Glucose-6-phosphatase catalytic subunit 1 (G6PC1) plays a critical role in hepatic glucose production during fasting by mediating the terminal step of the gluconeogenesis and glycogenolysis pathways. In concert with accessory transport proteins, this membrane-integrated enzyme catalyzes glucose production from glucose-6-phosphate (G6P) to support blood glucose homeostasis. Consistent with its metabolic function, dysregulation of G6PC1 gene expression contributes to diabetes, and mutations that impair phosphohydrolase activity form the clinical basis of glycogen storage disease type 1a. Despite its relevance to health and disease, a comprehensive view of G6PC1 structure and mechanism has been limited by the absence of expression and purification strategies that isolate the enzyme in a functional form. In this report, we apply a suite of biophysical and biochemical tools to fingerprint the in vitro attributes of catalytically active G6PC1 solubilized in lauryl maltose neopentyl glycol (LMNG) detergent micelles. When purified from Sf9 insect cell membranes, the glycosylated mouse ortholog (mG6PC1) recapitulated functional properties observed previously in intact hepatic microsomes and displayed the highest specific activity reported to date. Additionally, our results establish a direct correlation between the catalytic and structural stability of mG6PC1, which is underscored by the enhanced thermostability conferred by phosphatidylcholine and the cholesterol analog cholesteryl hemisuccinate. In contrast, the N96A variant, which blocks N-linked glycosylation, reduced thermostability. The methodologies described here overcome long-standing obstacles in the field and lay the necessary groundwork for a detailed analysis of the mechanistic structural biology of G6PC1 and its role in complex metabolic disorders.  相似文献   

4.
5.
The effect of streptozocin diabetes on the expression of the catalytic subunit (p36) and the putative glucose-6-phosphate translocase (p46) of the glucose-6-phosphatase system (G6Pase) was investigated in rats. In addition to the documented effect of diabetes to increase p36 mRNA and protein in the liver and kidney, a approximately 2-fold increase in the mRNA abundance of p46 was found in liver, kidney, and intestine, and a similar increase was found in the p46 protein level in liver. In HepG2 cells, glucose caused a dose-dependent (1-25 mM) increase (up to 5-fold) in p36 and p46 mRNA and a lesser increase in p46 protein, whereas insulin (1 microM) suppressed p36 mRNA, reduced p46 mRNA level by half, and decreased p46 protein by about 33%. Cyclic AMP (100 microM) increased p36 and p46 mRNA by >2- and 1.5-fold, respectively, but not p46 protein. These data suggest that insulin deficiency and hyperglycemia might each be responsible for up-regulation of G6Pase in diabetes. It is concluded that enhanced hepatic glucose output in insulin-dependent diabetes probably involves dysregulation of both the catalytic subunit and the putative glucose-6-phosphate translocase of the liver G6Pase system.  相似文献   

6.
7.
8.
9.
10.
11.
12.
Glucose-6-phosphatase is a multicomponent enzyme composed of a transporter subunit and a catalytic subunit that is involved in hepatic glucose production. The objective of the present study was to determine the complete nucleotide sequence of feline hepatic glucose-6-phosphatase catalytic subunit (G6Pc) cDNA and to perform comparative analysis of the molecular features of the feline G6Pc cDNA and protein. Feline G6Pc cDNA contains 2261 bases and encodes a 357 aa protein. The feline cDNA and protein are highly conserved with overall identity ranging from 73-86% to 86-95%, respectively, among mammalian species. Membrane topology, phosphatase consensus sequence, ER retention sequence, N-glycosylation sites and active site residues are conserved in the feline protein. Analysis of the putative feline G6Pc protein did not reveal any species-specific features to explain the unusual in vivo regulation of G6Pase activity reported in feline liver.  相似文献   

13.
14.
In liver, glucose-6-phosphatase catalyzes the hydrolysis of glucose-6-phosphate (G6P) to glucose and inorganic phosphate, the final step in the gluconeogenic and glycogenolytic pathways. Mutations in the glucose-6-phosphatase catalytic subunit (G6Pase) give rise to glycogen storage disease (GSD) type 1a, which is characterized in part by hypoglycemia, growth retardation, hypertriglyceridemia, hypercholesterolemia, and hepatic glycogen accumulation. Recently, a novel G6Pase isoform was identified, designated UGRP/G6Pase-beta. The activity of UGRP relative to G6Pase in vitro is disputed, raising the question as to whether G6P is a physiologically important substrate for this protein. To address this issue we have characterized the phenotype of UGRP knock-out mice. G6P hydrolytic activity was decreased by approximately 50% in homogenates of UGRP(-/-) mouse brain relative to wild type tissue, consistent with the ability of UGRP to hydrolyze G6P. In addition, female, but not male, UGRP(-/-) mice exhibit growth retardation as do G6Pase(-/-) mice and patients with GSD type 1a. However, in contrast to G6Pase(-/-) mice and patients with GSD type 1a, UGRP(-/-) mice exhibit no change in hepatic glycogen content, blood glucose, or triglyceride levels. Although UGRP(-/-) mice are not hypoglycemic, female UGRP(-/-) mice have elevated ( approximately 60%) plasma glucagon and reduced ( approximately 20%) plasma cholesterol. We hypothesize that the hyperglucagonemia prevents hypoglycemia and that the hypocholesterolemia is secondary to the hyperglucagonemia. As such, the phenotype of UGRP(-/-) mice is mild, indicating that G6Pase is the major glucose-6-phosphatase of physiological importance for glucose homeostasis in vivo.  相似文献   

15.
16.
The factors regulating glucose-6-phosphatase (EC 3.1.3.9) activity and substrate specificity in hepatic microsomes were studied by determining the rate-limiting reaction for the hydrolysis of glucose-6-P, and by examining the effect of detergent activation on phosphotransferase activity. Examination of the pre-steady state kinetics of glucose-6-phosphatase revealed that the steady state rate is determined by the rate of hydrolysis of the enzyme-P intermediate. Treatment of the enzyme with detergent does not alter the extent of the rapid release of glucose per mg of protein, but activates the steady state rate of catalytic turnover. Specificity of the enzyme was evaluated by comparing the effects of mannose and glucose as phosphate acceptors in the phosphotransferase reaction catalyzed by glucose-6-phosphatase. Untreated glucose-6-phosphatase discriminates against mannose as compared with glucose in that mannose and glucose bind to the enzyme-P intermediate of untreated enzyme, but mannose is not an acceptor of Pi. Mannose is an acceptor, however, after treatment of microsomes with detergent. These data cannot be explained in terms of the currently accepted "compartmentation" model for the regulation of glucose-6-phosphatase. The detergent-induced changes in kinetic properties appear to reflect alterations in the intrinsic characteristics of glucose-6-phosphatase, which could result from interaction with its membrane environment.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号