首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
The mouse ribosomal protein S3a-encoding gene (mRPS3a) was cloned and sequenced in this study. mRPS3a shares identical exon/intron structure with its human counterpart. Both genes are split to six exons and exhibit remarkable conservation of the promoter region (68.8% identity in the 250 bp upstream of cap site) and coding region (the proteins differ in two amino acids). mRPS3a displays many features common to other r-protein genes, including the CpG-island at 5′-end of the gene, cap site within an oligopyrimidine tract and no consensus TATA or CAAT boxes. However, mRPS3a represents a rare subclass of r-protein genes that possess a long coding sequence in the first exon. Comparison of human and mouse S3a genes revealed sequence fragments with striking similarity within introns 3 and 4. Here we demonstrate that these sequences encode for a novel small nucleolar RNA (snoRNA) designated U73. U73 contains C, D and D′ boxes and a 12-nucleotide antisense complementarity to the 28S ribosomal RNA. These features place U73 into the family of intron-encoded antisense snoRNAs that guide site-specific 2′-O-ribose methylation of pre-rRNA. We propose that U73 is involved in methylation of the G1739 residue of the human 28S rRNA. In addition, we present the mapping of human ribosomal protein S3a gene (hRPS3a) and internally nested U73 gene to the human chromosome 4q31.2–3.  相似文献   

2.
Lim Y  Lee SM  Kim M  Lee JY  Moon EP  Lee BJ  Kim J 《Gene》2002,286(2):291-297
Analysis of the complete genomic structure of the human ribosomal protein S3 (rpS3) gene revealed the presence of a functional U15b snoRNA gene in its intron. Human ribosomal protein S3 (rpS3) gene of 6115 bp long has been identified to contain six introns and seven exons in this study. The first and fifth introns of human S3 gene contain functional U15 snoRNA genes. Although Xenopus and Fugu counterparts also have six introns and seven exons, S3 gene of Fugu contains two functional U15 snoRNAs in the fourth and sixth introns and two pseudo genes for U15 snoRNAs in the first and fifth introns. In Xenopus S1 gene encoding ribosomal protein S3, however, three of its six introns contain U15 snoRNA gene sequence. Sequence comparison of the U15 genes from Xenopus, Fugu and human revealed that the regions involved in binding to 28S rRNA and the consensus sequence (C, D and D' boxes) for snoRNAs are highly conserved among those genes from these three species. Human U15a and U15b RNAs which are derived from the first and the fifth introns, respectively, have been identified to be functional by microinjection of human U15a and U15b snoRNAs into Xenopus oocyte. Northern blot and primer extension analyses confirm that human U15b snoRNA is expressed in vivo.  相似文献   

3.
4.
mRNA and genomic DNA were isolated from adult Cylicocyclus nassatus, and the mRNA was reverse transcribed. The cDNA was PCR amplified using degenerate primers designed according to the alignment of the β-tubulin amino acid sequences of other species. To complete the coding sequence, the 3′ end was amplified with the 3′-RACE, and for amplification of the 5′ end the SL1-primer was used. The cDNA of the β-tubulin gene of C. nassatus spans 1429 bp and encodes a protein of 448 amino acids. Specific primers were developed from the cDNA sequence to amplify the genomic DNA sequence and to analyse the genomic organisation of the β-tubulin gene. The complete sequence of the genomic DNA of the β-tubulin gene of C. nassatus has a size of 2652 bp and is organised into nine exons and eight introns. The identities with the exons of the gru-1 β-tubulin gene of Haemonchus contortus range between 79% and 97%.  相似文献   

5.
The genomic organization of genes encoding β-1,4-endoglucanases (cellulases) from the plant-parasitic cyst nematodes Heterodera glycines and Globodera rostochiensis (HG-eng1, Hg-eng2, GR-eng1, and GR-eng2) was investigated. HG-eng1 and GR-eng1 both contained eight introns and structural domains of 2151 and 2492 bp, respectively. HG-eng2 and GR-eng2 both contained seven introns and structural domains of 2324 and 2388 bp, respectively. No significant similarity in intron sequence or size was observed between HG-eng1 and HG-eng2, whereas the opposite was true between GR-eng1 and GR-eng2. Intron positions among all four cyst nematode cellulase genes were conserved identically in relation to the predicted amino acid sequence. HG-eng1, GR-eng1, and GR-eng2 had several introns demarcated by 5′-GC…AG-3′ in the splice sites, and all four nematode cellulase genes had the polyadenylation and cleavage signal sequence 5′-GAUAAA-3′—both rare occurences in eukaryotic genes. The 5′- flanking regions of each nematode cellulase gene, however, had signature sequences typical of eukaryotic promoter regions, including a TATA box, bHLH-type binding sites, and putative silencer, repressor, and enhancer elements. Database searches and subsequent phylogenetic comparison of the catalytic domain of the nematode cellulases placed the nematode genes in one group, with Family 5, subfamily 2, glycosyl hydrolases from Scotobacteria and Bacilliaceae as the most homologous groups. The overall amino acid sequence identity among the four nematode cellulases was from 71 to 83%, and the amino acid sequence identity to bacterial Family 5 cellulases ranged from 33 to 44%. The eukaryotic organization of the four cyst nematode cellulases suggests that they share a common ancestor, and their strong homology to prokaryotic glycosyl hydrolases may be indicative of an ancient horizontal gene transfer.  相似文献   

6.
7.
8.
Ehrlich KC  Montalbano BG  Cary JW 《Gene》1999,230(2):249-257
AFLR is a Zn2Cys6-type sequence-specific DNA-binding protein that is thought to be necessary for expression of most of the genes in the aflatoxin pathway gene cluster in Aspergillus parasiticus and A. flavus, and the sterigmatocystin gene cluster in A. nidulans. However, it was not known whether AFLR bound to the promoter regions of each of the genes in the cluster. Recently, A. nidulans AFLR was shown to bind to the motif 5′-TCGN5CGA-3′. In the present study, we examined the binding of AFLR to promoter regions of 11 genes in the A. parasiticus cluster. Based on electrophoretic mobility shift assays, the genes nor1, pksA, adhA, norA, ver1, omtA, ordA, and, vbs, had at least one 5′-TCGN5CGA-3′ binding site within 200 bp of the translation start site, and pksA and ver1 had an additional binding site further upstream. Although the promoter region of avnA lacked this motif, AFLR bound weakly to the sequence 5′-TCGCAGCCCGG-3′ at −110 bp. One region in the promoter of the divergently transcribed genes aflR/aflJ bound weakly to AFLR even though it contained a site with at most only 7 bp of the 5′-TCGN5CGA-3′ motif. This partial site may be recognized by a monomeric form of AFLR. Based on a comparison of 16 possible sites, the preferred binding sequence was 5′-TCGSWNNSCGR-3′.  相似文献   

9.
10.
11.
A cDNA clone encoding the soluble guanylyl cyclase alpha2 subunit was isolated from medaka fish (Oryzias latipes) and designated as OlGCS-alpha2. The OlGCS-alpha2 cDNA was 3,192 bp in length and the open reading frame (ORF) encodes a protein of 805 amino acids. The deduced amino acid sequence has high similarity to that of the mammalian alpha2 subunit gene except for the N-terminal regulatory domain. The C-terminal 5 amino acids, "RETSL", which have been reported to interact with the post synaptic density protein (PSD)-95 were conserved. An RNase protection assay with adult fish organs showed that OlGCS-alpha2 was expressed mainly in the brain and testis. The complete nucleotide sequence (about 41 kbp) of the OlGCS-alpha2 genomic DNA clone isolated from a medaka fish BAC library indicated that the OlGCS-alpha2 gene consisted of 9 exons and 8 introns. The 5'-flanking region and larger introns, such as introns 1, 4, and 7, contained the several fragments conserved in the nucleotide sequences of Rex6 (non-long terminal repeat retrotransposon), MHC class I genomic region, and OlGC1, the medaka fish homolog of the mammalian guanylyl cyclase B gene. Linkage analysis on the medaka fish chromosome demonstrated that the OlGCS-alpha2 gene was mapped to LG13; this mapping position was different from those for the OlGCS-alpha1 and OlGCS-beta1 genes (LG1).  相似文献   

12.
We describe the structure (3840 bp) of a novel Euglena gracilis chloroplast ribosomal protein operon that encodes the five genes rpl16-rpl14-rpl5-rps8-rpl36. The gene organization resembles the spc and the 3'-end of the S10 ribosomal protein operons of E. coli. The rpl5 is a new chloroplast gene not previously reported for any chloroplast genome to date and also not described as a nuclear-encoded, chloroplast protein gene. The operon contains at least 7 introns. We present evidence from primer extension analysis of chloroplast RNA for the correct in vivo splicing of five of the introns. Two of the introns within the rps8 gene flank an 8 bp exon, the smallest exon yet characterized in a chloroplast gene. Three introns resemble the classical group II introns of organelle genomes. The remaining 4 introns appear to be unique to the Euglena chloroplast DNA. They are uniform in size (95-109 nt), share common features with each other and are distinct from both group I and group II introns. We designate this new intron category as 'group III'.  相似文献   

13.
14.
15.
The thymidylate synthase (TS)-encoding gene from Cryptococcus neoformans (Cn) has been isolated from cDNA and genomic libraries. The 1127-bp gene contains three introns and a 951-bp open reading frame encoding a 35844-Da protein. The cDNA clones lack 324 bp of the 5' coding region of the gene. The complete coding sequence was assembled as an expression cassette in pUC19 using parts of the coding sequence from the cDNA and genomic DNA and completing the sequence using synthetic DNA. Production of active TS from Cn (CnTS) was first demonstrated by complementation of a thymine(Thy)-requiring Escherichia coli strain. The expression cassette was subsequently subcloned into the T7 polymerase vector pET15-b. In this construct, CnTS is produced as approximately 10% of the total soluble protein in E. coli. Homogeneous enzyme was obtained at a 36% yield after consecutive chromatography on DEAE-cellulose, Q-Sepharose, phenyl-Sepharose and Affi-Gel Blue. Steady-state kinetic analysis showed that the Km values for dUMP and CH2H4-folate were 2.7 ± 0.5 μM and 38.2 ± 2.5 μM, respectively, and the Kcat was 5.1 s−1. The enzyme was stable upon storage at −80°C in Tris-HCl pH 7.4 and thiol.  相似文献   

16.
17.
We have cloned and sequenced the ribosomal protein S13 gene from the Chinese hamster fibroblast HA-1 cells. The predicted protein encoded by this gene is identical to the human ribosomal protein S13, except for one amino acid substitution at residue 29, which is an alanine in the hamster protein and a threonine in that of humans. The physical organization of the six exons and five introns in the hamster S13 gene is also identical to that found in the human and Xenopus genes with respect to the amino acid codes, even though there are small differences in the lengths of the introns. The striking feature is that unlike its human and Xenopus counterparts, which encode two U14 snoRNAs in two separate introns, the hamster S13 gene encodes no U14 snoRNA. Instead, the hamster gene has a pseudo-U14 coding sequence in its third intron. Our data support the idea that the single copy of the hsc70/U14 gene, which we had previously characterized, is the only source for the production of both U14 snoRNA and hsc70 mRNA species in hamster HA-1 cells.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号