首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Durum wheat often faces water scarcity and high temperatures, two events that usually occur simultaneously in the fields. Here we report on the stress responsive strategy of two durum wheat cultivars, characterized by different water use efficiency, subjected to drought, heat and a combination of both stresses.

Results

The cv Ofanto (lower water use efficiency) activated a large set of well-known drought-related genes after drought treatment, while Cappelli (higher water use efficiency) showed the constitutive expression of several genes induced by drought in Ofanto and a modulation of a limited number of genes in response to stress. At molecular level the two cvs differed for the activation of molecular messengers, genes involved in the regulation of chromatin condensation, nuclear speckles and stomatal closure. Noteworthy, the heat response in Cappelli involved also the up-regulation of genes belonging to fatty acid β-oxidation pathway, glyoxylate cycle and senescence, suggesting an early activation of senescence in this cv. A gene of unknown function having the greatest expression difference between the two cultivars was selected and used for expression QTL analysis, the corresponding QTL was mapped on chromosome 6B.

Conclusion

Ofanto and Cappelli are characterized by two opposite stress-responsive strategies. In Ofanto the combination of drought and heat stress led to an increased number of modulated genes, exceeding the simple cumulative effects of the two single stresses, whereas in Cappelli the same treatment triggered a number of differentially expressed genes lower than those altered in response to heat stress alone. This work provides clear evidences that the genetic system based on Cappelli and Ofanto represents an ideal tool for the genetic dissection of the molecular response to drought and other abiotic stresses.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-14-821) contains supplementary material, which is available to authorized users.  相似文献   

2.
3.
4.
5.
6.
  • Cardamom has long been used as a food flavouring agent and in ayurvedic medicines for mouth ulcers, digestive problems and even depression. Extensive occurrence of pests and diseases adversely affect its cultivation and result in substantial reductions in total production and productivity. Numerous studies revealed the significant role of miRNAs in plant biotic stress responses.
  • In the current study, miRNA profiling of cultivar and wild cardamom genotypes was performed using an Ion Proton sequencer.
  • We identified 161 potential miRNAs representing 42 families, including monocot/tissue‐specific and 14 novel miRNAs in both genotypes. Significant differences in miRNA family abundance between the libraries were observed in read frequencies. A total of 19 miRNAs (from known miRNAs) displayed a twofold difference in expression between wild and cultivar genotypes. We found 1168 unique potential targets for 40 known miRNA families in wild and 1025 potential targets for 42 known miRNA families in cultivar genotypes. The differential expression analysis revealed that most miRNAs identified were highly expressed in cultivars and, furthermore, lower expression of miR169 and higher expression of miR529 in wild cardamom proved evidence that wild genotypes have stronger drought stress tolerance and floral development than cultivars.
  • Potential targets predicted for the newly identified miRNAs from the miRNA libraries of wild and cultivar cardamom genotypes involved in metabolic and developmental processes and in response to various stimuli. qRT‐PCR confirmed miRNAs were differentially expressed between wild and cultivar genotypes. Furthermore, four target genes were validated experimentally to confirm miRNA–mRNA target pairing using RNA ligase‐mediated 5′ Rapid Amplification of cDNA Ends (5′RLM‐RACE) PCR.
  相似文献   

7.
Since potato cultivars are sensitive to low temperature, cold injury severely affects the geographical distribution and yield of potato. Although some miRNAs have been identified in response to cold stress in plants, there is no report about the role of miRNAs in the response to cold stress in potato. Here, via high throughput sequencing, we described the profiling of cold stress response to miRNA and mRNA in potato. Two small RNA and six mRNA libraries were constructed and sequenced. 296 known and 211 novel miRNAs were identified, in which 34 miRNAs in Cold Group (CG) had the higher expression quantity than which in Normal Group (NG) and 32 in CG had lower expression quantity than which in NG. 3068 differentially expressed genes were detected between NG and CG, in which 1400 genes were up-regulated and 1668 genes were down-regulated. The metabolism pathway of starch and sucrose (ko00500) is the common KEGG pathway in differentially expressed miRNA and mRNA. In this pathway, StuPME21575 and StuPME42971 are pectinesterase which mainly catalyzes the pectin-forming pectate, which are controlled by stu-miR6023 and stu-novel-miR42365. As the potato suffering cold stress, these two miRNAs expression levels became higher, but their target genes expression levels were just opposite and this result is the same with qRT-PCR.  相似文献   

8.
9.
10.
11.
12.
Wheat is one of the main food sources worldwide; large amount studies have been conducted to improve wheat production. MicroRNAs (miRNAs) with about 20–30 nucleotide are a class of regulatory small RNAs (sRNAs), which could regulate gene expression through sequence-specific base pairing with target mRNAs, playing important roles in plant growth. An ideal plant architecture (IPA) is crucial to enhance yield in bread wheat. In this study, the high-yield wheat strain Yunong 3114 was EMS-mutagenesis from the wild-type strain Yunong 201, exhibiting a preferable plant structure compared with the wild-type strain. We constructed small RNA and degradome libraries from Yunong 201 and Yunong 3114, and performed small RNA sequencing of these libraries in order identify miRNAs and their targets related to IPA in wheat. Totally, we identified 488 known and 837 novel miRNAs from Yunong 3114 and 391 known and 533 novel miRNAs from Yunong 201. The number of miRNAs in the mutant increased. A total of 37 known and 432 putative novel miRNAs were specifically expressed in the mutant strain; furthermore, 23 known and 159 putative novel miRNAs were specifically expressed in the wild-type strain. A total of 150 known and 100 novel miRNAs were differentially expressed between mutant and wild-type strains. Among these differentially expressed novel miRNAs, 4 and 8 predict novel miRNAs were evidenced by degradome sequencing and showed up-regulated and down-regulated expressions in the mutant strain Yunong 3114, respectively. Targeted gene annotation and previous results indicated that this set of miRNAs is related to plant structure. Our results further suggested that miRNAs may be necessary to obtain an optimal wheat structure.  相似文献   

13.
14.
X Li  X Wang  S Zhang  D Liu  Y Duan  W Dong 《PloS one》2012,7(6):e39650
Soybean cyst nematode (SCN), Heterodera glycines, is the most devastating pathogen of soybean worldwide. MicroRNAs (miRNAs) are a class of small, non-coding RNAs that are known to play important role in plant stress response. However, there are few reports profiling the miRNA expression patterns during pathogen stress. We sequenced four small RNA libraries from two soybean cultivar (Hairbin xiaoheidou, SCN race 3 resistant, Liaodou 10, SCN race 3 susceptible) that grown under un-inoculated and SCN-inoculated soil. Small RNAs were mapped to soybean genome sequence, 364 known soybean miRNA genes were identified in total. In addition, 21 potential miRNA candidates were identified. Comparative analysis of miRNA profiling indicated 101 miRNAs belong to 40 families were SCN-responsive. We also found 20 miRNAs with different express pattern even between two cultivars of the same species. These findings suggest that miRNA paly important role in soybean response to SCN and have important implications for further identification of miRNAs under pathogen stress.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号