首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The endocytic and exocytic/secretory pathways are two major intracellular membrane trafficking routes that regulate numerous cellular functions in a variety of cell types. Osteoblasts and osteoclasts, two major bone cells responsible for bone remodeling and homeostasis, are no exceptions. During the past few years, emerging evidence has pinpointed a critical role for endocytic and secretory pathways in osteoblast and osteoclast differentiation and function. The endosomal membrane provides a platform to integrate bone tropic signals of hormones and growth factors in osteoblasts. In osteoclasts, endocytosis, followed by transcytosis, of degraded bone matrix promotes bone resorption. Secretory pathways, especially lysosome secretion, not only participate in bone matrix deposition by osteoblasts and degradation of mineralized bone matrix by osteoclasts; they may also be involved in the coupling of bone resorption and bone formation during bone remodeling. More importantly, mutations in genes encoding regulatory factors within the endocytic and secretory pathways have been identified as causes for bone diseases. Identification of the molecular mechanisms of these genes in bone cells may provide new therapeutic targets for skeletal disorders.  相似文献   

2.
Membrane-type 1 matrix metalloproteinase (MT1-MMP) localized on the plasma membrane plays a central role in various normal biological responses including tissue remodeling, wound heeling, and angiogenesis and in cancer cell invasion and metastasis, by functioning as a collagenase and activating other matrix metalloproteinases. In order to elucidate the molecular mechanism of the MT1-MMP targeted localization on the plasma membrane, we examined the participation of syntaxin proteins in MT1-MMP intracellular transport to the plasma membrane in human gastric epithelial AGS cells. Western blotting showed that syntaxin 3 and 4 proteins, which are known to function in intracellular transport towards the plasma membrane, were expressed in AGS cells. Immunocytochemistry revealed that transient transfection of AGS cells with dominant-negative mutant syntaxin 4 decreased plasma membrane MT1-MMP expression. In contrast, transient transfection with either dominant-negative mutant syntaxin 3 or 7 did not affect MT1-MMP localization on the plasma membrane. Cell surface biotinylation assay and Matrigel chamber assay demonstrated that stable transfection with dominant-negative mutant syntaxin 4 decreased the amount of MT1-MMP on the plasma membranes and inhibited the cell invasiveness. We suggest that syntaxin 4 is involved in the intracellular transport of MT1-MMP toward the plasma membrane.  相似文献   

3.
Bone is the major store for Ca(2+) in the body and plays an important role in Ca(2+) homeostasis. During bone formation and resorption Ca(2+) must be transported to and from bone by osteoblasts and osteoclasts, respectively. However, little is known about the Ca(2+) transport machinery in these bone cells. In this study, we examined the epithelial Ca(2+) channel TRPV6 in bone. TRPV6 mRNA is expressed in human and mouse osteoblast-like cells as well as in peripheral blood mononuclear cell-derived human osteoclasts and murine tibial bone marrow-derived osteoclasts. Also other transcellular Ca(2+) transport genes, calbindin-D(9k) and/or -D(28K), Na(+)/Ca(2+) exchanger 1, and plasma membrane Ca(2+) ATPase (PMCA1b) were expressed in these bone cell types. Immunofluorescence and confocal microscopy on human osteoblasts and osteoclasts and mouse osteoclasts revealed TRPV6 protein at the apical domain and PMCA1b at the osteoidal domain of osteoblasts, whereas in osteoclasts TRPV6 was predominantly found at the bone-facing site. TRPV6 was dynamically expressed in human osteoblasts, showing maximal expression during mineralization of the extracellular matrix. 1,25-Dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) did not change TRPV6 expression in both mineralizing and non-mineralizing SV-HFO cultures. Lentiviral transduction-mediated overexpression of TRPV6 in these cells did not alter mineralization. Bone microarchitecture and mineralization were unaffected in Trpv6(D541A/D541A) mice in which aspartate 541 in the pore region was replaced with alanine to render TRPV6 channels non-functional. In summary, TRPV6 and other proteins involved in transcellular Ca(2+) transport are dynamically expressed in bone cells, while TRPV6 appears not crucial for bone metabolism and matrix mineralization in mice.  相似文献   

4.
Structure and regulation of the vacuolar ATPases   总被引:2,自引:0,他引:2  
The vacuolar (H(+))-ATPases (V-ATPases) are ATP-dependent proton pumps responsible for both acidification of intracellular compartments and, for certain cell types, proton transport across the plasma membrane. Intracellular V-ATPases function in both endocytic and intracellular membrane traffic, processing and degradation of macromolecules in secretory and digestive compartments, coupled transport of small molecules such as neurotransmitters and ATP and in the entry of pathogenic agents, including envelope viruses and bacterial toxins. V-ATPases are present in the plasma membrane of renal cells, osteoclasts, macrophages, epididymal cells and certain tumor cells where they are important for urinary acidification, bone resorption, pH homeostasis, sperm maturation and tumor cell invasion, respectively. The V-ATPases are composed of a peripheral domain (V(1)) that carries out ATP hydrolysis and an integral domain (V(0)) responsible for proton transport. V(1) contains eight subunits (A-H) while V(0) contains six subunits (a, c, c', c', d and e). V-ATPases operate by a rotary mechanism in which ATP hydrolysis within V(1) drives rotation of a central rotary domain, that includes a ring of proteolipid subunits (c, c' and c'), relative to the remainder of the complex. Rotation of the proteolipid ring relative to subunit a within V(0) drives active transport of protons across the membrane. Two important mechanisms of regulating V-ATPase activity in vivo are reversible dissociation of the V(1) and V(0) domains and changes in coupling efficiency of proton transport and ATP hydrolysis. This review focuses on recent advances in our lab in understanding the structure and regulation of the V-ATPases.  相似文献   

5.
Osteoclasts are members of the monocyte/macrophage lineage and are formed by cellular fusions from their mononuclear precursors. Their differentiation is regulated by a number of other cells and their products, especially by RANKL and M-CSF. The resorbing osteoclasts are polarized and show specific plasma membrane domains. Polarization and bone resorption need a continuous membrane trafficking and modulation of the cytoskeleton. The most characteristic feature of osteoclasts is their unique capacity to dissolve crystalline hydroxyapatite by targeted secretion of HCl into the extracellular resorption lacuna. Organic matrix is degraded by enzymes like cathepsin K and the degradation products are transcytosed through the cell for secretion. Dissolution of hydroxyapatite releases large amounts of soluble calcium, phosphate and bicarbonate. Removal of these ions apparently involves the vesicular pathways and direct ion transport via different ion exchangers, channels and pumps. Detailed molecular knowledge of osteoclast differentiation and function has helped us to identify several target molecules and develop specific treatments to inhibit pathological bone resorption in various skeletal diseases.  相似文献   

6.
On entering a host cell, genomic components of human immunodeficiency virus (HIV) are translocated from plasma membrane to cell nucleus where the key events of the infectious process—virus genome integration into cell chromosomes and provirus formation—take place. After provirus expression, viral components move in the opposite direction, i.e., from nucleus to plasma membrane, for virus assembly. HIV translocation is provided by transport machinery of the host cell, which is strictly controlled by viral and cell proteins. Their functional activities are closely interrelated, while their interactions promote recognition and expression of translocation signals. The aim of this review is to consider functional capabilities of one of the main regulatory matrix proteins, MA. This virus-specific protein exhibits membranotropic and nucleophilic activities and controls intracellular movements of HIV throughout its life cycle. A hypothesis on the existence of two forms of MA and their functional roles is proposed. In-depth studies of intracellular targeting of HIV virions may shed additional light on intracellular transport pathways of HIV and identify new targets for anti-HIV drugs.  相似文献   

7.
Glutamatergic intercellular communication is involved in many aspects of metabolic homeostasis in normal bone. In bone metastasis, the balance between bone formation and degradation is disrupted. Although the responsible mechanisms are not clear, we have previously identified that cancer cell lines used in bone tumour models secrete glutamate, suggesting that tumour-derived glutamate may disrupt sensitive signalling systems in bone. This study examines the role of glutamate in mature osteoclastic bone resorption, osteoblast differentiation, and bone nodule formation. Glutamate was found to have no effect on the survival or activity of mature osteoclasts, although glutamate transporter inhibition and receptor blockade increased the number of bone resorption pits. Furthermore, transporter inhibition increased the area of resorbed bone while significantly decreasing the number of osteoclasts. Alkaline phosphatase activity and extracellular matrix mineralization were used as measurements of osteoblast differentiation. Glutamate significantly increased osteoblast differentiation and mineralization, but transport inhibitors had no effect. These studies support earlier findings suggesting that glutamate may be more important for osteoclastogenesis than for osteoclast proliferation or functions. Since glutamate is capable of changing the differentiation and activities of both osteoclast and osteoblast cell types in bone, it is reasonable to postulate that tumour-derived glutamate may impact bone homeostasis in bone metastasis.  相似文献   

8.
During skeletal growth and remodeling the mineralized bone matrix is resorbed by osteoclasts through the constant secretion of protons and proteases to the bone surface. This relies on the formation of specialized plasma membrane domains, the sealing zone and the ruffled border, and vectorial transportation of intracellular vesicles in bone-resorbing osteoclasts. Here we show that Rab7, a small GTPase that is associated with late endosomes, is highly expressed and is predominantly localized at the ruffled border in bone-resorbing osteoclasts. The decreased expression of Rab7 in cultured osteoclasts by antisense oligodeoxynucleotides disrupted the polarization of the osteoclasts and the targeting of vesicles to the ruffled border. These impairments caused a significant inhibition of bone resorption in vitro. The results indicate that the late endocytotic pathway is involved in the osteoclast polarization and bone resorption and underscore the importance of Rab7 in osteoclast function.  相似文献   

9.
Maintenance of bone mass and integrity requires a tight balance between resorption by osteoclasts and formation by osteoblasts. Exocytosis of functional proteins is a prerequisite for the activity of both cells. In the present study, we show that synaptotagmin VII, a calcium sensor protein that regulates exocytosis, is associated with lysosomes in osteoclasts and bone matrix protein-containing vesicles in osteoblasts. Absence of synaptotagmin VII inhibits cathepsin K secretion and formation of the ruffled border in osteoclasts and bone matrix protein deposition in osteoblasts, without affecting the differentiation of either cell. Reflecting these in vitro findings, synaptotagmin VII-deficient mice are osteopenic due to impaired bone resorption and formation. Therefore, synaptotagmin VII plays an important role in bone remodeling and homeostasis by modulating secretory pathways functionally important in osteoclasts and osteoblasts.  相似文献   

10.
Osteoimmunology: interactions of the immune and skeletal systems   总被引:7,自引:0,他引:7  
Bone is a dynamic tissue that provides mechanical support, physical protection, and enables movement. Bone also serves as a storage site for minerals and is where blood cells are produced. Bone homeostasis is regulated by the balance between bone formation and resorption, and involves the coordinated action of osteoblasts and osteoclasts. Osteoblasts are bone-forming cells that secrete organic matrix molecules, while osteoclasts are derived from hematopoietic precursors and resorb bone matrix. Although osteoblasts and osteoclasts are the major regulators of bone metabolism and are regulated by the local microenvironment, it has recently come to be appreciated that skeletal system homeostasis is greatly influenced by components of the immune system. For example, some pathological bone resorption observed under inflammatory conditions has been shown to be due, in part, to direct and indirect effects of activated T cells on osteoclasts. In this regard, we would like to review current progress and perspectives in "osteoimmunology", an interdisciplinary research principle governing the cross-talk between the bone and immune systems. Better understanding of how the osteoimmune system operates in normal and pathological situations is likely to lay the groundwork for future therapies for the variety of diseases that affect both bone and the immune system.  相似文献   

11.
The neuroblastoma-like cell line N2A and the pheochromocytoma-like cell line PC12 excrete about 20-25% of the intracellular fluorescent Ca2+ indicator fura-2 during 10 min of incubation at 37 degrees C. The drug probenecid, known to inhibit membrane systems for the transport of organic anions [Cunningham, Israili & Dayton (1981) Clin. Pharmacol. 6, 135-151], inhibited fura-2 excretion in both cell types. However, probenecid also had untoward effects on intracellular Ca2+ homeostasis in N2A and PC12 cells. We therefore tested the drug sulphinpyrazone, another known inhibitor of organic-anion transport systems. Sulphinpyrazone fully inhibited excretion of fura-2 at 250 microM, a concentration one order of magnitude lower than that of probenecid. At this concentration and for incubation times up to 20 min, sulphinpyrazone had no untoward effects on cell viability and metabolic functions. Fura-2 was also loaded into the cytoplasm of N2A cells by permeabilization of the plasma membrane with extracellular ATP. In this case as well, the dye was rapidly released from the cells and the efflux was blocked by sulphinpyrazone. These findings suggest that N2A and PC12 cells possess a membrane system for the transport of the free-acid form of fura-2. This transport system is probably responsible for the excretion of fura-2 from these cells. Incubation of N2A and PC12 cells with sulphinpyrazone may help overcome problems arising in the investigation of [Ca2+]i homeostasis in these cell types.  相似文献   

12.
The resorbing osteoclast is an exceptional cell that secretes large amounts of acid through the coupled activity of a v-type H+-ATPase and a chloride channel that both reside in the ruffled membrane. Impairment of this acid secretion machinery by genetic mutations can abolish bone resorption activity, resulting in osteopetrotic phenotypes. Another key feature of osteoclasts is the transport of high amounts of calcium and phosphate from the resorption lacuna to the basolateral plasma membrane. Evidence exists that this occurs in part through entry of these ions into the osteoclast cytosol. Handling of such large amounts of a cellular messenger requires elaborate mechanisms. Membrane proteins that regulate osteoclast calcium homeostasis and the effect of calcium on osteoclast function and survival are therefore the second main focus of this review.  相似文献   

13.
Dissolution of the inorganic bone matrix releases not only calcium and phosphate ions, but also bicarbonate. Electroneutral sodium-bicarbonate co-transporter (NBCn1) is expressed in inactive osteoclasts, but its physiological role in bone resorption has remained unknown. We show here that NBCn1, encoded by the SLC4A7 gene, is directly involved in bone resorption. NBCn1 protein was specifically found at the bone-facing ruffled border areas, and metabolic acidosis increased NBCn1 expression in rats in vivo. In human hematopoietic stem cell cultures, NBCn1 mRNA expression was observed only after formation of resorbing osteoclasts. To further confirm the critical role of NBCn1 during bone resorption, human hematopoietic stem cells were transduced with SLC4A7 shRNA lentiviral particles. Downregulation of NBCn1 both on mRNA and protein level by lentiviral shRNAs significantly inhibited bone resorption and increased intracellular acidification in osteoclasts. The lentiviral particles did not impair osteoclast survival, or differentiation of the hematopoietic or mesenchymal precursor cells into osteoclasts or osteoblasts in vitro. Inhibition of NBCn1 activity may thus provide a new way to regulate osteoclast activity during pathological bone resorption.  相似文献   

14.
Vacuolar H(+)-ATPases (V-ATPases) are multisubunit enzymes that acidify compartments of the vacuolar system of all eukaryotic cells. In osteoclasts, the cells that degrade bone, V-ATPases, are recruited from intracellular membrane compartments to the ruffled membrane, a specialized domain of the plasma membrane, where they are maintained at high densities, serving to acidify the resorption bay at the osteoclast attachment site on bone (Blair, H. C., Teitelbaum, S. L., Ghiselli, R., and Gluck, S. L. (1989) Science 249, 855-857). Here, we describe a new mechanism involved in controlling the activity of the bone-resorptive cell. V-ATPase in osteoclasts cultured in vitro was found to form a detergent-insoluble complex with actin and myosin II through direct binding of V-ATPase to actin filaments. Plating bone marrow cells onto dentine slices, a physiologic stimulus that activates osteoclast resorption, produced a profound change in the association of the V-ATPase with actin, assayed by coimmunoprecipitation and immunocytochemical colocalization of actin filaments and V-ATPase in osteoclasts. Mouse marrow and bovine kidney V-ATPase bound rabbit muscle F-actin directly with a maximum stoichiometry of 1 mol of V-ATPase per 8 mol of F-actin and an apparent affinity of 0.05 microM. Electron microscopy of negatively stained samples confirmed the binding interaction. These findings link transport of V-ATPase to reorganization of the actin cytoskeleton during osteoclast activation.  相似文献   

15.
Some intracellular organelles found in eukaryotes such as plants have arisen through the endocytotic engulfment of prokaryotic cells. This accounts for the presence of plant membrane intrinsic proteins that have homologs in prokaryotic cells. Other organelles, such as those of the endomembrane system, are thought to have evolved through infolding of the plasma membrane. Acquisition of intracellular components (organelles) in the cells supplied additional functions for survival in various natural environments. The organelles are surrounded by biological membranes, which contain membrane-embedded K+ transport systems allowing K+ to move across the membrane. K+ transport systems in plant organelles act coordinately with the plasma membrane intrinsic K+ transport systems to maintain cytosolic K+ concentrations. Since it is sometimes difficult to perform direct studies of organellar membrane proteins in plant cells, heterologous expression in yeast and Escherichia coli has been used to elucidate the function of plant vacuole K+ channels and other membrane transporters. The vacuole is the largest organelle in plant cells; it has an important task in the K+ homeostasis of the cytoplasm. The initial electrophysiological measurements of K+ transport have categorized three classes of plant vacuolar cation channels, and since then molecular cloning approaches have led to the isolation of genes for a number of K+ transport systems. Plants contain chloroplasts, derived from photoautotrophic cyanobacteria. A novel K+ transport system has been isolated from cyanobacteria, which may add to our understanding of K+ flux across the thylakoid membrane and the inner membrane of the chloroplast. This chapter will provide an overview of recent findings regarding plant organellar K+ transport proteins.  相似文献   

16.
Living cells are characterized by their capacity to maintain a stable steady state. For instance, cells are able to conserve their volume, internal ionic composition and electrical potential difference across the plasma membrane within values compatible with the overall cell functions. The dynamics of these cellular variables is described by complex integrated models of membrane transport. Some clues for the understanding of the processes involved in global cellular homeostasis may be obtained by the study of the local stability properties of some partial cellular processes. As an example of this approach, I perform, in this study, the neighborhood stability analysis of some elementary integrated models of membrane transport. In essence, the models describe the rate of change of the intracellular concentration of a ligand subject to active and passive transport across the plasma membrane of an ideal cell. The ligand can be ionic or nonionic, and it can affect the cell volume or the plasma membrane potential. The fundamental finding of this study is that, within the physiological range, the steady states are asymptotically stable. This basic property is a necessary consequence of the general forms of the expressions employed to describe the active and passive fluxes of the transported ligand.  相似文献   

17.
Chemical and physico-chemical properties as well as physiological functions of major mammalian ether-linked glycerolipids, including plasmalogens were reviewed. Their chemical structures were described and their effect on membrane fluidity and membrane fusion discussed. The recent generation of mouse models with ether lipid deficiency offered the possibility to study ether lipid and particularly plasmalogen functions in vivo. Ether lipid-deficient mice revealed severe phenotypic alterations, including arrest of spermatogenesis, development of cataract and defects in central nervous system myelination. In several cell culture systems lack of plasmalogens impaired intracellular cholesterol distribution affecting plasma membrane functions and structural changes of ER and Golgi cisternae. Based on these phenotypic anomalies that were accurately described conclusions were drawn on putative functions of plasmalogens. These functions were related to cell-cell or cell-extracellular matrix interactions, formation of lipid raft microdomains and intracellular cholesterol homeostasis. There are several human disorders, such as Zellweger syndrome, rhizomelic chondrodysplasia punctata, Alzheimer's disease, Down syndrome, and Niemann-Pick type C disease that are distinguished by altered tissue plasmalogen concentrations. The role plasmalogens might play in the pathology of these disorders is discussed.  相似文献   

18.
The regulation of bone turnover is a complex and finely tuned process. Many factors regulate bone remodeling, including hormones, growth factors, cytokines etc. However, little is known about the signals coupling bone formation to bone resorption, and how mechanical forces are translated into biological effects in bone. Intercellular calcium waves are increases in intracellular calcium concentration in single cells, subsequently propagating to adjacent cells, and can be a possible mechanism for the coupling of bone formation to bone resorption. The aim of the present studies was to investigate whether bone cells are capable of communicating via intercellular calcium signals, and determine by which mechanisms the cells propagate the signals. First, we found that osteoblastic cells can propagate intercellular calcium transients upon mechanical stimulation, and that there are two principally different mechanisms for this propagation. One mechanism involves the secretion of a nucleotide, possibly ATP, acting in an autocrine action to purinergic P2Y2 receptors on the neighboring cells, leading to intracellular IP3 generation and subsequent release of calcium from intracellular stores. The other mechanism involves the passage of a small messenger through gap junctions to the cytoplasm of the neighboring cells, inducing depolarization of the plasma membrane with subsequent opening of membrane bound voltage-operated calcium channels. Next, we found that osteoblasts can propagate these signals to osteoclasts as well. We demonstrated that paracrine action of ATP was responsible for the wave propagation, but now the purinergic P2X7 receptor was involved. Thus, the studies demonstrate that calcium signals can be propagated not only among osteoblasts, but also between osteoblasts and osteoclasts in response to mechanical stimulation. Thus, intercellular calcium signaling can be a mechanism by which mechanical stimuli on bone are translated into biological signals in bone cells, and propagated through the network of cells in bone. Further, the observations offer new pharmacological targets for the modulation of bone turnover, and perhaps even for the treatment of bone metabolic disorders.  相似文献   

19.
Qin A  Cheng TS  Lin Z  Pavlos NJ  Jiang Q  Xu J  Dai KR  Zheng MH 《PloS one》2011,6(11):e27155
Vacuolar-type H(+)-ATPases (V-ATPases) are macromolecular proton pumps that acidify intracellular cargos and deliver protons across the plasma membrane of a variety of specialized cells, including bone-resorbing osteoclasts. Extracellular acidification is crucial for osteoclastic bone resorption, a process that initiates the dissolution of mineralized bone matrix. While the importance of V-ATPases in osteoclastic resorptive function is well-defined, whether V-ATPases facilitate additional aspects of osteoclast function and/or formation remains largely obscure. Here we report that the V-ATPase accessory subunit Ac45 participates in both osteoclast formation and function. Using a siRNA-based approach, we show that targeted suppression of Ac45 impairs intracellular acidification and endocytosis, both are prerequisite for osteoclastic bone resorptive function in vitro. Interestingly, we find that knockdown of Ac45 also attenuates osteoclastogenesis owing to a reduced fusion capacity of osteoclastic precursor cells. Finally, in an effort to gain more detailed insights into the functional role of Ac45 in osteoclasts, we attempted to generate osteoclast-specific Ac45 conditional knockout mice using a Cathepsin K-Cre-LoxP system. Surprisingly, however, insertion of the neomycin cassette in the Ac45-Flox(Neo) mice resulted in marked disturbances in CNS development and ensuing embryonic lethality thus precluding functional assessment of Ac45 in osteoclasts and peripheral bone tissues. Based on these unexpected findings we propose that, in addition to its canonical function in V-ATPase-mediated acidification, Ac45 plays versatile roles during osteoclast formation and function.  相似文献   

20.
Using an expression cloning approach, we identified and cloned a novel intracellular protein produced by osteoclasts that indirectly induces osteoclast formation and bone resorption, termed OSF. Conditioned media from 293 cells transiently transfected with the 0.9 kb OSF cDNA clone stimulated osteoclast-like cell formation in both human and murine marrow cultures in the presence or absence 10(-9) M 1,25-dihydroxyvitamin D3. In addition, conditioned media from 293 cells transfected with the OSF cDNA clone enhanced the stimulatory effects of 1,25-(OH)2D3 on bone resorption in the fetal rat long bone assay. In situ hybridization studies using antisense oligomers showed expression of OSF mRNA in highly purified osteoclast-like cells from human giant cell tumors of the bone. Northern blot analysis demonstrated ubiquitous expression of a 1.3 kb mRNA that encodes OSF in multiple human tissues. Sequence analysis showed the OSF cDNA encoded a 28 kD peptide that contains a c-Src homology 3 domain (SH3) and ankyrin repeats, suggesting that it was not a secreted protein, but that it was potentially involved in cell signaling. Consistent with these data, immunoblot analysis using rabbit antisera against recombinant OSF demonstrated OSF expression in cell lysates but not in the culture media. Furthermore, recombinant OSF had a high affinity for c-Src, an important regulator of osteoclast activity. Taken together, these data suggest that OSF is a novel intracellular protein that indirectly enhances osteoclast formation and osteoclastic bone resorption through the cellular signal transduction cascade, possibly through its interactions with c-Src or other Src-related proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号