首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sequestration and recycling of biogenic silica (BSi) in freshwater tidal marshes was modelled through the combination of short-term year round sediment trap data with a long-term sedimentation model, MARSED. The modelling was implemented through the complete evolution from a young rapidly rising marsh to a marsh with an elevation close to mean high water. BSi in imported suspended matter was higher in summer (10.9 mg BSi g−1 sediment) than winter (7.6 mg BSi g−1 sediment). However, the deposition of BSi on the marsh surface was higher in winter compared to summer, due to the higher sedimentation rates. Deposition of BSi was correlated to the suspended matter deposition. In the old marsh, yearly about 40 g BSi m−2 was deposited, while in the young marsh deposition could rise up to 300 g m−2. Young marshes retained up to 85% of the imported biogenic silica. Recycling efficiency (60%) increased drastically for older marshes. The study shows that marshes act as important sinks for BSi along estuaries. The recycling of the imported BSi to DSi in summer and spring is most likely an essential factor in the buffering role of tidal marshes for estuarine DSi concentrations.  相似文献   

2.
The effect of suspended sediment concentrations (SSC) on fluid turbulence in an annular flume was investigated. Flow speed was held constant at 0.57 m s−1, and the resulting turbulent conditions were recorded using a 3-D Acoustic Doppler Velocimeter (ADV) at height (z) of 8.5 cm above the bed. The suspended material was composed of a natural glacial clay made up of particles smaller than 6 μm. The SSC in the flume were increased from clear water to 4800 mg l−1 in nine discrete increments; temporal variations of SSC were monitored using three optical backscatter sensors (OBS) mounted in the flume wall at heights of 0.03, 0.10 and 0.20 m above the flume base. The results showed that turbulent intensity ( ) and energy dissipation rate (ɛ) did not change significantly between clear water and 200 mg l−1, but decreased by nearly 30% in the SSC range between 200 and 2400 mg l−1. Above 2400 mg l−1, no further decrease was observed. Analyses of the velocity variances over narrow frequency bands (0.2 Hz wide) from 0 to 12.5 Hz showed that most of the flow turbulent energy (~70–80%) was contained within the lower frequencies i.e. larger eddies, and that these eddies experienced the greatest decrease in energy due to turbidity. It is proposed that these patterns are the consequence of the increase in suspended sediment concentrations and of the vertical stratification of sediments for SSC >200 mg l−1.  相似文献   

3.
Eutrophication has become increasingly serious and noxious algal blooms have been of more frequent occurrence in the Yangtze River Estuary and in the adjacent East China Sea. In 2003 and 2004, four cruises were undertaken in three zones in the estuary and in the adjacent sea to investigate nitrate (NO3–N), ammonium (NH4–N), nitrite (NO2–N), soluble reactive phosphorus (SRP), dissolved reactive silica (DRSi), dissolved oxygen (DO), phytoplankton chlorophyll a (Chl a) and suspended particulate matter (SPM). The highest concentrations of DIN (NO3–N+NH4–N+NO2–N), SRP and DRSi were 131.6, 1.2 and 155.6 μM, respectively. The maximum Chl a concentration was 19.5 mg m−3 in spring. An analysis of historical and recent data revealed that in the last 40 years, nitrate and SRP concentrations increased from 11 to 97 μM and from 0.4 to 0.95 μM, respectively. From 1963 to 2004, N:P ratios also increased from 30–40 up to 150. In parallel with the N and P enrichment, a significant increase of Chl a was detected, Chl a maximum being 20 mg m−3, nearly four times higher than in the 1980s. In 2004, the mean DO concentration in bottom waters was 4.35 mg l−1, much lower than in the 1980s. In comparison with other estuaries, the Yangtze River Estuary was characterized by high DIN and DRSi concentrations, with low SRP concentrations. Despite the higher nutrient concentrations, Chl a concentrations were lower in the inner estuary (Zones 1 and 2) than in the adjacent sea (Zone 3). Based on nutrient availability, SPM and hydrodynamics, we assumed that in Zones 1 and 2 phytoplankton growth was suppressed by high turbidity, large tidal amplitude and short residence time. Furthermore, in Zone 3 water stratification was also an important factor that resulted in a greater phytoplankton biomass and lower DO concentrations. Due to hydrodynamics and turbidity, the open sea was unexpectedly more sensitive to nutrient enrichment and related eutrophication processes.  相似文献   

4.
The effects of antibiotics commonly used in Agrobacterium-mediated transformation were studied on Pinus pinaster tissues. Embryogenic tissue growth from three embryogenic lines and adventitious bud induction from cotyledons from three open-pollinated seed families were analysed. Cefotaxizme, carbenicillin and timentin commonly used for Agrobacterium elimination, at concentrations of 200–400 mg l −1 did not inhibit the embryogenic tissue growth on filter paper nor as clumps. Adventitious bud induction and bud number were significantly reduced for one of the tested families when using 400 mg l−1 cefotaxime or timentin. The selection agent kanamycin significantly inhibited growth of embryogenic tissue on filter paper in all the embryogenic lines␣and concentrations tested (20–50 mg l−1). Kanamycin also inhibited growth of embryogenic clumps after two subcultures at 5–50 mg l−1. In␣cotyledons, kanamycin inhibited adventitious bud␣formation in the three seed families used, regardless of the concentrations tested (5–25 mg l−1). There was a significant effect of the seed family on the bud induction and the number of adventitious buds produced. From the results obtained, we propose the use of timentin to eliminate Agrobacterium in transformation experiments, at concentrations of 400 mg l−1 for embryogenic tissues and of 300 mg l−1 for cotyledons. For selection of transformed tissues carrying the kanamycin resistance gene, kanamycin should be used at 20 mg l−1 for embryogenic tissues on filter paper, at 5 mg l−1 when clumps are in direct contact with the selection medium, and bellow 5 mg l−1 for adventitious bud induction.  相似文献   

5.
A previously derived method (the tidal length—mean spring tidal range, TL-MSTR diagram) is used to predict the estuarine turbidity maximum (ETM) concentration and the residence time of the Thames Estuary. The predicted and observed residence time is 2 months. The predicted, depth-averaged ETM is 2.5 g l−1 of suspended particulate matter (SPM) at spring tides, which is much higher than that observed from surface sampling (<0.5 g l−1) and that simulated by recent models (approx. 0.6 g l−1), but is consistent with spring-tide concentrations measured throughout the water column over a tidal cycle. The observed locations of the surface 1-isohaline and 5-isohaline exhibit strong relationships with the logarithm of freshwater runoff. The observed ETM exhibits statistically significant relationships both with tidal range and the logarithm of runoff, and is generally located between the Millennium Dome and the Woolwich Reach. The apparent over-prediction of SPM afforded by the TL-MSTR diagram is unsurprising considering the removal of fine sediment by dredging and the removal of fine-sediment storage areas by embanking.  相似文献   

6.
Salinization of freshwater bodies due to anthropogenic activity is currently a very serious problem in Mexico. One of the consequences may be changes in the rotifer and cladoceran populations, both of which are generally abundant in freshwater bodies. Under laboratory conditions we evaluated the effect of different salt (sodium chloride) concentrations (0–4.5 g l−1) on the population dynamics of ten freshwater zooplankton species (rotifers: Anuraeopsis fissa, Brachionus calyciflorus, B. havanaensis, B. patulus and B. rubens; cladocerans: Alona rectangula, Ceriodaphnia dubia, Daphnia pulex, Moina macrocopa and Simocephalus vetulus). All of the zooplankton species tested were adversely affected by 1.5–3.0 g l−1 NaCl. In the range of salt concentrations tested, the population growth curves of B. patulus and B. rubens showed almost no lag phase and reached peak abundances within a week or two; A. fissa had a lag phase of about a week, while both B. calyciflorus and B. havanaensis started to increase in abundance immediately following the initiation of the experiments. Increased NaCl levels reduced the population abundances of A. fissa, B. calyciflorus and B. havanaensis at or beyond 1.5 g l−1. NaCl at 1 g l−1 had little effect on the population growth of cladocerans. M. macrocopa, which was more resistant to NaCl than the other cladoceran species, showed positive population growth even at 4.5 g l−1. The rates of population increase (r, day−1) were generally higher for rotifers than for cladocerans. Depending on the NaCl concentration, the r of rotifers ranged from +0.57 to −0.58 day−1, while the r for cladocerans was lower (+0.34 to −0.22 day−1).  相似文献   

7.
Summary Creeping bluestem (Schizachyrium scoparium (Michx.) Nash var. stoloniferum (Nash) J. Wipff) embryogenic callus growing on solid medium was used to establish a cell suspension culture in Murashige and Skoog (MS) basal medium supplemented with 1.5 mg l−1 (6.8 μM) 2,4-dichlorophenoxyacetic acid (2,4-D), 0.2 mg l−1 (0.88 μM) 6-benzylaminopurine (BA), 0.5 mg l−1 (1.4 μM) zeatin, 0.2 mg l−1 (0.58 μM) gibberellic acid (GA3), and 10% (v/v) of coconut water (CW). Pro-embryos from suspension culture matured on semi-solid MS medium in about 18 wk, and were then cultured on semi-solid MS medium without growth regulators for 2–3 wk. Shoots were regenerated on MS basal medium supplemented with 3.0 mg L−1 (13.6 μM) 2,4-D, 1.0 mg l−1 (4.4 μM) BA, 1.0 mg l−1 (2.9 μM) GA3, 0.5 mg l−1 (2.7 μM) 1-naphthaleneacetic acid (NAA), 500 mg l−1 easein hydrolysate, and 10% (v/v) CW. Rooted plantlets were successfully accelimatized to greenhouse and outdoor conditions. Using this protocol, it would be possible to produce at least 1300 fully acclimatized plantlets annually.  相似文献   

8.
Reef corals occur across a wide range of habitats, from offshore clear waters to nearshore sediment-laden environments. This study tests the hypothesis that corals from turbid nearshore areas have greater capacity to utilise suspended sediment as a food source than conspecifics from less turbid and midshelf areas. The hypothesis was tested on two common and widespread coral species on the Great Barrier Reef (Pocillopora damicornis and Acropora millepora). The particle clearance rates of samples from more turbid reefs were two-fourfold those of conspecifics from less turbid and midshelf reefs. Rates of sediment ingestion were generally a linear function of sediment load indicating no significant saturation within the concentration range of 1–30 mg dry weight l−1. Estimated assimilation efficiency of particulate 14C varied between 50 and 80%, and was maximised for midshelf A. millepora at the lowest sediment concentration, suggesting that heterotrophy is more efficient in oligotrophic habitats. Based on feeding-response curves, assimilation efficiencies, and published records of ambient particle concentrations, representatives of these species on turbid inshore reefs are 10–20 times more heterotrophic on suspended sediment than their conspecifics on less turbid and midshelf reefs. Accepted: 7 September 1999  相似文献   

9.
Previous studies suggest that current-driven plant transport in shallow lagoons and estuaries is associated with increased turbidity. Our hypothesis is therefore that macroalgae erode surface sediment while drifting as bedload. This ballistic effect of moving plants on surface sediment was tested in a series of controlled annular flume experiments, where simultaneous measurements of macrophytes transport and turbidity were conducted at increasing current velocities. Sediment erosion always started earlier in experiments with plants than in control experiments without plants. Turbidity increased immediately when plants started to move at current velocities of 2–4 cm s−1. From a background concentration of 7–10 mg SPM l−1, turbidity increased to 30–50 mg SPM l−1 for Ceramium sp., Ulva lactuca and Chaetomorpha linum, while the more rigid Gracilaria sp., caused much higher turbidities (50–180 mg SPM l−1). Such plant induced sediment erosion at low current velocity can explain the observed appearance of turbid waters in estuaries and lagoons in the absence of strong wind and wave action. Based on 3-D hydrodynamic modelling, it was determined that plant driven erosion occurs during most of the growth season in a shallow eutrophic estuary (Odense Fjord, Denmark).  相似文献   

10.
In this paper, we would like to show unexpected morphogenic potential of cell suspensions derived from seedling explants of Gentiana kurroo (Royle). Suspension cultures were established with the use of embryogenic callus derived from seedling explants (root, hypocotyl and cotyledons). Proembryogenic mass proliferated in liquid MS medium supplemented with 0.5 mg l−1 2,4-D and 1.0 mg l−1 Kin. The highest growth coefficient was achieved for root derived cell suspensions. The microscopic analysis showed differences in aggregate structure depending on their size. To assess the embryogenic capability of the particular culture, 100 mg of cell aggregates was implanted on MS agar medium supplemented with Kin (0.0–2.0 mg l−1), GA3 (0.0–2.0 mg l−1) and AS (80.0 mg l−1). The highest number of somatic embryos was obtained for cotyledon-derived cell suspension on GA3-free medium, but the best morphological quality of embryos was observed in the presence of 0.5–1.0 mg l−1 Kin, 0.5 mg l−1 GA3 and 80.0 mg l−1 AS. The morphogenic competence of cultures also depended on the size of the aggregate fraction and was lower when size of aggregates decreased. Flow cytometry analysis reveled luck of uniformity of regenerants derived from hypocotyl suspension and 100% of uniformity for cotyledon suspension.  相似文献   

11.
The effects of silicate and glucose on growth and eicosapentaenoic acid (EPA) production by the diatom Nitzschia laevis were studied. By alternately altering the concentrations of silicate (2.7–64 mg l−1) and glucose (1–40 g l−1) in the medium, the highest cell dry weight (ca. 5.5 g l−1) was obtained at 20 g l−1 glucose and 32 mg l−1 silicate, while the highest specific growth rate (ca. 0.65 day−1) was obtained at a relatively low glucose concentration (5 g l−1) and high silicate concentrations (32–64 mg l−1). At glucose levels of 5 and 20 g l−1, EPA content was higher with lower silicate concentrations (2.7 and 16 mg l−1 silicate, respectively), while at a silicate level of 16 mg l−1, higher glucose concentrations (20–40 g l−1) facilitated EPA formation. The highest EPA yield (131 mg l−1) was obtained at 20 g l−1 glucose and 32 mg l−1 silicate, while the highest EPA productivity (15.1 mg l−1 day−1) was obtained at 20 g l−1 glucose and 64 mg l−1 silicate. Journal of Industrial Microbiology & Biotechnology (2000) 25, 218–224. Received 08 May 2000/ Accepted in revised form 21 July 2000  相似文献   

12.
Eichhornia crassipes (Mart.) has strong ability to remove Cu2+ from copper-contaminated water. Physiological responses in E. crassipes exposed to known concentrations of Cu2+ were examined in this study, and demonstrated that E. crassipes could accumulate 314 mg kg−1 dry weight of Cu when exposed to 5 mg l−1 of Cu2+ for periods up to 14 d. However, there were marked changes in physiology of the plant commencing at Cu2+ concentrations of 1 mg l−1. Results of this study showed that E. crassipes could tolerate moderate concentrations (i.e. 0.5 mg l−1) of Cu2+, without significant changes in photosynthetic pigment concentrations, while high concentrations (i.e. 5 and 10 mg l−1) of Cu2+ resulted in substantial loss in pigment concentrations. Increases in malondiadehyde (MDA) content were also demonstrated in plant exposure to high Cu2+ concentrations. Soluble protein content increased to a level slightly higher than the control at <0.5 mg l−1 of Cu2+, but then decreased with exposure to >1 mg l−1 of Cu2+. Our results suggest that E. crassipes has a substantial capacity to accumulate copper when cultivated at moderate concentrations of Cu2+, without marked changes in its physiology. The findings indicate that E. crassipes is a promising possibility for phytoremediation of moderately Cu-contaminated water bodies. Handling editor: S. M. Thomaz  相似文献   

13.
The role of salt marshes as nitrogen sink is examined taking into consideration the seasonal variation of above and belowground biomass of Spartina martima and Halimione portulacoides in two marshes from Tagus estuary, Pancas and Corroios, and the degradation rates of belowground litter. Total nitrogen was determined in plant components, decomposing litter and sediment. Biomass was higher in Corroios, the saltier marsh, with 7190 g m−2 y−1 dw of S. maritima and 6593 g m−2 y−1 dw of H. portulacoides and the belowground component contributed to 96% and 90% of total biomass, respectively. In the other marsh, Pancas, belowground biomass contributed to 56% and 76% of total biomass for S. maritima and H. portulacoides, respectively. Litterbag experiment showed that between 25% and 50% of nitrogen is lost within the first month and remained relatively constant in the next four months. Slower decomposition is observed in sediments with higher nitrogen concentration (max. 0.7% N in the saltier marsh). Higher concentrations of N were found in the sediment upper layers. Considering the sediment-root system, most of the nitrogen is stored in the sediment compartment and only about 1–4% of the total N was found in the roots. Considering these results, Tagus salt marshes act as a sink for nitrogen.  相似文献   

14.
Aerobic granules are cultivated by a single bacterial strain, Acinetobacter calcoaceticus, in a sequencing batch reactor (SBR). This strain presents as a good phenol reducer and an efficient auto coagulator in the presence of phenol, mediated by heat-sensitive adhesins proteins. Stable 2.3-mm granules were formed in the SBR following a 7-week cultivation. These granules exhibit excellent settling attributes and degrade phenol efficiently at concentrations of 250–2,000 mg l−1. The corresponding phenol degradation rate reached 993.6 mg phenol g−1 volatile suspended solids (VSS) day−1 at 250 mg l−1 phenol and 519.3 mg phenol g−1 VSS day−1 at 2,000 mg l−1 phenol concentration. Meanwhile, free A. calcoaceticus cells were fully inhibited at phenol >1,500 mg l−1. Denaturing gradient gel electrophoresis fingerprint profile demonstrated no genetic modification in the strain during aerobic granulation. The present single-strain granules showed long-term structural stability and performed high phenol degrading capacity and high phenol tolerance. The confocal laser scanning microscopic test revealed that live A. calcoaceticus cells principally distributed at 200–250 μm beneath the outer surface, with an extracellular polymeric substance layer covering them to defend phenol toxicity. Autoaggregation assay tests demonstrated the possibly significant role of secreted proteins on the formation of single-culture A. calcoaceticus granules.  相似文献   

15.
The physical and chemical processes operating in the River Tamar Estuary (south-west England) have been comprehensively described and reported in the literature. There are well-established gradients of salinity, suspended sediment and oxygen which vary both on short-term (tidal) and long-term (seasonal) cycles. Freshwater runoff, the main factor determining salinity distribution, is also the cause of the high variability in suspended sediment concentrations. The biological processes are less well studied and information on the link between the benthic and pelagic systems is particularly lacking. Mysids, through their role as detritivores and as a major component in the diet of some fish, provide this link. Of the four species of mysid distributed longitudinally in the Tamar Estuary, the most abundant isMesopodopsis slabberi which occurs between 5 and 25 km from the estuary head. Observations over an annual cycle have shown marked seasonal changes in both abundance and distribution in the estuary. During winter and spring, densities remained generally low (<50 m−3) but, as water temperatures increased, the density increased and reachedca 1200 individuals m−3 in July. There was a shift in the longitudinal distribution ofM. slabberi in response to changes in the position of the salinity gradient. Adults comprised the majority of the population in salinities less than 10‰ whereas juveniles and immature animals were distributed over a wider area than the adults and occurred in water of higher salinity than the main adult distribution.M. slabberi appears to utilise the two-layered estuarine circulation to maintain its position in the estuary.  相似文献   

16.
Summary The effect of different cytokinins on in vitro adventitious shoot regeneration from internodal explants of Menthaxgracilis Sole (scoth spearmint) was investigated. Murashige and Skoog (MS) medium containing 100 mg l−1 myo-inositol, 0.4 mg l−1 thiamine-HCl, 2.0% (w/v) sucrose, 10% (v/v) coconut water and supplemented with 4.5 μM thidiazuron (TDZ) was effective in inducing adventitious shoot formation from callus. The greatest percentage of explants with shoots (85%) with the highest mean number of shoots per explant (29) was obtained with explants from the 1st and the 2nd internodes from 2-wk-old stock plants growing on a medium containing MS basal salts, 2% sucrose, 100 mg l−1 myo-inositol, 0.4 mg l−1 thiamine-HCl, at TDZ 4.5 μM and 10% (v/v) coconut water and solidified with 0.2% (w/v) phytagel. The regenerated shoots rooted on a medium containing MS basal salts, 100 mg l−1 myo-inositol, 0.4 mg l−1 thiamine-HCl, 2.0% sucrose, and 0.054 μM naphthalene acetic acid (NAA). Micropropagated plantlets were transplanted into soil and acclimated to greenhouse conditions. This is the first report describing adventitious shoot regeneration of scotch spearmint.  相似文献   

17.
Micropropagation system of Malus zumi was optimized by studying the influence of plant growth regulators and culture conditions. The axillary buds were used for mutiplication of in vitro shoot culture on agar Murashige and Skoog (1962) (MS) medium with combination of 1 mg l−1 BAP, 0.5 mg l−1 NAA or 0.5 mg l−1 IAA or 0.5 mg l−1 IBA under 16 h photoperiod. The shoot growth in culture was not significantly affected within a broad range (5.0–7.0) of initial medium pH. The highest shoot (13) was obtained on medium containing 1.0 mg l−1 BAP and 0.5 mg l−1 IAA. Well-developed shoots, 35–50 mm in length, were successfully rooted ex vitro at 86.3% by a 2-h-treatment with aqueous solution containing MS salts and 100 mg l−1 IBA prior to their planting in growing substrate composed of soil and vermiculite (1:1 v/v). The survival rate of transplantation reached 88.0% when transferred to field condition.  相似文献   

18.
To determine the sources and sinks of atmospherically deposited Pb at a forested watershed (Plastic Lake) in central Ontario, Canada, Pb pools and fluxes through upland, wetland and lake compartments were measured during 2002/2003 and compared with previous measurements taken between 1989 and 1991. In 2002/2003, annual bulk deposition of Pb was 0.49 mg m−2 compared with 1.90–1.30 mg m−2 in 1989–1991. Annual Pb concentrations in stream water draining the upland part of the catchment were very low (0.04 μg l−1) and were approximately half those measured in 1989–1991 (0.11–0.08 μg l−1). Leaching losses in stream water were small and mass balance estimates indicate almost complete retention (>95%) of atmospherically deposited Pb in upland soils. In contrast, annual Pb concentrations in stream water draining a wetland were between 0.38 and 0.77 μg l−1, with the highest concentration occurring in 2002/2003 and mass balance calculations indicate that the wetland is a net source of Pb in all measured years. Lead concentrations in the lake outflow were low and the average Pb concentration measured in 2002/2003 (0.09 μg l−1) was approximately half the value recorded in 1989–1991 (0.19 μg l−1 both years). Annual mass balance estimates indicate that the lake retained between 2.47 mg m−2 (1989/1990) and 1.42 mg m−2 (2002/2003) and that in 2002/2003 68% of the Pb input to the lake is derived from the terrestrial catchment. These estimates are higher than sediment core records, which indicate around 18 mg m−2 Pb was retained in sediment during the 1990s. Nevertheless, Pb concentrations decrease with sediment depth and 206Pb/207Pb concentrations increase with depth, a pattern also observed in mineral soils that reflects the substantial contribution of anthropogenic Pb to the watershed. Lead isotope data from soil and sediment indicate a recent anthropogenic Pb signal (206Pb/207Pb ∼ 1.185) in upper soils and sediments and an older anthropogenic signal (206Pb/207Pb ∼ 1.20) in deeper soil and sediment. Lead isotope data in sediment and vegetation indicate that practically all the Pb cycled in the forest at Plastic Lake is anthropogenic in origin.  相似文献   

19.
Four precursors (l-phenylalanine, l-tryptophan, cinnamic acid and emodin) and one signal elicitor (methyl jasmonate, MeJA) were added to liquid cultures of Hypericum perforatum L. to study their effect on production of hyperforin and hypericins (pseudohypericin and hypericin). The addition of l-phenylalanine (75 to 100 mg l−1) enhanced production of hypericins, but hyperforin levels were decreased. Hypericin, pseudohypericin and hyperforin concentrations were all decreased when l-tryptophan (25 to 100 mg l−1) was added to the medium. However, addition of l-tryptophan (50 mg l−1) with MeJA (100 μM) stimulated hyperforin production significantly (1.81-fold) and resulted in an increased biomass. Cinnamic acid (25, 50 mg l−1) and emodin (1.0 to 10.0 mg l−1) each enhanced hyperforin accumulation in H. perforatum, but did not affect accumulation of hypericins.  相似文献   

20.
Summary Callus induction was observed from hypocotyl, root, and cotyledonary leaf segments, grown on Murashige and Skoog (MS) medium supplemented with various concentrations and combinations of 2,4-dichlorophenoxyacetic acid (2,4-D) and kinetin (KN). Maximum callusing (100%) was obtained from root and cotyledonary leaf segments grown on MS medium supplemented with a combination of 2 mg l−1 (9.1 μM) 2,4-D and 0.2 mg l−1 (0.9 μM) KN. The calluses, when subcultured in the same medium, showed profuse callusing. However, these calluses remained recalcitrant to regenerate regardless of the quality and combinations of plant growth regulators in the nutrient pool. When hypocotyl segments were used as explants, callus induction was noticed in 91% of cultures which showed shoot regeneration on MS medium supplemented with 2 mg l−1 2,4-D and 0.2 mg l−1 KN. These shoots were transferred to fresh medium containing various concentrations and combinations of 6-benzyladenine (BA) and N6-(2-isopentenyl)adenosine (2-iP). Maximum shoot multiplication was observed after 60 d of the second subculture on MS medium containing 2 mg l−1 (8.9 μM) BA. These shoots were rooted best (87%) on MS medium containing 2 mg l−1 (9.9 μM) indole-3-butyric acid (IBA). The plantlets were transferred to the field after acclimatization and showed 60% survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号