共查询到20条相似文献,搜索用时 15 毫秒
1.
This article describes the technique of immobilized metal ion affinity chromatography (1MAC). The IMAC stationary phases are
designed to chelate certain metal ions that have selectivity for specific groups in peptides and on protein surfaces. The
number of stationary phases that can be synthesized for efficient chclation of metal ions is unlimited, but the critical consideration
is that there is enough exposure of the metal ion to interact with the proteins, preferably in a biospecific manner. The versatility
of IMAC is one of its greatest assets. An important contribution to the correct use of IMAC for protein purification is a
simplified presentation of the various sample elution procedures. 相似文献
2.
Gabriel Widakowich Chunfang Zhang Simon Harris Khosse Mitri Glenn Powers Kirk‐Ski Troung Milton T W Hearn 《Biotechnology progress》2011,27(4):1048-1053
Immobilized metal ion affinity chromatography (IMAC) using peptide affinity tags has become a popular tool for protein purification. An important feature dictating the use of a specific affinity tag is whether its structure influences the properties of the target protein to which it is attached. In this work we have studied the influence on protein stability of two novel peptide affinity tags, namely NT1A and HIT2, and compared their effect to the commonly used hexa‐histidine tag, all attached to the C‐terminus of a enhanced green fluorescent protein (eGFP). A comparison of the influence of C‐ or N‐terminal orientation of the tags was also carried out by studying the NT1A tag attached at either terminus of the eGFP. Protein stability was studied utilising guanidine hydrochloride equilibrium unfolding procedures and CD and fluorescence spectroscopy. The novel peptide affinity tags, NT1A and HIT2, and the His6 tag were found to not affect the stability of eGFP. Although these results are protein specific, they highlight, nevertheless, the need to employ suitable characterisation tools if the impact of a specific peptide tag on the folded status or stability of a recombinant tagged protein, purified by immobilized metal ion affinity chromatographic methods, are to be rigorously evaluated and the appropriate choice of peptide tag made. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011 相似文献
3.
This study describes the use of a hexa‐histidine tagged exopeptidase for the cleavage of hexa‐histidine tags from recombinant maltose binding protein (MBP) when both tagged species are bound to an immobilized metal affinity chromatography (IMAC) matrix. On‐column exopeptidase cleavage only occurred when the cleavage buffer contained an imidazole concentration of 50 mM or higher. Two strategies were tested for the on‐column tag cleavage by dipeptidylaminopeptidase (DAPase): (i) a post‐load wash was performed after sample loading using cleavage buffers containing varying imidazole concentrations and (ii) a post‐load wash was omitted following sample loading. In the presence of 50 mM imidazole, 46% of the originally adsorbed hexa‐histidine tagged MBP was cleaved, released from the column, and recovered in a sample containing 100% native (i.e., completely detagged) MBP. This strategy renders the subsequent purification steps unnecessary as any tagged contaminants remained bound to the column. At higher imidazole concentrations, binding of both hexa‐histidine tagged MBP and DAPase to the column was minimized, leading to characteristics of cleavage more closely resembling that of a batch cleavage. An on‐column cleavage yield of 93% was achieved in the presence of 300 mM imidazole, albeit with contamination of the detagged protein with tag fragments and partially tagged MBP. The success of the on‐column exopeptidase cleavage makes the integration of the poly‐histidine tag removal protocol within the IMAC protein capture step possible. The many benefits of using commercially available exopeptidases, such as DAPase, for poly‐histidine tag removal can now be combined with the on‐column tag cleavage operation. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010 相似文献
4.
Refolding and purification of recombinant human (Pro)renin receptor from Escherichia coli by ion exchange chromatography 下载免费PDF全文
Purification of the recombinant human renin receptor (rhRnR) is a major aspect of its biological or biophysical analysis, as well as structural research. A simple and efficient method for the refolding and purification of rhRnR expressed in Escherichia coli with weak anion‐exchange chromatography (WAX) was presented in this work. The solution containing denatured rhRnR in 8.0 mol/L urea extracted from the inclusion bodies was directly injected into the WAX column. The aggregation was prevented and the soluble form of renatured rhRnR in aqueous solution was obtained after desorption from the column. Effects of the extracting solutions, the pH values and urea concentrations in the mobile phase, as well as the sample size on the refolding and purification of rhRnR were investigated, indicating that the above mentioned factors had remarkable influences on the efficiency of refolding, purification and mass recovery of rhRnR. Under the optimal conditions, rhRnR was successfully refolded and purified simultaneously by WAX in one step within only 30 min. The result was satisfactory with mass recovery of 71.8% and purity of 94.8%, which was further tested by western blotting. The specific binding of the purified rhRnR to recombinant human renin was also determined using surface plasmon resonance (SPR). The association constant of rhRnR to recombinant human renin was calculated to be 3.25 × 108 L/mol, which demonstrated that rhRnR was already renatured and simultaneously purified in one step using WAX. All of the above demonstrate that protein folding liquid chromatography (PFLC) should be a powerful tool for the purification and renaturation of rhRnR. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:864–871, 2014 相似文献
5.
Young J. Kim 《Biotechnology Techniques》1999,13(12):837-842
The ideal immobilized metal ion affinity chromatography (IMAC) model was employed to investigate the effect of operating parameters change on the displacement separation of biomolecules. By combining a lower initial mobile phase modifier (MPM) concentration and a higher final MPM concentration, the displacement chromatographic separation produced both higher concentration of feeds and better throughput in IMAC displacement separating systems. 相似文献
6.
Pedersen J Lauritzen C Madsen MT Weis Dahl S 《Protein expression and purification》1999,15(3):389-400
We have developed a specific and efficient method for complete removal of polyhistidine purification tags (HisTags) from the N-termini of target proteins. The method is based on the use of the aminopeptidase dipeptidyl peptidase I (DPPI), either alone or in combination with glutamine cyclotransferase (GCT) and pyroglutamyl aminopeptidase (PGAP). In both cases, the HisTag is cleaved off by DPPI, which catalyzes a stepwise excision of a wide range of dipeptides from the N-terminus of a peptide chain. Some sequences, however, are resistant to DPPI cleavage and a number of mature proteins have nonsubstrate N-termini which protects them against digestion. For such proteins, HisTags composed of an even number of residues can be cleaved off by treatment with DPPI alone. When the target protein is unprotected against DPPI, a blocking group is generated enzymatically from a glutamine residue inserted between the HisTag and the target protein. A protein with a HisTag-Gln extension is incubated with both DPPI and GCT. As above, the polyhistidine sequence is cleaved off by DPPI, but when the glutamine residue appears in the N-terminus, it is immediately converted into a pyroglutamyl residue by an excess of GCT and further DPPI digestion is prevented. The desired sequence is finally obtained by excision of the pyroglutamyl residue with PGAP. All the enzymes employed can bind to immobilized metal affinity chromatography (IMAC) matrices, and in this paper we demonstrate a simple and highly effective process combining IMAC purification of His-tagged proteins, our aminopeptidase-based method for specific excision of HisTags and use of subtractive IMAC for removing processing enzymes. Typical recoveries were 75-90% for the enzymatic processing and subtractive IMAC. The integrated process holds promises for use in large-scale production of pharmaceutical proteins because of a simple overall design, use of robust and inexpensive matrices, and use of enzymes of either recombinant or plant origin. 相似文献
7.
Sahin A Tetaud E Merlin G Santarelli X 《Journal of chromatography. B, Analytical technologies in the biomedical and life sciences》2005,818(1):19-22
Previously we have cloned three ADP-ribosylation factor-like (ARL) genes from the parasitic protozoan Leishmania donovani: LdARL-3A and 3B, LdARL-1. LdARL-3A was previously purified as an active native form, which was able to bind GTP in vitro. In this paper, we have performed the production and the purification of Histidine-tagged (His-tagged) LdARL-1 recombinant protein by immobilized metal affinity chromatography (IMAC) using expanded bed adsorption (EBA) technology. This protein was purified with more than 95% purity and could be successfully used for GTP-binding assay. 相似文献
8.
Over the past 10 years, the baculovirus-insect cell system has become a powerful and versatile tool for the expression of a variety of heterologous proteins. In order to simplify separation of a cloned protein from the baculovirus-insect expression system, we have cloned a gene encoding for the protein of interest, a structural protein (VP2) of a strain (E/DEL) of infectious bursal disease virus (IBDV), with a metal ion binding site (His)(5) at its C-terminus. This chimeric protein (VP2H) has been expressed and one-step affinity purified with immobilized metal ions (Ni(+2)). With antigen capture-enzyme-linked immunosorbent assay (AC-ELISA), we determined that the conformation of this chimeric protein was no different from the recombinant wild-type VP2 protein. However, the two proteins (VP2 and VP2H) can be distinguished and resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and detected immunologically following Western blotting. (c) 1994 John Wiley & Sons, Inc. 相似文献
9.
Andberg M Jäntti J Heilimo S Pihkala P Paananen A Koskinen AM Söderlund H Linder MB 《Protein science : a publication of the Protein Society》2007,16(8):1751-1761
Improved ways to cleave peptide chains at engineered sites easily and specifically would form useful tools for biochemical research. Uses of such methods include the activation or inactivation of enzymes or the removal of tags for enhancement of recombinant protein expression or tags used for purification of recombinant proteins. In this work we show by gel electrophoresis and mass spectroscopy that salts of Co(II) and Cu(II) can be used to cleave fusion proteins specifically at sites where sequences of His residues have been introduced by protein engineering. The His residues could be either consecutive or spaced with other amino acids in between. The cleavage reaction required the presence of low concentrations of ascorbate and in the case of Cu(II) also hydrogen peroxide. The amount of metal ions required for cleavage was very low; in the case of Cu(II) only one to two molar equivalents of Cu(II) to protein was required. In the case of Co(II), 10 molar equivalents gave optimal cleavage. The reaction occurred within minutes, at a wide pH range, and efficiently at temperatures ranging from 0 degrees C to 70 degrees C. The work described here can also have implications for understanding protein stability in vitro and in vivo. 相似文献
10.
采用金属螯合亲和层析法,纯化了小鼠腹水来源的抗乙肝核心抗原单克隆抗体,对上样缓冲液的pH和离子强度、洗脱液种类和洗脱方式进行优化。结果表明,采用降低pH分步洗脱时,最佳上样缓冲液为pH8.0,20mmol/LPB+0.5mol/LNaCl,抗体在pH5.0被洗脱下来,抗体回收率80%,纯度85%。采用咪唑浓度梯度洗脱时,最佳的上样缓冲液为pH8.0,20mmol/LPB+5mmol/L咪唑,抗体纯度大于95%,回收率65%;在上样缓冲液中不添加NaCl而添加少量的咪唑,更有利于抗体分离。以上洗脱方式都能较好地保持mAb的生物学活性,为该抗体的应用提供了必要的实验基础。 相似文献
11.
Concanavalin A and a mannose-specific lectin could be precipitated specifically from extracts of jack bean and Cajanus cajan seeds, respectively, using metal charged EGTA. Single step purification of the lectins was also possible using iminodiacetic acid-Sepharose charged with metal ions. Nondenaturing electrophoresis in polyacrylamide gel and that performed in presence of SDS ascertained homogeneity of the isolated lectins. The migration behavior of the purified lectins was comparable with those of the lectins purified using alternative procedures. 相似文献
12.
Mitochondrial membrane fragments from U-87 MG (U87MG) and HEK-293 cells were successfully immobilized onto immobilized artificial membrane (IAM) chromatographic support and surface of activated open tubular (OT) silica capillary, resulting in mitochondrial membrane affinity chromatography (MMAC) columns. Translocator protein (TSPO), located in mitochondrial outer membrane as well as sulfonylurea and mitochondrial permeability transition pore (mPTP) receptors, localized to the inner membrane, were characterized. Frontal displacement experiments with multiple concentrations of dipyridamole (DIPY) and PK-11195 were run on MMAC (U87MG) column, and the binding affinities (Kd) determined were 1.08 ± 0.49 and 0.0086 ± 0.0006 μM, respectively, consistent with previously reported values. Furthermore, binding affinities (Ki) for DIPY binding site were determined for TSPO ligands, PK-11195, mesoporphyrin IX, protoporphyrin IX, and rotenone. In addition, the relative ranking of these TSPO ligands based on single displacement studies using DIPY as marker on MMAC (U87MG) was consistent with the obtained Ki values. The immobilization of mitochondrial membrane fragments was also confirmed by confocal microscopy. 相似文献
13.
Phosphoproteomic analysis using immobilized metal ion affinity chromatography on the basis of cellulose powder 总被引:2,自引:0,他引:2
Feuerstein I Morandell S Stecher G Huck CW Stasyk T Huang HL Huber LA Bonn GK 《Proteomics》2005,5(1):46-54
Detailed characterization of phosphoproteins as well as other post-translationally modified proteins such as glycoproteins, is required to fully understand protein function and regulatory events in cells and organisms. Therefore, an experimental strategy for the isolation of phosphoproteins using a new immobilized metal ion affinity chromatograph (IMAC) material on the basis of cellulose has been developed and characterized. Different approaches have been used to test the material. Recovery rates were determined by 32P labelling of a myelin basic protein fragment and by reversed-phase high-performance liquid chromatography-electrospray ionization mass spectrometry using a tryptic digest of the model protein bovine beta-casein. Selectivity was demonstrated by enrichment and separation of phosphopeptides from different samples, such as from a digest of horse myoglobin as well as from a digest of in vitro phosphorylated extracellular signal regulates kinase 2 (ERK2) mixed with synthetic phosphopeptides, phosphorylated on different amino acid residues. Furthermore, simplification and optimization of sample pretreatment was achieved by combining the separating (IMAC) and desalting (C18) step during preparative high performance liquid chromatography. The comparison between our material and a commercially available IMAC system (POROS 20 MC; Perspective BioSystems) emphasizes the competitiveness of the cellulose. Confirmed by the obtained data, the cellulose material performed as well as the commercially available sorbent, however with the advantage, that it can be produced rather easily and at very low cost. 相似文献
14.
Toward improving selectivity in affinity chromatography with PEGylated affinity ligands: The performance of PEGylated protein A 下载免费PDF全文
José González‐Valdez Alex Yoshikawa Justin Weinberg Jorge Benavides Marco Rito‐Palomares Todd M. Przybycien 《Biotechnology progress》2014,30(6):1364-1379
Chemical modification of macromolecular affinity chromatography ligands with polyethylene glycol chains or “PEGylation” can potentially improve selectivity by sterically suppressing non‐specific binding interactions without sacrificing binding capacity. For a commercial protein A affinity media and with yeast extract (YE) and fetal bovine serum (FBS) serving as mock contaminants, we found that the ligand accounted for more than 90% of the media‐associated non‐specific binding, demonstrating an opportunity for improvement. The IgG static binding affinity of protein A mono‐PEGylated with 5.0 and 20.7 kDa poly(ethylene glycol) chains was found to be preserved using a biomolecular interaction screening platform. Similar in situ PEGylations of the commercial protein A media were conducted and the modified media was functionally characterized with IgG solutions spiked with YE and FBS. Ligand PEGylation reduced the mass of media‐associated contaminants by a factor of two to three or more. Curiously, we also found an increase of up to 15% in the average recovery of IgG on elution after PEGylation. Combined, these effects produced an order of magnitude increase in the IgG selectivity on average when spiked with YE and a two‐ to three‐fold increase when spiked with FBS relative to the commercial media. Dynamic binding capacity and mass‐transfer resistance measurements revealed a reduction in dynamic capacity attributed to a decrease in IgG effective pore diffusivity and possibly slower IgG association kinetics for the PEGylated protein A ligands. Ligand PEGylation is a viable approach to improving selectivity in affinity chromatography with macromolecular ligands. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:1364–1379, 2014 相似文献
15.
Protein kinase substrate phage (PKS phage) was constructed by fusing the substrate recognition consensus sequence of cAMP-dependent protein kinase (cAPK) with bacteriophage minor coat protein g3p and by dis-playing it on the surface of filamentous bacteriophage fd. Phosphorylation in vitro by cAPK showed a unique labelled band of approximately 60 ku, which was consistent with the molecular weight of the PKS-g3p fusion protein. Some weakly phosphorylated bands for both PKS phage and wild-type phage were also observed. Phage display random 15-mer peptide library phosphorylated by cAPK was selected with ferric (Fe3 ) chelalion affinity resin. After 4 rounds of screening, phage clones were picked out to determine the displayed peptide sequences by DNA sequencing. The results showed that 5 of 14 sequenced phages displayed the cAPK recognition sequence motif (R)RXS/T. Their in vitro phosphorylation analyses revealed the specific labelled bands corresponding to the positive PKS phages with and without the typ 相似文献
16.
Camperi SA Iannucci NB Albanesi GJ Oggero Eberhardt M Etcheverrigaray M Messeguer A Albericio F Cascone O 《Biotechnology letters》2003,25(18):1545-1548
The peptide, Ala-Pro-Ala-Arg (APAR), was selected from the screening of a tetrapeptide combinatorial synthetic library as the ligand for affinity purification of an anti-Granulocyte Macrophage-Colony Stimulating Factor (GM-CSF) monoclonal antibody (Mab) developed in mouse ascitis. The affinity chromatographic matrix obtained by attachment of APAR to agarose, having a peptide density of 0.5 mol ml–1, showed a maximum capacity of 9.1 mg Mab ml–1 and a dynamic capacity of 3.9 mg Mab ml–1. A 95% yield of electrophoretically pure anti-GM-CSF was obtained in a single step. 相似文献
17.
Jung-Hyun Park Shin-Young Na Dong Gun Lee Byoung-Don Han Kil Lyong Kim 《Biotechnology and Bioprocess Engineering》1998,3(2):82-86
The maltose binding protein (MBP) fusion protein system is a versatile tool to express and isolate recombinant proteins inE. coli. In this system, MBP fusion proteins are efficiently isolated from whole cell lysate using amylose conjugated agarose beads
and then eluted by competition with free maltose. Since MBP is a rather large molecule (∼42 kDa), for further experiments,
the MBP part is usually proteolytically cleaved from the fusion protein and subsequently removed by ion-exchange chromatography
or rebinding to amylose columns after washing out excess and MBP-bound maltose. In the present study, we have developed an
improved method for the removal of cleaved MBP, which is advantageous over conventional methods. In this method, factor Xa
cleaved MBP fusion proteins were incubated with Sepharose beads conjugated with MBP specific monoclonal antibodies and then
precipitated by centrifugation, resulting in highly purified proteins in the supernatant. 相似文献
18.
《Bioorganic & medicinal chemistry letters》2014,24(7):1692-1694
Antitumor effects of a known bis(imino-quinolyl)palladium(II) complex 1 and its newly synthesized platinum(II) analogue 2 were evaluated against human breast (MCF-7) and human colon (HT-29) cancer cell lines. The complexes gave cytotoxicity profiles that were better than the reference drug cisplatin. The highest cytotoxic activities were pronounced in complex 2 across the two examined cancer cell lines. Both compounds represent potential active drugs based on bimetallic complexes. 相似文献
19.
Purification of papain by immobilized metal affinity chromatography (IMAC) on chelating carboxymethyl cellulose 总被引:1,自引:0,他引:1
Chelating carboxymethyl cellulose was prepared in bead form by immobilizing iminodiacetic acid on carboxymethyl cellulose which was earlier crosslinked and activated by epichlorohydrin. The prepared matrix was used to purify papain by a factor of 2.6 from commercial papain, and by a factor of 4 from papaya latex by batch adsorption and immobilized metal affinity chromatography respectively. Purification factors obtained were equal in batch mode and double in column mode, to purifications obtained on Chelating Sepharose® Fast Flow. Flow rates up to 38 ml/cm2 h were easily possible on the prepared chelating carboxymethyl cellulose. 相似文献
20.
Mueller U Büssow K Diehl A Bartl FJ Niesen FH Nyarsik L Heinemann U 《Journal of structural and functional genomics》2003,4(4):217-225
Small peptide tags are often fused to proteins to allow their affinity purification in high-throughput structure analysis schemes. To assess the compatibility of small peptide tags with protein crystallization and to examine if the tags alter the three-dimensional structure, the N-terminus of the chicken alpha-spectrin SH3 domain was labeled with a His6 tag and the C-terminus with a StrepII tag. The resulting protein, His6-SH3-StrepII, consists of 83 amino-acid residues, 23 of which originate from the tags. His6-SH3-StrepII is readily purified by dual affinity chromatography, has very similar biophysical characteristics as the untagged protein domain and crystallizes readily from a number of sparse-matrix screen conditions. The crystal structure analysis at 2.3 A resolution proves native-like structure of His6-SH3-StrepII and shows the entire His6 tag and part of the StrepII tag to be disordered in the crystal. Obviously, the fused affinity tags did not interfere with crystallization and structure analysis and did not change the protein structure. From the extreme case of His6-SH3-StrepII, where affinity tags represent 27% of the total fusion protein mass, we extrapolate that protein constructs with N- and C-terminal peptide tags may lend themselves to biophysical and structural investigations in high-throughput regimes. 相似文献