首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Atmospheric-pressure cold plasma (APCP) using helium/oxygen was developed and tested as a suitable sterilization method in a clinical environment. The sterilizing effect of this method is not due to UV light, which is known to be the major sterilization factor of APCP, but instead results from the action of reactive oxygen radicals. Escherichia coli, Staphylococcus aureus, and Saccharomyces cerevisiae deposited on a nitrocellulose filter membrane or Bacillus subtilis spores deposited on polypropylene plates were exposed to helium/oxygen plasma generated with AC input power at 10 kHz, 6 kV. After plasma treatment, nitrocellulose filter membranes were overlaid on fresh solid media and CFUs were counted after incubation overnight. D-values were 18 sec for E. coli, 19 sec for S. aureus, 1 min 55 sec for S. cerevisiae, and 14 min for B. subtilis spores. D-values of bacteria and yeast were dependent on the initial inoculation concentration, while the D-value of B. subtilis spores showed no correlation. When treated cells were observed with a scanning electron microscope, E. coli was more heavily damaged than S. aureus, S. cerevisiae exhibited peeling, and B. subtilis spores exhibited shrunken morphology. Results showed that APCP using helium/oxygen has many advantages as a sterilization method, especially in a clinical environment with conditions such as stable temperature, unlimited sample size, and no harmful gas production.  相似文献   

2.
Thermal treatment of Bacillus subtilis spores and Saccharomyces cerevisiae cells dried on glass beads was performed at various initial water activities (in the range 0.10-0.90). Experiments were carried out at 150 degrees C, 200 degrees C and 250 degrees C for 5-120 s. Significant destruction of up to 10(7) vegetative cells and up to 10(5) spores g(-1) was achieved, depending upon treatment conditions. This study demonstrated that the initial water activity (a(w)) value of a sample is very important in the destruction or survival of microorganisms treated with hot air stresses. As described previously, the heat resistance of spores and vegetative cells was strongly enhanced by low initial a(w) values until an optimal a(w) value between 0.30 and 0.50, with maximal viability at 0.35 for both S. cerevisiae and B. subtilis. However, our results highlighted for the first time that very low initial a(w) values (close to 0.10) greatly improved the destruction of spores and vegetative cells. Factors and possible mechanisms involved in the death of vegetative cells and spores are discussed.  相似文献   

3.
The ability of bacterial spores and vegetative cells to adhere to inert surfaces was investigated by means of the number of adherent spores (Bacillus cereus and Bacillus subtilis spores) and Escherichia coli cells and their resistance to cleaning or rinsing procedures (adhesion strength). Six materials (glass, stainless steel, polyethylene high density (PEHD), polyamide-6, polyvinyl chloride, and Teflon) were tested. Slight differences in the number of adherent spores (less than 1 log unit) were observed between materials, but a higher number of adherent E. coli cells was found on the hydrophobic materials PEHD and Teflon. Conversely, the resistance of both B. cereus and B. subtilis spores to a cleaning procedure was significantly affected by the material. Hydrophobic materials were harder to clean. The topography parameter derived from the Abbott-Firestone curve, RVK, and, to a lesser extent, the widely used roughness parameters RA (average roughness) and Rz (maximal roughness), were related to the number of adherent cells. Lastly, the soiling level as well as the adhesion strength were shown to depend largely on the microorganism. The number of adhering B. cereus hydrophobic spores and their resistance to a cleaning procedure were found to be 10 times greater than those of the B. subtilis hydrophilic spores. Escherichia coli was loosely bound to all the materials tested, even after 24 h biofilm formation.  相似文献   

4.
AIMS: To determine the aerobic spore composition and presence of Bacillus sporothermodurans spores in feed concentrate for dairy cattle. METHODS AND RESULTS: Six feed concentrate samples from five different farms were analysed. High levels of spores (up to 10(6) spores g(-1)) were found. Identification of 100 selected isolates was obtained by a combination of fatty acid methyl esters analysis, amplified ribosomal DNA restriction analysis and 16S rDNA sequencing. Ninety-seven isolates could be identified to the species level or assigned to a phylogenetic species group. Most of the isolates obtained after a heat treatment of 10 min at 80 degrees C were identified as members of the B. subtilis group (32 isolates), B. pumilus (25 isolates), B. clausii (eight isolates) and B. licheniformis (eight isolates). The isolates with very heat-resistant spores, obtained after a heat treatment of 30 min at 100 degrees C, were identified as members of the B. subtilis group (five isolates), B. sporothermodurans (three isolates), B. amyloliquefaciens (one isolate), B. oleronius (one isolate) and B. pallidus (one isolate). Bacillus cereus was present in each feed concentrate sample and was isolated using a selective mannitol egg yolk polymyxin agar medium. CONCLUSIONS: Feed concentrate for dairy cattle contains known as well as as yet unknown species of Bacillus and related genera with properties relevant to the dairy sector. SIGNIFICANCE AND IMPACT OF THE STUDY: The results formulate the hypothesis that feed concentrate can be a contamination source of spores, including those of B. sporothermodurans, for raw milk at the farm level.  相似文献   

5.
The principle of equi-effectivity of the product of intensity and exposure time (principle of Bunsen-Roscoe) of UV irradiation has been assumed to be valid for the inactivation of microorganisms in general. Earlier studies claimed higher survival of Escherichia coli B/r with fractionated irradiation compared with single-exposure survival. However, data on the inactivation effect of protraction of UV irradiation are not available. By means of a specially designed UV irradiation apparatus which secured absolute UV dose measurements throughout the experiments, the effects of variation of UV irradiation intensities (253.7 nm) and exposure times were tested on the inactivation of a bacterial virus (Staphylococcus aureus phage A994), a vegetative bacterial strain (E. coli ATCC 25922), and bacterial spores (Bacillus subtilis ATCC 6633) as well as three haploid laboratory strains (RC43a, YNN281, and YNN282) and two diploid strains (commercial bakery yeast strain and laboratory strain YNN281 x YNN282) or yeast (Saccharomyces cerevisiae) and spores of the latter diploid yeast strain. Each test organism was exposed to three UV intensities (0.02, 0.2, and 2 W/m2), with corresponding exposure times resulting in three dose levels for each intensity. Differences in inactivation rates were tested by analyses of variance and Newman-Keuls tests. Virus and bacteria showed no differences in inactivation rates by variation of intensities and exposure times within selected UV doses; hence, the principle of Bunsen-Roscoe could not be rejected for these strains. However, in the eukaryotic test strains of S. cerevisiae longer exposure times with lower intensities led to enhanced inactivation in both haploid and diploid strains, with a more pronounced effect in the diploid yeast strains, whereas in yeast spores in this dose rate effect could not be observed.  相似文献   

6.
A 20-min exposure of 10(7) unmodified spores of either Bacillus subtilis NCTC 3610 (harvested from potato-dextrose agar plus manganese) or Bacillus megaterium ATCC 19213 (harvested from nutrient agar plus manganese) per ml to 5 microgram of ethidium bromide per ml did not kill the spores (recovered on TAM [thermoacidurans agar modified]-plus thymidine medium). However, in both cases, the ability to survive various heat treatments was reduced after exposure of the spores to ethidium bromide. With B. subtilis, a 10-min heat treatment at 85 degrees C of unexposed spores resulted in an 85% survival rate, whereas only 50% of the ethidium bromide-exposed spores survived. With B. megaterium similar results were obtained at 75 degrees C; 77% of the unexposed spores survived, whereas only 31% of the ethidium bromide-exposed spores survived. Similarly, a 10-min exposure of B. subtilis spores to 0.005 microgram of acriflavine per ml did not kill unheated spores; however, the ability of the spores to survive exposure at 85 degrees C for 10 min was reduced to 40%. After exposure to 10 microgram of daunomycin per ml, the survival rate was 35%. Binding studies with ethidium bromide showed strong binding to spores, but as yet, the site of binding is unknown.  相似文献   

7.
The causes of Bacillus spore resistance remain unclear. Many structures including a highly compact envelope, low hydration of the protoplast, high concentrations of Ca-chelated dipicolinic acid, and the presence of small acid-soluble spore proteins seem to contribute to resistance. To evaluate the role of internal protoplast composition and hydration, spores of Bacillus subtilis were produced at different osmotic pressures corresponding to water activities of 0.993 (standard), 0.970, and 0.950, using the two depressors (glycerol or NaCl). Sporulation of Bacillus subtilis was slower and reduced in quantity when the water activity was low, taking 4, 10, and 17 days for 0.993, 0.970, and 0.950 water activity, respectively. The spores produced at lower water activity were smaller and could germinate on agar medium at lower water activity than on standard spores. They were also more sensitive to heat (97 degrees C for 5-60 min) than the standard spores but their resistance to high hydrostatic pressure (350 MPa at 40 degrees C for 20 min to 4 h) was not altered. Our results showed that the water activity of the sporulation medium significantly affects spore properties including size, germination capacity, and resistance to heat but has no role in bacterial spore resistance to high hydrostatic pressure.  相似文献   

8.
AIMS: To study the effect of acid shock in sporulation on the production of acid-shock proteins, and on the heat resistance and germination characteristics of the spores formed subsequently. METHODS AND RESULTS: Bacillus subtilis wild-type (SASP-alpha+beta+) and mutant (SASP-alpha-beta-) cells in 2 x SG medium at 30 degrees C were acid-shocked with HCl (pH 4, 4.3, 5 and 6 against a control pH of 6.2) for 30 min, 1 h into sporulation. The D85-value of B. subtilis wild-type (but not mutant) spores formed from sporulating cells acid-shocked at pH 5 increased from 46.5 min to 78.8 min, and there was also an increase in the resistance of wild-type acid-shocked spores at both 90 degrees C and 95 degrees C. ALA- or AGFK-initiated germination of pH 5-shocked spores was the same as that of non-acid-shocked spores. Two-dimensional gel electrophoresis showed only one novel acid-shock protein, identified as a vegetative catalase 1 (KatA), which appeared 30 min after acid shock but was lost later in sporulation. CONCLUSIONS: Acid shock at pH 5 increased the heat resistance of spores subsequently formed in B. subtilis wild type. The catalase, KatA, was induced by acid shock early in sporulation, but since it was degraded later in sporulation, it appears to act to increase heat resistance by altering spore structure. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first proteomic study of acid shock in sporulating B. subtilis cells. The increasing spore heat resistance produced by acid shock may have significance for the heat resistance of spores formed in the food industry.  相似文献   

9.
The electron microscopic examination of the thin sections of cells of the yeasts Saccharomyces cerevisiae and Pichia pastoris and the gram-positive bacteria Micrococcus luteus and Bacillus subtilis showed that cell treatment with the chaotropic salts guanidine hydrochloride (6 M) and guanidine thiocyanate (4 M) at 37 degrees C for 3-5 h or at 100 degrees C for 5-6 min induced degradative processes, which affected almost all cellular structures. The cell wall, however, retained its ultrastructure, integrity, and rigidity, due to which the morphology of cells treated with the chaotropic salts did not change. High-molecular-weight DNA was localized in a new cell compartment, ectoplasm (a peripheral hydrophilic zone). The chaotropic salts destroyed the outer and inner membranes and partially degraded the outer and inner protein coats of Bacillus subtilis spores, leaving their cortex (the murein layer) unchanged. The spore core became accessible to stains and showed the presence of regions with high and low electron densities. The conditions of cell treatment with the chaotropic salts were chosen to provide for efficient in situ PCR analysis of the 16S and 18S rRNA genes with the use of oligonucleotide primers.  相似文献   

10.
The Bacillus subtilis pss gene encoding phosphatidylserine synthase was cloned by its complementation of the temperature sensitivity of an Escherichia coli pssA1 mutant. Nucleotide sequencing of the clone indicated that the pss gene encodes a polypeptide of 177 amino acid residues (deduced molecular weight of 19,613). This value agreed with the molecular weight of approximately 18,000 observed for the maxicell product. The B. subtilis phosphatidylserine synthase showed 35% amino acid sequence homology to the yeast Saccharomyces cerevisiae phosphatidylserine synthase and had a region with a high degree of local homology to the conserved segments in some phospholipid synthases and amino alcohol phosphotransferases of E. coli and S. cerevisiae, whereas no homology was found with that of the E. coli counterpart. A hydropathy analysis revealed that the B. subtilis synthase is very hydrophobic, in contrast to the hydrophilic E. coli counterpart, consisting of several strongly hydrophobic segments that would span the membrane. A manganese-dependent phosphatidylserine synthase activity, a characteristic of the B. subtilis enzyme, was found exclusively in the membrane fraction of E. coli (pssA1) cells harboring a B. subtilis pss plasmid. Overproduction of the B. subtilis synthase in E. coli cells by a lac promoter system resulted in an unusual increase of phosphatidylethanolamine (up to 93% of the total phospholipids), in contrast to gratuitous overproduction of the E. coli counterpart. This finding suggested that the unusual cytoplasmic localization of the E. coli phosphatidylserine synthase plays a role in the regulation of the phospholipid polar headgroup composition in this organism.  相似文献   

11.
We sampled a cocoa powder production line to investigate the impact of processing on the microbial community size and diversity at different stages. Classical microbiological methods were combined with 16S rRNA gene PCR-denaturing gradient gel electrophoresis, coupled with clone library construction, to analyze the samples. Aerobic thermoresistant spores (ThrS) (100°C; 10 min) were also isolated and characterized (identity, genetic diversity, and spore heat resistance), in view of their relevance to the quality of downstream heat-treated cocoa-flavored drinks. In the nibs (broken, shelled cocoa beans), average levels of total aerobic microorganisms (TAM) (4.4 to 5.6 log CFU/g) and aerobic total spores (TS) (80°C; 10 min; 4.3 to 5.5 log CFU/g) were significantly reduced (P < 0.05) as a result of alkalizing, while fungi (4.2 to 4.4 log CFU/g) and Enterobacteriaceae (1.7 to 2.8 log CFU/g) were inactivated to levels below the detection limit, remaining undetectable throughout processing. Roasting further decreased the levels of TAM and TS, but they increased slightly during subsequent processing. Molecular characterization of bacterial communities based on enriched cocoa samples revealed a predominance of members of the Bacillaceae, Pseudomonadaceae, and Enterococcaceae. Eleven species of ThrS were found, but Bacillus licheniformis and the Bacillus subtilis complex were prominent and revealed great genetic heterogeneity. We concluded that the microbiota of cocoa powder resulted from microorganisms that could have been initially present in the nibs, as well as microorganisms that originated during processing. B. subtilis complex members, particularly B. subtilis subsp. subtilis, formed the most heat-resistant spores. Their occurrence in cocoa powder needs to be considered to ensure the stability of derived products, such as ultrahigh-temperature-treated chocolate drinks.  相似文献   

12.
Vapor-phase hydrogen peroxide as a surface decontaminant and sterilant   总被引:2,自引:0,他引:2  
The feasibility of utilizing vapor-phase hydrogen peroxide (VPHP) as a surface decontaminant and sterilant was evaluated in a centrifuge application. The prototype VPHP decontamination system, retrofitted into a Beckman L8-M ultracentrifuge, was designed to vaporize a 30% (wt/wt) solution of aqueous hydrogen peroxide continuously injecting and withdrawing VPHP in a deep-vacuum flow-through system. VPHP cycles of 4, 8, 16, and 32 min were examined for cidal activity against spores of Bacillus subtilis subsp. globigii and Bacillus stearothermophilus. Spore inocula (approximately 10(6)/coupon) were dried onto 0.5-in. (1.27-cm)-square stainless-steel coupons, and coupons were suspended in the centrifuge chamber, the space between the refrigeration can and the barrier ring (inner gap), and the space between the barrier ring and the vacuum ring (outer gap). At a chamber temperature of 4 degrees C, B. subtilis subsp. globigii spores were inactivated within 8 min, while inactivation of spores located in the outer gap at 27 degrees C required 32 min. The elevated temperature and high surface area/volume ratios in the outer gap may serve to decompose the gas more rapidly, thus reducing cidal efficacy. Of the two test spores, B. stearothermophilus was more resistant to VPHP. Nonetheless, VPHP was shown to possess significant sporicidal capability. For practical decontamination applications of the type described, VPHP shows promise as an effective and safer alternative to currently used ethylene oxide or formaldehyde vapors.  相似文献   

13.
Microbiological Evaluation of a Large-Volume Air Incinerator   总被引:1,自引:1,他引:0  
Two semiportable metal air incinerators, each with a capacity of 1,000 to 2,200 standard ft(3) of air per min, were constructed to sterilize infectious aerosols created for investigative work in a microbiological laboratory. Each unit has about the same air-handling capacity as a conventional air incinerator with a brick stack but costs only about one-third as much. The units are unique in that the burner housing and combustion chamber are air-tight and utilize a portion of the contaminated air stream to support combustion of fuel oil. Operation is continuous. Aerosols of liquid and dry suspensions of Bacillus subtilis var. niger spores and dry vegetative cells of Serratia marcescens were disseminated into the two incinerators to determine the conditions required for sterilization of contaminated air. With the latter organisms (concentration 2.03 x 10(7) cells/ft(3) of air), a temperature of 525 F (274 C), measured at the firebox in front of the heat exchanger, was sufficient for sterilization. To sterilize 1.74 x 10(7) and 1.74 x 10(9) wet spores of B. subtilis per ft(3), the required temperature ranged from 525 to 675 F (274 to 357 C) and 625 to 700 F (329 to 371 C), respectively. Air-sterilization temperature varied with each incinerator. This was because of innate differences of fabrication, different spore concentrations, and use of one or two burners With dry B. subtilis spores (1.86 x 10(8)/ft(3)), a temperature of 700 F was required for sterilization. With dry spores, no difference was noted in the sterilization temperature for the two incinerators.  相似文献   

14.
Outgrowth of B. subtilis spores depends on the action of DNA gyrase (comp. Matsuda and Kameyama 1980). Application of nalidixic acid (100 micrograms/ml) to dormant spores of Bacillus subtilis prevents the outgrowth. Application of nalidixic acid (100 micrograms/ml) during the early outgrowth phase (after a 20 min germination period) does not prevent, but only delay spore outgrowth. Germination of spores is not influenced. Nalidixic acid is an effective inhibitor of RNA synthesis in outgrowing spores, whereas vegetative cells are more resistant. Spores can grow out inspite of a remarkably reduced intensity of RNA synthesis. Nalidixic acid particularly inhibits the synthesis of stable RNA, probably that of ribosomal RNA. We suggest that DNA gyrase-catalyzed alterations in DNA structure are involved in the regulation of the gene expressional program of outgrowing B. subtilis spores.  相似文献   

15.
The feasibility of utilizing vapor-phase hydrogen peroxide (VPHP) as a surface decontaminant and sterilant was evaluated in a centrifuge application. The prototype VPHP decontamination system, retrofitted into a Beckman L8-M ultracentrifuge, was designed to vaporize a 30% (wt/wt) solution of aqueous hydrogen peroxide continuously injecting and withdrawing VPHP in a deep-vacuum flow-through system. VPHP cycles of 4, 8, 16, and 32 min were examined for cidal activity against spores of Bacillus subtilis subsp. globigii and Bacillus stearothermophilus. Spore inocula (approximately 10(6)/coupon) were dried onto 0.5-in. (1.27-cm)-square stainless-steel coupons, and coupons were suspended in the centrifuge chamber, the space between the refrigeration can and the barrier ring (inner gap), and the space between the barrier ring and the vacuum ring (outer gap). At a chamber temperature of 4 degrees C, B. subtilis subsp. globigii spores were inactivated within 8 min, while inactivation of spores located in the outer gap at 27 degrees C required 32 min. The elevated temperature and high surface area/volume ratios in the outer gap may serve to decompose the gas more rapidly, thus reducing cidal efficacy. Of the two test spores, B. stearothermophilus was more resistant to VPHP. Nonetheless, VPHP was shown to possess significant sporicidal capability. For practical decontamination applications of the type described, VPHP shows promise as an effective and safer alternative to currently used ethylene oxide or formaldehyde vapors.  相似文献   

16.
A marker rescue system based on the repair of the kanamycin resistance gene nptII was constructed for use in Gram-positive bacteria and established in Bacillus subtilis 168. Marker rescue was detected in vitro using different types of donor DNA containing intact nptII. The efficiency of marker rescue using chromosomal DNA of E. coli Sure as well as plasmids pMR2 or pSR8-30 ranged from 3.8 x 10(-8) to 1.5 x 10(-9) transformants per nptII gene. Low efficiencies of ca. 10(-12) were obtained with PCR fragments of 792 bp obtained from chromosomal DNA of E. coli Sure or DNA from a transgenic potato. B. subtilis developed competence during growth in milk and chocolate milk, and marker rescue transformation was detected with frequencies of ca. 10(-6) and 10(-8), respectively, using chromosomal DNA of E. coli Sure as donor DNA. Although the copy number of nptII genes of the plant DNA exceeded that of chromosomal E. coli DNA in the marker rescue experiments, a transfer of DNA from the transgenic plant to B. subtilis was detectable neither in vitro nor in situ.  相似文献   

17.
18.
HBsu, the Bacillus subtilis homolog of the Escherichia coli HU proteins and the major chromosomal protein in vegetative cells of B. subtilis, is present at similar levels in vegetative cells and spores ( approximately 5 x 10(4) monomers/genome). The level of HBsu in spores was unaffected by the presence or absence of the alpha/beta-type, small acid-soluble proteins (SASP), which are the major chromosomal proteins in spores. In developing forespores, HBsu colocalized with alpha/beta-type SASP on the nucleoid, suggesting that HBsu could modulate alpha/beta-type SASP-mediated properties of spore DNA. Indeed, in vitro studies showed that HBsu altered alpha/beta-type SASP protection of pUC19 from DNase digestion, induced negative DNA supercoiling opposing alpha/beta-type SASP-mediated positive supercoiling, and greatly ameliorated the alpha/beta-type SASP-mediated increase in DNA persistence length. However, HBsu did not significantly interfere with the alpha/beta-type SASP-mediated changes in the UV photochemistry of DNA that explain the heightened resistance of spores to UV radiation. These data strongly support a role for HBsu in modulating the effects of alpha/beta-type SASP on the properties of DNA in the developing and dormant spore.  相似文献   

19.
Phase intensity changes of individual germinating spores of Bacillus subtilis were determined by phase-contrast light microscopy and image analysis. Two germination phases were investigated. The length of the time period before a change in phase brightness was evident and the duration of the phase intensity change until a constant greylevel was maintained. The incubation temperature (37 and 20 °C) and heat activation (10 min at 65 °C) had a distinct effect on both phases. At 37 °C, spores of B. subtilis 604 started to show a decrease in brightness in l -alanine buffer after 3–39 min and needed 10–39 min to complete the phase change. At 20 °C, lag times of 10–100 min were observed and the spores needed 30–100 min to reach a constant greylevel. Heat activation and subsequently exposure to l -alanine buffer at 20 °C reduced the lag phase to 6–90 min and the phase change was finished after 30–60 min. Our results indicate enzymatic involvement before and during the phase intensity change of germinating spores.  相似文献   

20.
A procedure for high-yield spore production by Bacillus subtilis   总被引:1,自引:0,他引:1  
Bacillus subtilis spores have a number of potential applications, which include their use as probiotics and competitive exclusion agents to control zoonotic pathogens in animal production. The effect of cultivation conditions on Bacillus subtilis growth and sporulation was investigated in batch bioreactions performed at a 2-L scale. Studies of the cultivation conditions (pH, dissolved oxygen concentration, and media composition) led to an increase of the maximum concentration of vegetative cell from 2.6 x 10(9) to 2.2 x 10(10) cells mL(-)(1) and the spore concentration from 4.2 x 10(8) to 5.6 x 10(9) spores mL(-)(1). A fed-batch bioprocess was developed with the addition of a nutrient feeding solution using an exponential feeding profile obtained from the mass balance equations. Using the developed feeding profile, starting at the middle of the exponential growth phase and finishing in the late exponential phase, an increase of the maximum vegetative cell concentration and spore concentration up to 3.6 x 10(10) cells mL(-)(1) and 7.4 x 10(9) spores mL(-)(1), respectively, was obtained. Using the developed fed-batch bioreaction a 14-fold increase in the concentration of the vegetative cells was achieved. Moreover, the efficiency of sporulation under fed-batch bioreaction was 21%, which permitted a 19-fold increase in the final spore concentration, to a final value of 7.4 x 10(9) spores mL(-)(1). This represents a 3-fold increase relative to the highest reported value for Bacillus subtilis spore production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号