首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 286 毫秒
1.
Complex neurodevelopmental disorders, such as schizophrenia, autism, attention deficit (hyperactivity) disorder, (manic) depressive illness and addiction, are thought to result from an interaction between genetic and environmental factors. Association studies on candidate genes and genome-wide linkage analyses have identified many susceptibility chromosomal regions and genes, but considerable efforts to replicate association have been surprisingly often disappointing. Here, we summarize the current knowledge of the genetic contribution to complex neurodevelopmental disorders, focusing on the findings from association and linkage studies. Furthermore, the contribution of the interaction of the genetic with environmental and epigenetic factors to the aetiology of complex neurodevelopmental disorders as well as suggestions for future research are discussed.Key Words: Neurodevelopmental disorders, susceptibility genes, environmental factors, gene-environment interactions, association studies, linkage analysis.  相似文献   

2.
Most birth defects are etiologically complex disorders caused by combinations of genetic and environmental factors, but most studies of birth defect etiology have examined only genetic factors or only environmental factors and have not considered interactions among them. Genome-wide epigenetic studies, which use the same genomic technologies that have revolutionized our ability to identify genetic causes of disease, provide an attractive way to study gene-environment interactions. However, finding an association between epigenetic variation and an etiologically complex birth defect without knowledge of the genetic variation and environmental exposures affecting the individuals who were studied usually provides little or no information regarding the cause of the disorder. In order for genome-wide studies of epigenetic variation to contribute to our understanding of the causes of birth defects, these studies must be combined with studies of environmental exposures and studies of genetic variation in the same subjects. Under such circumstances, epigenetic studies may help to establish the molecular basis for gene-environment interactions.  相似文献   

3.
Many environmental risk factors for common, complex human diseases have been revealed by epidemiologic studies, but how genotypes at specific loci modulate individual responses to environmental risk factors is largely unknown. Gene-environment interactions will be missed in genome-wide association studies and could account for some of the 'missing heritability' for these diseases. In this review, we focus on asthma as a model disease for studying gene-environment interactions because of relatively large numbers of candidate gene-environment interactions with asthma risk in the literature. Identifying these interactions using genome-wide approaches poses formidable methodological problems, and elucidating molecular mechanisms for these interactions has been challenging. We suggest that studying gene-environment interactions in animal models, although more tractable, might not be sufficient to shed light on the genetic architecture of human diseases. Lastly, we propose avenues for future studies to find gene-environment interactions.  相似文献   

4.
Chronic psychosocial stress is increasingly being recognised as a risk factor for sporadic Alzheimer's disease (AD). The hypothalamic–pituitary–adrenal axis (HPA axis) is the major stress response pathway in the body and tightly regulates the production of cortisol, a glucocorticoid hormone. Dysregulation of the HPA axis and increased levels of cortisol are commonly found in AD patients and make a major contribution to the disease process. The underlying mechanisms remain poorly understood. In addition, within the general population there are interindividual differences in sensitivities to glucocorticoid and stress responses, which are thought to be due to a combination of genetic and environmental factors. These differences could ultimately impact an individuals’ risk of AD. The purpose of this review is first to summarise the literature describing environmental and genetic factors that can impact an individual's HPA axis reactivity and function and ultimately AD risk. Secondly, we propose a mechanism by which genetic factors that influence HPA axis reactivity may also impact inflammation, a key driver of neurodegeneration. We hypothesize that these factors can mediate glucocorticoid priming of the immune cells of the brain, microglia, to become pro-inflammatory and promote a neurotoxic environment resulting in neurodegeneration. Understanding the underlying molecular mechanisms and identifying these genetic factors has implications for evaluating stress-related risk/progression to neurodegeneration, informing the success of interventions based on stress management and potential risks associated with the common use of glucocorticoids.  相似文献   

5.
PURPOSE OF REVIEW: We examine the reasons for investigating gene-environment interactions and address recent reports evaluating interactions between genes and environmental modulators in relation to cardiovascular disease and its common risk factors. RECENT FINDINGS: Studies focusing on smoking, physical activity, and alcohol and coffee consumption are observational and include relatively large sample sizes. They tend to examine single genes, however, and fail to address interactions with other genes and other correlated environmental factors. Studies examining gene-diet interactions include both observational and interventional designs. These studies are smaller, especially those including dietary interventions. Among the reported gene-diet interactions, it is important to highlight the strengthened position of APOA5 as a major gene that is involved in triglyceride metabolism and modulated by dietary factors, and the identification of APOA2 as a modulator of food intake and obesity risk. SUMMARY: The study of gene-environment interactions is an active and much needed area of research. Although technical barriers of genetic studies are rapidly being overcome, inclusion of comprehensive and reliable environmental information represents a significant shortcoming of genetics studies. Progress in this area requires inclusion of larger populations but also more comprehensive, standardized, and precise approaches to capturing environmental information.  相似文献   

6.
Alcohol abuse and alcoholism incur a heavy socioeconomic cost in many countries. Both genetic and environmental factors contribute to variation in the inebriating effects of alcohol and alcohol addiction among individuals within and across populations. From a genetics perspective, alcohol sensitivity is a quantitative trait determined by the cumulative effects of multiple segregating genes and their interactions with the environment. This review summarizes insights from model organisms as well as human populations that represent our current understanding of the genetic and genomic underpinnings that govern alcohol metabolism and the sedative and addictive effects of alcohol on the nervous system.  相似文献   

7.
The risk for neuropsychiatric illnesses has a strong sex bias, and for major depressive disorder (MDD), females show a more than 2-fold greater risk compared to males. Such mood disorders are commonly associated with a dysregulation of the hypothalamo-pituitary-adrenal (HPA) axis. Thus, sex differences in the incidence of MDD may be related with the levels of gonadal steroid hormone in adulthood or during early development as well as with the sex differences in HPA axis function. In rodents, organizational and activational effects of gonadal steroid hormones have been described for the regulation of HPA axis function and, if consistent with humans, this may underlie the increased risk of mood disorders in women. Other developmental factors, such as prenatal stress and prenatal overexposure to glucocorticoids can also impact behaviors and neuroendocrine responses to stress in adulthood and these effects are also reported to occur with sex differences. Similarly, in humans, the clinical benefits of antidepressants are associated with the normalization of the dysregulated HPA axis, and genetic polymorphisms have been found in some genes involved in controlling the stress response. This review examines some potential factors contributing to the sex difference in the risk of affective disorders with a focus on adrenal and gonadal hormones as potential modulators. Genetic and environmental factors that contribute to individual risk for affective disorders are also described. Ultimately, future treatment strategies for depression should consider all of these biological elements in their design.  相似文献   

8.
Interactions between genetic and early environmental factors are recognized to play a critical role in modulating susceptibility to disease, particularly mental illness. In order to better understand such mechanisms at the molecular level, we have developed a screening paradigm in mice that allows us to test the ability of targeted mutations in candidate genes to modify susceptibility to the long-term effects of different maternal environment. Offspring of genetically identical F1 hybrid dams produced by reciprocal breeding of C57BL/6 and BALB/c parents show alterations in anxiety-related behavior as a consequence of their different maternal environment. Introduction of targeted mutations into these offspring via the father allows for the identification of candidate genes that alter these maternal effects. Our strategy offers several advantages over other methods to study maternal effects, including the use of genetically identical parents, the ability to identify both prenatal and postnatal effects, the straightforward introduction of mutations and its adaptability to high-throughput screening. In order to test the utility of this paradigm to screen candidate genes, we tested for gene-environment interactions involving loss-of-function mutations in the serotonin 1A receptor gene. Our studies demonstrate that early gene-environment interactions can be successfully tested in the mouse. When combined with conditional gene targeting and other molecular genetic techniques available in the mouse, this approach has the potential to identify the molecular mechanisms underlying early gene-environment effects.  相似文献   

9.
It has long been established that the development of psychiatric illness results from a complex interplay between genetic and environmental factors. Postmortem and genetic linkage studies have identified a number of promising candidate genes which have been reinforced by replication and functional studies. However, the fact that concordance rates for monozygotic twins rarely approach 100% highlights the involvement of environmental factors. Whilst epidemiological studies of psychiatric cohorts have demonstrated potential risk factors, such studies are clearly limited and in many cases the potential mechanism linking a given risk factor with pathogenesis remains unclear. A very powerful method of elucidating the mechanisms underlying gene-environment interactions is the use of appropriate animal models of psychiatric pathology. Whilst animals cannot be used to map the entire complexity of diseases such as schizophrenia, dissecting the symptom profile into more simply encapsulated traits or endophenotypes has proved to be a successful approach. Such endophenotypes provide a measurable link between aetiological factors and phenotypic outcome. Given the potential for the careful control and modification of an experimental animal's environment, the combination of studies of candidate genes with investigations of environmental factors is an effective heuristic tool, allowing examination of behavioural endophenotypes in conjunction with cellular and molecular outcomes. This review will consider the extant genetic, molecular, pharmacological and lesion-based models of psychiatric disorders, and the relevant methods of environmental manipulation appearing in the literature. We will discuss studies where such models have been combined, and the potential for future experimentation in this area.  相似文献   

10.
Alcoholism is a heritable disease that afflicts about 8% of the adult population. Its development and symptoms, such as craving, loss of control, physical dependence, and tolerance, have been linked to changes in mesolimbic, mesocortical neurotransmitter systems utilizing biogenic amines, GABA, and glutamate. Identification of genes predisposing to alcoholism, or to alcohol-related behaviors in animal models, has been elusive because of variable interactions of multiple genes with relatively small individual effect size and sensitivity of the predisposing genotype to lifestyle and environmental factors. Here, using near-isogenic advanced animal models with reduced genetic background interactions, we integrate gene mapping and gene mRNA expression data in segregating and congenic mice and identify glutamate receptor metabotropic 7 (Grm7) as a cis-regulated gene for alcohol consumption. Traditionally, the mesoaccumbal dopamine reward hypothesis of addiction and the role of the ionotropic glutamate receptors have been emphasized. Our results lend support to an emerging direction of research on the role of metabotropic glutamate receptors in alcoholism and drug addiction. These data suggest for the first time that Grm7 is a risk factor for alcohol drinking and a new target in addiction therapy.  相似文献   

11.
Injury to the cellular components of the vascular wall and blood by endogenous and exogenous chemicals has been associated with atherosclerosis in humans and experimental systems. The genetic and molecular mechanisms responsible for initiation and promotion of atherosclerotic changes include modulation of extracellular matrix-integrin axis, genes involved in the regulation of growth and differentiation and possibly, genomic stability. This review summarizes seminal studies over the past 20 years that shed light on critical gene-gene and gene-environment interactions mediating the atherogenic response to chemical injury.  相似文献   

12.
13.
Studies of gene-environment interactions aim to describe how genetic and environmental factors jointly influence the risk of developing a human disease. Gene-environment interactions can be described by using several models, which take into account the various ways in which genetic effects can be modified by environmental exposures, the number of levels of these exposures and the model on which the genetic effects are based. Choice of study design, sample size and genotyping technology influence the analysis and interpretation of observed gene-environment interactions. Current systems for reporting epidemiological studies make it difficult to assess whether the observed interactions are reproducible, so suggestions are made for improvements in this area.  相似文献   

14.
15.
16.
Variance components models for gene-environment interaction in twin analysis.   总被引:10,自引:0,他引:10  
Gene-environment interaction is likely to be a common and important source of variation for complex behavioral traits. Often conceptualized as the genetic control of sensitivity to the environment, it can be incorporated in variance components twin analyses by partitioning genetic effects into a mean part, which is independent of the environment, and a part that is a linear function of the environment. The model allows for one or more environmental moderator variables (that possibly interact with each other) that may i). be continuous or binary ii). differ between twins within a pair iii). interact with residual environmental as well as genetic effects iv) have nonlinear moderating properties v). show scalar (different magnitudes) or qualitative (different genes) interactions vi). be correlated with genetic effects acting upon the trait, to allow for a test of gene-environment interaction in the presence of gene-environment correlation. Aspects and applications of a class of models are explored by simulation, in the context of both individual differences twin analysis and, in a companion paper (Purcell & Sham, 2002) sibpair quantitative trait locus linkage analysis. As well as elucidating environmental pathways, consideration of gene-environment interaction in quantitative and molecular studies will potentially direct and enhance gene-mapping efforts.  相似文献   

17.
18.
The interest in performing gene-environment interaction studies has seen a significant increase with the increase of advanced molecular genetics techniques. Practically, it became possible to investigate the role of environmental factors in disease risk and hence to investigate their role as genetic effect modifiers. The understanding that genetics is important in the uptake and metabolism of toxic substances is an example of how genetic profiles can modify important environmental risk factors to disease. Several rationales exist to set up gene-environment interaction studies and the technical challenges related to these studies-when the number of environmental or genetic risk factors is relatively small-has been described before. In the post-genomic era, it is now possible to study thousands of genes and their interaction with the environment. This brings along a whole range of new challenges and opportunities. Despite a continuing effort in developing efficient methods and optimal bioinformatics infrastructures to deal with the available wealth of data, the challenge remains how to best present and analyze genome-wide environmental interaction (GWEI) studies involving multiple genetic and environmental factors. Since GWEIs are performed at the intersection of statistical genetics, bioinformatics and epidemiology, usually similar problems need to be dealt with as for genome-wide association gene-gene interaction studies. However, additional complexities need to be considered which are typical for large-scale epidemiological studies, but are also related to "joining" two heterogeneous types of data in explaining complex disease trait variation or for prediction purposes.  相似文献   

19.
Psychiatric phenotypes are multifactorial and polygenic, resulting from the complex interplay of genes and environmental factors that act cumulatively throughout an organism's lifetime. Adverse life events are strong predictors of risk for a number of psychiatric disorders and a number of studies have focused on gene–environment interactions (GxEs) occurring at genetic loci involved in the stress response. Such a locus that has received increasing attention is the gene encoding FK506 binding protein 51 (FKBP5), a heat shock protein 90 cochaperone of the steroid receptor complex that among other functions regulates sensitivity of the glucocorticoid receptor. Interactions between FKBP5 gene variants and life stressors alter the risk not only for mood and anxiety disorders, but also for a number of other disease phenotypes. In this review, we will focus on molecular and system‐wide mechanisms of this GxE with the aim of establishing a framework that explains GxE interactions. We will also discuss how an understanding of the biological effects of this GxE may lead to novel therapeutic approaches .  相似文献   

20.
The completion of the human genome project will provide a vast amount of information about human genetic diversity. One of the major challenges for the medical sciences will be to relate genotype to phenotype. Over recent years considerable progress has been made in relating the molecular pathology of monogenic diseases to the associated clinical phenotypes. Studies of the inherited disorders of haemoglobin, notably the thalassaemias, have shown how even in these, the simplest of monogenic diseases, there is remarkable complexity with respect to their phenotypic expression. Although studies of other monogenic diseases are less far advanced, it is clear that the same level of complexity will exist. This information provides some indication of the difficulties that will be met when trying to define the genes that are involved in common multigenic disorders and, in particular, in trying to relate disease phenotypes to the complex interactions between many genes and multiple environmental factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号