首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A comparative study was performed on the venoms of the crotaline snake Atropoides nummifer from Guatemala and Honduras. SDS-polyacrylamide gel electrophoresis, under reducing conditions, revealed a highly similar pattern of these venoms, and between them and the venom of the same species from Costa Rica. Similar patterns were also observed in ion-exchange chromatography on CM-Shephadex C-25, in which a highly basic myotoxic fraction was present. This fraction was devoid of phospholipase A2 activity and strongly reacted, by enzyme-immunoassay, with an antiserum against Bothrops asper myotoxin II, a Lys-49 phospholipase A2 homologue. A basic myotoxin of 16 kDa was isolated to homogeneity from the venom of A. nummifer from Honduras, showing amino acid composition and N-terminal sequence similar to those of Lys-49 phospholipase A2 variants previously isolated from other crotaline snake venoms. Guatemalan and Honduran A. nummifer venoms have a qualitatively similar toxicological profile, characterized by: lethal; hemorrhagic; myotoxic; edema-forming; coagulant; and defibrinating activities, although there were significant quantitative variations in some of these activities between the two venoms. Neutralization of toxic activities by two commercially-available antivenoms in the region was studied. Polyvalent antivenom produced by Instituto Clodomiro Picado was effective in the neutralization of: lethal; hemorrhagic; myotoxic; coagulant; defibrinating; and phospholipase A2 activities, but ineffective against edema-forming activity. On the other hand, MYN polyvalent antivenom neutralized: hemorrhagic; myotoxic; coagulant; defibrinating; and phospholipase A2 activities, albeit with a lower potency than Instituto Clodomiro Picado antivenom. MYN antivenom failed to neutralize lethal and edema-forming activities of A. nummifer venoms.  相似文献   

2.
Envenomations by the southern Pacific rattlesnake (Crotalus oreganus helleri) are the most common snakebite accidents in southern California. Intraspecies venom variation may lead to unresponsiveness to antivenom therapy. Even in a known species, venom toxins are recognized as diverse in conformity with interpopulational, seasonal, ontogenetic and individual factors. Five venoms of individual C. oreganus helleri located in Riverside and San Bernardino counties of southern California were studied for their variation in their hemostatic activity. The results demonstrated that Riverside 2 and San Bernardino 1 venoms presented the highest lethal activity without hemorrhagic activity. In contrast, San Bernardino 2 and 3 venoms had the highest hemorrhagic and fibrinolytic activities with low lethal and coagulant activities. Riverside 1, Riverside 2 and San Bernardino 1 venoms presented a significant thrombin-like activity. San Bernardino 2 and 3 venoms presented an insignificant thrombin-like activity. In relation to the fibrinolytic activity, San Bernardino 3 venom was the most active on fibrin plates, which was in turn neutralized by metal chelating inhibitors. These results demonstrate the differences amongst C. oreganus helleri venoms from close localities. A metalloproteinase, hellerase, was purified by anionic and cationic exchange chromatographies from San Bernardino 3 venom. Hellerase exhibited the ability to break fibrin clots in vitro, which can be of biomedically importance in the treatment of heart attacks and strokes.  相似文献   

3.
A thrombin-like enzyme named BjussuSP-I, isolated from B. jararacussu snake venom, is an acidic single chain glycoprotein with approximately 6% sugar, Mr=61,000 under reducing conditions and pI approximately 3.8, representing 1.09% of the chromatographic A(280) recovery. BjussuSP-I is a glycosylated serine protease containing both N-linked carbohydrates and sialic acid in its structure. BjussuSP-I showed a high clotting activity upon human plasma, which was inhibited by PMSF, leupeptin, heparin and 1,10-phenantroline. This enzyme showed high stability regarding coagulant activity when analyzed at different temperatures (-70 to 37 degrees C), pHs (4.5 to 8.0), and presence of two divalent metal ions (Ca(2+) and Mg(2+)). It also displayed TAME esterase and proteolytic activities toward natural (fibrinogen and fibrin) and synthetic (BAPNA) substrates, respectively, being also inhibited by PMSF and leupeptin. BjussuSP-I can induce production of polyclonal antibodies able to inhibit its clotting activity, but unable to inhibit its proteolytic activity on fibrinogen. The enzyme also showed crossed immunoreactivity against 11 venom samples of Bothrops, 1 of Crotalus, and 1 of Calloselasma snakes, in addition of LAAO isolated from B. moojeni venom. It displayed neither hemorrhagic, myotoxic, edema-inducing profiles nor proteolytic activity on casein. BjussuSP-I showed an N-terminal sequence (VLGGDECDINEHPFLA FLYS) similar to other thrombin-like enzymes from snake venoms. Based on its biochemical, enzymatic and pharmacological characteristics, BjussuSP-I was identified as a new thrombin-like enzyme isoform from Bothrops jararacussu snake venom.  相似文献   

4.
Snake venoms of the Viperidae family contain a numberof proteins that cause hemostatic disturbances. Enveno-mation of this family is characterized by hemorrhage,edema, local tissue damage, myonecrosis, fibrinolytic andkinin releasing activities [1]. In southeastern Brazil, theviper Bothrops jararaca (Viperidae) is responsible for 90%of snakebite accidents [2]. The enzymes that have proteolytic, coagulate andhemorraghic activities can activate or interfere withthe process of coagulation, and…  相似文献   

5.
Viperid snakes show the most complex snake‐venom proteomes and offer an intriguing challenge in terms of understanding the nature of their components and the pathological outcomes of envenomation characterized by local and systemic effects. In this work, the venom complexity of eight Bothrops species was analyzed by 2‐DE, and their subproteomes of proteinases were explored by 2‐D immunostaining and 2‐D gelatin zymography, demonstrating the diversity of their profiles. Heparin, a highly sulfated glycosaminoglycan released from mast cells, is involved in anti‐coagulant and anti‐inflammatory processes. Here, we explored the hypothesis that heparin released upon envenomation could interact with toxins and interfere with venom pathogenesis. We first identified the Bothrops venom subproteome of toxins that bind with high‐affinity for heparin as composed of mainly serine proteinases and C‐type lectins. Next, we explored the Bothrops jararaca toxins that bind to heparin under physiological conditions and identified a relationship between the subproteomes of proteinases, and that of heparin‐binding toxins. Only the non‐bound fraction, composed mainly of metalloproteinases, showed lethal and hemorrhagic activities, whereas the heparin‐bound fraction contained mainly serine proteinases associated with coagulant and fibrinogenolytic activities. These data suggest that heparin binding to B. jararaca venom components in vivo has a minor protective effect to venom toxicity.  相似文献   

6.
The venom proteomes of the snakes Bothrops caribbaeus and Bothrops lanceolatus, endemic to the Lesser Antillean islands of Saint Lucia and Martinique, respectively, were characterized by reverse-phase HPLC fractionation, followed by analysis of each chromatographic fraction by SDS-PAGE, N-terminal sequencing, MALDI-TOF mass fingerprinting, and collision-induced dissociation tandem mass spectrometry of tryptic peptides. The venoms contain proteins belonging to seven ( B. caribbaeus) and five ( B. lanceolatus) types of toxins. B. caribbaeus and B. lanceolatus venoms contain phospholipases A 2, serine proteinases, l-amino acid oxidases and zinc-dependent metalloproteinases, whereas a long disintegrin, DC-fragments and a CRISP molecule were present only in the venom of B. caribbaeus, and a C-type lectin-like molecule was characterized in the venom of B. lanceolatus. Compositional differences between venoms among closely related species from different geographic regions may be due to evolutionary environmental pressure acting on isolated populations. The venoms of these two species differed in the composition and the relative abundance of their component toxins, but they exhibited similar toxicological and enzymatic profiles in mice, characterized by lethal, hemorrhagic, edema-forming, phospholipase A 2 and proteolytic activities. The venoms of B. caribbaeus and B. lanceolatus are devoid of coagulant and defibrinogenating effects and induce only mild local myotoxicity in mice. The characteristic thrombotic effect described in human envenomings by these species was not reproduced in the mouse model. The toxicological profile observed is consistent with the abundance of metalloproteinases, PLA 2s and serine proteinases in the venoms. A polyvalent (Crotalinae) antivenom produced in Costa Rica was able to immunodeplete approximately 80% of the proteins from both B. caribbaeus and B. lanceolatus venoms, and was effective in neutralizing the lethal, hemorrhagic, phospholipase A 2 and proteolytic activities of these venoms.  相似文献   

7.
High molecular mass kininogen (HK) purified from Bothrops jararaca (Bj) plasma was tested on activities of the Bj venom in vivo and in vitro. Results showed that, when incubated with BjHK, the Bj venom presented inhibition on hemorrhagic, edema forming, myotoxic, and coagulant activities. It is well known that metalloproteinases are directly or indirectly involved in these activities. Similarly, human HK inhibits the hemorrhagic effect of the Bj venom as well as hemorrhagic and enzymatic effects of jararhagin, a hemorrhagic metalloproteinase isolated from Bj venom. Complex between HK and jararhagin was not detected by gel filtration. Nevertheless, the inhibitory effect of the hemorrhagic activity of the venom was only partial when HK was pre-incubated with 0.4mM ZnCl(2) or with 0.45mM CaCl(2). These data suggest that the inhibitory effect depends, at least partially, on the competition for ions between kininogen and metalloproteinases of the venom.  相似文献   

8.
We studied the ability of the polyvalent antivenom produced in Costa Rica to neutralize lethal, hemorrhagic, edema-forming, proteolytic, hemolytic, hyaluronidase and fibrinolytic activities of the venoms of Bothrops asper and B. nummifer from Honduras, and of Agkistrodon bilineatus and Crotalus durissus durissus from Guatemala. Neutralizing ability of antivenom was expressed as ED50 (effective dose 50%), defined as the antivenom/venom ratio at which the activity of the venom is reduced 50%. Antivenom is highly effective in the neutralization of lethal, hemorrhagic, hemolytic, hyaluronidase, and caseinolytic activities of B. asper, B. nummifer, and C. d. durissus venoms. In the case of B. nummifer venom, neutralization of fibrinolytic effect was only partial, whereas this activity was adequately neutralized when studying the venoms of B. asper and C. d. durissus. The venom of A. bilineatus was adequately neutralized by the antivenom, with the only exception of hemolytic effect that was reduced only partially. However, in quantitative terms, a relatively large volume of antivenom was required to neutralize some effects induced by A. bilineatus venom. Regarding edema-forming activity, antivenom neutralized efficiently the venoms of B. asper and A. bilineatus, whereas that of B. nummifer was neutralized only partially; on the other hand, edema induced by the venom of C. d. durissus was not neutralized at all. Immunochemical results indicate a close immunological relationship between venoms of B. asper, B. nummifer and C. d. durissus collected in Honduras and Guatemala with those of the same species collected in Costa Rica. Interspecies comparison, however, showed variation between venoms obtained from different species.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Proteomic analysis of wound exudates represents a valuable tool to investigate tissue pathology and to assess the therapeutic success of various interventions. In this study, the ability of horse-derived IgG and F(ab')(2) antivenoms to neutralize local pathological effects induced by the venom of the snake Bothrops asper in mouse muscle was investigated by the proteomic analysis of exudates collected in the vicinity of affected tissue. In experiments involving the incubation of venom and antivenom prior to injection in mice, hemorrhagic activity was completely abolished and local muscle-damaging activity was significantly reduced by the antivenoms. In these conditions, the relative amounts of several intracellular and extracellular matrix proteins were reduced by the action of antivenoms, whereas the relative amounts of various plasma proteins were not modified. Because not all intracellular proteins were reduced, it is likely that there is a residual cytotoxicity not neutralized by antivenoms. In experiments designed to more closely reproduce the actual circumstances of envenoming, that is, when antivenom is administered after envenomation, the number of proteins whose amounts in exudates were reduced by antivenoms decreased, underscoring the difficulty in neutralizing local pathology due to the very rapid onset of venom-induced pathology. In these experiments, IgG antivenom was more efficient than F(ab')(2) antivenom when administered after envenomation, probably as a consequence of differences in their pharmacokinetic profiles.  相似文献   

10.
Bothrops colombiensis venom from two similar geographical locations were tested for their hemostatic functions and characterized by gel-filtration chromatography and SDS-PAGE electrophoresis. The snakes were from Caucagua and El Guapo towns of the Venezuelan state of Miranda. Fibrino(geno)lytic, procoagulant, hemorrhagic, lethal activities, gel-filtration chromatography and SDS-PAGE profiles were analyzed and compared for both venoms. The highest hemorrhagic activity of 5.3 mug was seen in El Guapo venom while Caucagua venom had the lowest LD(50) of 5.8 mg/kg. Both venoms presented similar thrombin-like activity. El Guapo showed a factor Xa-like activity two times higher than Caucagua. Differences were observed in kallikrein-like and t-PA activities, being highest in El Guapo. Caucagua venom showed the maximum fibrin lysis. Both crude venom runs on Sephadex G-100 chromatography gave fraction SII with the high fibrinolytic activity. Proteases presented in SII fractions and eluted from Benzamidine-Sepharose (not bound to the column) provoked a fast degradation of fibrinogen alpha chains and a slower degradation of beta chains, which could possibly be due to a higher content of alpha fibrinogenases in these venoms. The fibrinogenolytic activity was decreased by metalloprotease inhibitors. The results suggested that metalloproteases in SII fractions were responsible for the fibrinolytic activity. The analysis of samples for fibrin-zymography of SII fractions showed an active band with a molecular mass of approximately 30 kDa. These results reiterate the importance of using pools of venoms for antivenom immunization, to facilitate the neutralization of the maximum potential number of toxins.  相似文献   

11.
We report the proteomic characterization of venom of the pitvipers Bothrops cotiara and Bothrops fonsecai. Crude venoms were fractionated by reverse-phase HPLC, followed by SDS-PAGE, N-terminal sequencing, MALDI-TOF mass fingerprinting, and CID-MS/MS. Each venom contained around 30 proteins in the range of 7-110 kDa belonging to only 8 (B. cotiara) and 9 (B. fonsecai) families which may target the hemostatic system, albeit distinctly distributed among the two species. B. cotiara and B. fonsecai share medium-sized disintegrins, disintegrin-like/cysteine-rich (DC) fragments, snake venom vascular endothelial growth factor, cysteine-rich secretory proteins, serine proteinases, C-type lectins, l-amino acid oxidase, and Zn(2+)-dependent metalloproteinases. In addition, B. fonsecai expresses a high abundance PLA(2) molecule (13,890 Da), whereas PLA(2) molecules were not detected in B. cotiara's venom. This striking finding is in line with previous biochemical analyses showing the absence of phospholipasic activity in the venom of B. cotiara. The potential adaptive significance of the lack of PLA(2) molecules is enigmatic, and alternative explanations are discussed. B. fonsecai is morphologically extremely similar to B. cotiara. Our comparative proteomic analysis shows that compositional differences between their venoms can be employed as a taxonomy signature for unambiguous species identification independently of geographic origin and morphological characteristics.  相似文献   

12.
The toxicity and immunochemical properties of Tityus pachyurus Pocock scorpion venom was characterized, as well as the neutralization capacity against it by three anti-scorpion antivenoms (Alacramyn, Instituto Bioclón, México; Suero antiescorpiónico, Instituto Butantán, Sao Paulo, Brasil; and Suero antiescorpiónico, Centro de Biotecnología, Universidad Central de Venezuela, Caracas, Venezuela). The venom yield, obtained by manual milking, 680+/-20 microg venom, a 50% lethal dose in mice was 4.8 microg/kg (90 microg for an 18-20 g mouse). The most common symptoms of venom poisoning in mice were sialorrhea, respiratory distress, profuse sweating, ataxia, behavior alterations (restlessness, somnolence) and hyperglycemia at 3 and 24 hours after subcutaneous venom injection (0.5 LD50). The neutralizing capacity of Bioclón (México City) and Butantán (Sao Paulo) antivenoms (for a 50% effective dose) was 330 and 292 microg venom/ml antivenom, respectively. The Biotecnología (Caracas) antivenom did not neutralize the lethal effect of venom. By electrophoresis (SDS-PAGE) was demonstrated that the venom contains proteins from less than 14 kd to 97 kd. The Western blots indicated immunological reactivity of the three antivenoms with most of venom components, including proteins of low molecular mass (<14 kd). The results allow to conclude that T. pachyurus venom is neutralized efficiently by anti-scorpion antivenoms produced in México and Brasil.  相似文献   

13.
1. The elution profiles and the caseinolytic, myotoxic, coagulant and hemorrhagic activities of the venoms of seven Bothrops species fractionated on a Mono-Q FPLC column were analyzed. 2. Each venom separated into 16-20 peaks, with good reproducibility and the activities were concentrated in virtually discrete regions of the chromatogram. 3. There is a considerable overlap of active proteins in the different species venoms and our results indicate that a venom pool with the species B. jararaca, B. jararacussu, B. moojeni, B. neuwiedi and B. atrox venoms would contain the major active proteins determined in the seven species.  相似文献   

14.
Bothrops alcatraz is a new pitviper species derived from the Bothrops jararaca group, whose natural habitat is situated in Alcatrazes Archipelago, a group of marine islands near São Paulo State coast in Brazil. Herein, the biological and biochemical properties of venoms of four adult specimens of B. alcatraz were examined comparatively to a reference pool of Bothrops jararaca venom. Both venoms showed similar activities and electrophoretic patterns, but B. alcatraz venom showed three protein bands of molecular masses of 97, 80 and 38 kDa that were not present in B. jararaca reference venom. The i.p. median lethal dose of B. alcatraz venom ranged from 5.1 to 6.6 mg/kg, while it was 1.5 mg/kg for B. jararaca venom. The minimum hemorrhagic dose of B. jararaca venom was 0.63, whereas 2.28 μg/mouse for B. alcatraz venom. In contrast, B. alcatraz venom was more potent in regard to procoagulant and proteolytic activities. These differences were supported by western blotting and neutralization tests, employing commercial bothropic antivenom, which showed that hemorrhagic and lethal activities of B. alcatraz venom were less effectively inhibited than B. jararaca venom. Such results evidence that B. alcatraz shows quantitative and qualitative differences in venom composition in comparison with its B. jararaca relatives, which might represent an optimization of venom towards a specialized diet.  相似文献   

15.
The lethality neutralization assay performed in mice is the standard recommended by the World Health Organization to estimate antivenom potency. The interpretation of its results without considering its analytical capacity may lead to erroneous conclusions. Therefore, laboratories that manufacture or control antivenoms must demonstrate the appropriateness of their models. A study of the method used at Instituto Clodomiro Picado, Costa Rica, to estimate the potency of antivenoms against Bothrops asper snake venom was performed. Results show that venom doses ranging from 2 to 6 Median Lethal Doses (LD50) are appropriate to be used as challenge in this test. Variables such as the injection route, number of mice used per venom/antivenom level, and weight of the animals are critical in the estimation of the Median Effective Dose (ED50), whereas incubation time is not. The assay has an acceptable selectivity, linearity, and limits of detection and quantification. Accuracy of the lethality neutralization assay, expressed as percentage recovery, was between 71% and 127%. Intermediate precision, expressed as relative standard deviation, was ≤17%. It is concluded that the analytical characteristics of this assay are adequate enough to prove product compliance and to have statistical control over an industrial line of antivenom serial production.  相似文献   

16.
A comparative study was performed on the venoms of adult specimens of the neotropical rattlesnake, Crotalus durissus, from Guatemala, Costa Rica, Venezuela and Brazil, together with the venom of newborn specimens of C. d. durissus from Costa Rica. Venoms from Brazil (C. d. terrificus) and from newborn specimens of C. d. durissus presented an electrophoretic pattern characterized by the predominance of bands with molecular mass of 36 and 15 kDa, whereas those of adult specimens of C. d. durissus from Guatemala and Costa Rica, and C. d. cumanensis from Venezuela, showed a conspicuous band of 62 kDa, and additional bands of 36, 29 and 15 kDa. Moreover, venoms from C. d. terrificus and C. d. cumanensis showed a prominent band of < 10 kDa that probably corresponds to crotamine, since a 'crotamine-like' activity was detected in these venoms upon intraperitoneal injection in mice. Venoms of C. d. terrificus, C. d cumanensis and newborn C. d. durissus induced higher lethal and myotoxic effects than those of adult C. d. durissus. In contrast, adult C. d. durissus and C. d. cumanensis venoms induced hemorrhage, whereas venoms of C. d. terrificus and newborn C. d. durissus lacked this effect. All venoms showed coagulant effect in plasma, the highest activity being observed in the venom of newborn C. d. durissus. An anti-crotalic antivenom produced by Instituto Butantan (Brazil), using C. d. terrificus venom as antigen, was effective in the neutralization of lethal, myotoxic and coagulant effects of all venoms studied, being ineffective in the neutralization of hemorrhagic activity of the venoms of C. d. cumanensis and C. d. durissus. On the other hand, a polyvalent antivenom produced by Instituto Clodomiro Picado (Costa Rica), using the venoms of C. d. durissus. Bothrops asper and Lachesis stenophrys as antigens, was able to neutralize lethal, myotoxic, coagulant and hemorrhagic effects of C. d. durissus venom, but was ineffective in the neutralization of lethality and myotoxicity of C. d. terrificus, C. d. cumanensis and newborn C. d. durissus venom. The high toxicity of South American and newborn C. d. durissus venoms is related to the presence of high concentrations of the neurotoxic phospholipase A2 complex 'crotoxin'. Accordingly, antivenom from Instituto Butantan has a much higher titer of anti-crotoxin antibodies than antivenom from Instituto Clodomiro Picado. Crotalus durissus represents an example of intraspecies variation in venom composition and pharmacology that has relevant pathophysiologic and therapeutic implications.  相似文献   

17.
Antibodies against snake venom or antivenom potency are assayed quantitatively by in-vivo neutralization test in mice, which requires large number of laboratory animals. In potency assays of biological substances such as antivenoms, it is highly desirable to avoid suffering and death of animals by substituting in-vivo method with in-vitro methods, provided such methods measure life-saving capability with precision similar to that of in-vivo method. The in-vitro tests determine the neutralizing power of antivenom by permitting the evaluation of a particular biological activity of the venom and its neutralization after mixing the venom with the antivenom [Theakston RDG, Reid HA. Development of simple standard assay procedures for the characterization of snake venom. Bull WHO 1983;61:949-956; Gutierrez JM, Rojas G, Lomonte B, Gene JA, Chaves F, Alvarado J, et al. Standardizing of assays for testing the neutralizing ability of antivenoms. Toxicon 1990;28:1127-1129; Theakston R.D.G. Comments on letter of Gutierrez et al. on standardization of assays for testing the neutralizing ability of antivenoms. Toxicon 1990;28:1131-1132; Harvey AL, Barfaraz A, Thomson E, Faiz A, Preston S, Harris JB. Screening of snake venom for neurotoxic and myotoxic effects using simple in-vitro preparation from rodents and chicks. Toxicon 1994;32:257-265; World Health Organization Progress in characterization of venom and standardization of anti-venoms. Geneva: WHO offset publication; 1981. p. 58.]. Hence, the ideal requirements for an assay in detecting venom and venom antibody include high level of sensitivity, specificity (ability to differentiate between venom and venom antibody produced by closely related species of snakes), reproducibility and simplicity. A new in-vitro procedure for quantitative analysis of potency of ASVS by passive haemagglutination (PHA) and haemagglutination inhibition (HAI) has been explored. The methods described are simple, rapid, economical, reproducible and useful in replacing the more expensive in-vivo neutralization assays. Moreover, it also eliminates the use of laboratory animals.  相似文献   

18.

Background

Snake bite is a common medical emergency in Papua New Guinea (PNG). The taipan, Oxyuranus scutellatus, inflicts a large number of bites that, in the absence of antivenom therapy, result in high mortality. Parenteral administration of antivenoms manufactured in Australia is the current treatment of choice for these envenomings. However, the price of these products is high and has increased over the last 25 years; consequently the country can no longer afford all the antivenom it needs. This situation prompted an international collaborative project aimed at generating a new, low-cost antivenom against O. scutellatus for PNG.

Methodology/Principal Findings

A new monospecific equine whole IgG antivenom, obtained by caprylic acid fractionation of plasma, was prepared by immunising horses with the venom of O. scutellatus from PNG. This antivenom was compared with the currently used F(ab'')2 monospecific taipan antivenom manufactured by CSL Limited, Australia. The comparison included physicochemical properties and the preclinical assessment of the neutralisation of lethal neurotoxicity and the myotoxic, coagulant and phospholipase A2 activities of the venom of O. scutellatus from PNG. The F(ab'')2 antivenom had a higher protein concentration than whole IgG antivenom. Both antivenoms effectively neutralised, and had similar potency, against the lethal neurotoxic effect (both by intraperitoneal and intravenous routes of injection), myotoxicity, and phospholipase A2 activity of O. scutellatus venom. However, the whole IgG antivenom showed a higher potency than the F(ab'')2 antivenom in the neutralisation of the coagulant activity of O. scutellatus venom from PNG.

Conclusions/Significance

The new whole IgG taipan antivenom described in this study compares favourably with the currently used F(ab'')2 antivenom, both in terms of physicochemical characteristics and neutralising potency. Therefore, it should be considered as a promising low-cost candidate for the treatment of envenomings by O. scutellatus in PNG, and is ready to be tested in clinical trials. Author Summary Snake bite envenoming represents an important public health hazard in Papua New Guinea (PNG). In the southern lowlands of the country the majority of envenomings are inflicted by the taipan, Oxyuranus scutellatus. The only currently effective treatment for these envenomings is the administration of antivenoms manufactured in Australia. However, the price of these products in PNG is very high and has steadily increased over the last 25 years, leading to chronic antivenom shortages in this country. As a response to this situation, an international partnership between PNG, Australia and Costa Rica was initiated, with the aim of generating a new, low-cost antivenom for the treatment of PNG taipan envenoming. Horses were immunised with the venom of O. scutellatus from PNG and whole IgG was purified from the plasma of these animals by caprylic acid precipitation of non-immunoglobulin proteins. The new antivenom, manufactured by Instituto Clodomiro Picado (Costa Rica), was compared with the currently available F(ab'')2 antivenom manufactured by CSL Limited (Australia). Both were effective in the neutralisation of the most relevant toxic effects induced by this venom, although the whole IgG antivenom showed a higher efficacy than the F(ab'')2 antivenom in the neutralisation of the coagulant activity.  相似文献   

19.
Lance-headed snakes are found in Central and South America, and they account for most snakebites in Brazil. The phylogeny of South American pitvipers has been reviewed, and the presence of natural and non-natural hybrids between different species of Bothrops snakes demonstrates that reproductive isolation of several species is still incomplete. The present study aimed to analyze the biological features, particularly the thrombin-like activity, of venoms from hybrids born in captivity, from the mating of a female Bothrops erythromelas and a male Bothrops neuwiedi, two species whose venoms are known to display ontogenetic variation. Proteolytic activity on azocoll and amidolytic activity on N-benzoyl-DL-arginine-p-nitroanilide hydrochloride (BAPNA) were lowest when hybrids were 3 months old, and increased over body growth, reaching values similar to those of the father when hybrids were 12 months old. The clotting activity on plasma diminished as hybrids grew; venoms from 3- and 6-months old hybrids showed low clotting activity on fibrinogen (i.e., thrombin-like activity), like the mother venom, and such activity was detected only when hybrids were older than 1 year of age. Altogether, these results point out that venom features in hybrid snakes are genetically controlled during the ontogenetic development. Despite the presence of the thrombin-like enzyme gene(s) in hybrid snakes, they are silenced during the first six months of life.  相似文献   

20.
Plant natural products active against snake bite--the molecular approach   总被引:1,自引:0,他引:1  
The article surveys the substances identified in plants reputed to neutralize the effects of snake venoms. Protective activity of many of them against the lethal action of the venom of the jararaca (Bothrops jararaca) snake was confirmed by biological assays. It was shown that all belong to chemical classes capable of interacting with macromolecular targets--receptors and enzymes. In a few cases it has been shown that exogenous natural micromolecules can mimic the biological activity of endogenous macromolecules. From the evidence presented, it can be inferred that micromolecules which neutralize the action of snake venoms mechanistically replace endogenous antitoxic serum proteins with venom neutralizing capacity such as produced by some animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号