首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Rapid immobilization of inorganic nitrogen (N) in soil contributes to ecosystem N accumulation, even in old-growth and chronically-fertilized forests once thought to have poor N retention capacity. In old-growth conifer and hardwood stands in Pennsylvania, we tested the hypotheses that biotic and abiotic N immobilization are regulated by N form and forest type. We added 15NH4 +, 15NO2 ?, and 15NO3 ? to sterile (γ-irradiated) and live organic-horizon soil and define N immobilization as the mass of added 15N remaining in soil following extractions conducted 15 min, 24 h, and 21 days later. Immobilization of NO2 ? (19–25% of added N) occurred in sterile soils within 15 min and was little changed thereafter. Tracer NO3 ? immobilization was not observed, although soils had been pretreated (refrigerated) so as to quantify the lower limit of immobilization potential. Immobilization of NH4 + (27%) occurred in live conifer soils by 21 days but not in other treatments. In 21-day incubations, tracer N immobilization was greater in NO3 ?-poor and humic-rich soils. Immobilization was greater in sterile than in live soil, perhaps owing to artifacts of sterilization. Conifer stands exhibited more massive O-horizons, so NO2 ? immobilization per unit area was greater in conifer (1.46 mg N m?2) than hardwood (0.43 mg N m?2) stands, possibly accounting for lower N leaching from conifer forests. Areal immobilization rates appear to be fast enough to retain all N transformed to NO2 ?, so NO2 ? production may be a limiting step in soil N retention in old-growth ecosystems.  相似文献   

2.
A network of long-term monitoring sites on nitrogen (N) input and output of forests across Germany showed that a number of Germany's forests are subject to or are experiencing N saturation and that spruce (Picea abies) stands have high risk. Our study was aimed at (1) quantifying the changes in gross rates of microbial N cycling and retention processes in forest soils along an N enrichment gradient and (2) relating the changes in soil N dynamics to N losses. We selected spruce sites representing an N enrichment gradient (indicated by leaching : throughfall N ratios) ranging from 0.04–0.13 (low N),≤0.26 (intermediate N enrichment) to≥0.42 (highly N enriched). To our knowledge, our study is the first to report on mechanistic changes in gross rates of soil N cycling and abiotic NO3 retention under ambient N enrichment gradient. Gross N mineralization, NH4+ immobilization, gross nitrification, and NO3 immobilization rates increased up to intermediate N enrichment level and somewhat decreased at highly N-enriched condition. The turnover rates of NH4+ and microbial N pools increased while the turnover rates of the NO3 pool decreased across the N enrichment gradient. Abiotic immobilization of NH4+ did not differ across sites and was lower than that of NO3. Abiotic NO3 immobilization decreased across the N enrichment gradient. Microbial assimilation and turnover appeared to contribute largely to the retention of NH4+. The increasing NO3 deposition and decreasing turnover rates of the NO3 pool, combined with decreasing abiotic NO3 retention, possibly contributed to increasing NO3 leaching and gaseous emissions across the N enrichment gradient. The empirical relationships of changes in microbial N cycling across the N enrichment gradient may be integrated in models used to predict responses of forest ecosystems (e.g. spruce) to increasing N deposition.  相似文献   

3.
Subtropical forests receive increasing amounts of atmogenic nitrogen (N), both as ammonium (NH4 +) and nitrate (NO3 ?). Previous long-term studies indicate efficient turnover of atmogenic NH4 + to NO3 ? in weathered, acidic soils of the subtropics, leading to excessive NO3 ? leaching. To clarify the mechanism governing the fate of atmogenic inputs in these soils, we conducted an in situ 15N tracing experiment in the TieShanPing (TSP) forested catchment, SW China. 15NH4NO3, NH 4 15 NO3 and 15N-glutamic acid were applied to an upland hillslope soil and inorganic N, total soil N and nitrous oxide (N2O) were monitored for nine days. Incorporation of 15NO3 ? into soil organic N was negligible and 80% of the applied label was lost from the top soil (0–15 cm) primarily by leaching within 9 days. In contrast, 15NH4 + was largely retained in soil organic N. However, instant production of 15NO3 ? in the 15NH4 + treatment suggested active nitrification. In both the 15NH4 + and 15N-glutamic acid treatments, the 15N enrichment in the NO3 ? pool exceeded that in the NH4 + pool one day after 15N application, suggesting preferential nitrification of added 15NH4 + with subsequent dilution of the NH4 + pool and/or immobilization of 15NH4 + followed by heterotrophic nitrification. The cumulative recovery of 15N in N2O after 9 days ranged from 2.5 to 6.0% in the 15NO3 ? treatment, confirming the previously reported significant response of N2O emission to N deposition. Source partitioning of 15N2O demonstrated a measurable contribution of nitrification to N2O emissions, particularly at low soil moistures. Our study emphasizes the role of a fast-cycling organic N pool (including microbial N) for retention and transformation of atmogenic NH4 + in subtropical, acid forest soils. Thus, it explains the near-quantitative leaching of deposited N (as NO3 ? and NH4 +) common to subtropical forest soils with chronic, elevated atmogenic N inputs by (i) negligible retention of NO3 ? in the soil and (ii) rapid immobilization-mineralization of NH4 + followed by nitrification. Our findings point to a leaky N cycle in N-saturated Chinese subtropical forests with consequences for regional soil acidification, N pollution of fresh waters and N2O emission.  相似文献   

4.
The fate of immobilized N in soils is one of the great uncertainties in predicting C sequestration at increased CO2 and N deposition. In a dual isotope tracer experiment (13C, 15N) within a 4‐year CO2 enrichment (+200 ppmv) study with forest model ecosystems, we (i) quantified the effects of elevated CO2 on the partitioning of N; (ii) traced immobilized N into physically separated pools of soil organic matter (SOM) with turnover rates known from their 13C signals; and (iii) estimated the remobilization and thus, the bio‐availability of newly sequestered C and N. (1) CO2 enrichment significantly decreased NO3? concentrations in soil waters and export from 1.5 m deep lysimeters by 30–80%. Consequently, elevated CO2 increased the overall retention of N in the model ecosystems. (2) About 60–80% of added 15NH415NO3 were retained in soils. The clay fraction was the greatest sink for the immobilized 15N sequestering 50–60% of the total new soil N. SOM associated with clay contained only 25% of the total new soil C pool and had small C/N ratios (<13), indicating that it consists of humified organic matter with a relatively slow turn over rate. This implies that added 15N was mainly immobilized in stable mineral‐bound SOM pools. (3) Incubation of soils for 1 year showed that the remobilization of newly sequestered N was three to nine times smaller than that of newly sequestered C. Thus, inorganic inputs of N were stabilized more effectively in soils than C. Significantly less newly sequestered N was remobilized from soils previously exposed to elevated CO2. In summary, our results show firstly that a large fraction of inorganic N inputs becomes effectively immobilized in relative stable SOM pools and secondly that elevated CO2 can increase N retention in soils and hence it may tighten N cycling and diminish the risk of nitrate leaching to groundwater.  相似文献   

5.
Evidence for abiotic immobilization of nitrogen (N) in soil is accumulating, but remains controversial. Identifying the fate of N from atmospheric deposition is important for understanding the N cycle of forest ecosystems. We studied soils of two Abies pinsapo fir forests under Mediterranean climate seasonality in southern Spain—one with low N availability and the other with symptoms of N saturation. We hypothesized that biotic and abiotic immobilization of nitrate (NO3 ) would be lower in soils under these forests compared to more mesic temperate forests, and that the N saturated stand would have the lowest rates of NO3 immobilization. Live and autoclaved soils were incubated with added 15NO3 (10 μg N g−1 dry soil; 99% enriched) for 24 h, and the label was recovered as total dissolved-N, NO3 , ammonium (NH4 +), or dissolved organic-N (DON). To evaluate concerns about possible iron interference in analysis of NO3 concentrations, both flow injection analysis (FIA) and ion chromatography (IC) were applied to water extracts, soluble iron was measured in both water and salt extracts, and standard additions of NO3 to salt extracts were analyzed. Good agreement between FIA and IC analysis, low concentrations of soluble Fe, and 100% (±3%) recovery of NO3 standard additions all pointed to absence of an interference problem for NO3 quantification. On average, 85% of the added 15NO3 label was recovered as 15NO3 , which supports our hypothesis that rates of immobilization were generally low in these soils. A small amount (mean = 0.06 μg N g−1 dry soil) was recovered as 15NH4 + in live soils and none in sterilized soils. Mean recovery as DO15N ranged from 0.6 to 1.5 μg N g−1 dry soil, with no statistically significant effect of sterilization or soil type, indicating that this was an abiotic process that occurred at similar rates in both soils. These results demonstrate a detectable, but modest rate of abiotic immobilization of NO3 to DON, supporting our first hypothesis. These mineral soils may not have adequate carbon availability to support the regeneration of reducing microsites needed for high rates of NO3 reduction. Our second hypothesis regarding lower expected abiotic immobilization in soils from the N-saturated site was not supported. The rates of N deposition in this region may not be high enough to have swamped the capacity for soil NO3 immobilization, even in the stand showing some symptoms of N saturation. A growing body of evidence suggests that soil abiotic NO3 immobilization is common, but that rates are influenced by a combination of factors, including the presence of plentiful available carbon, reduced minerals in anaerobic microsites and adequate NO3 supply.  相似文献   

6.
The effect of NO2 fumigation on root N uptake and metabolism was investigated in 3-month-old spruce (Picea abics L. Karst) seedlings. In a first experiment, the contribution of NO2 to the plant N budget was measured during a 48 h fumigation with 100mm3m?3 NO2. Plants were pre-treated with various nutrient solutions containing NO2 and NH4+, NO3? only or no nitrogen source for 1 week prior to the beginning of fumigation. Absence of NH4+ in the solution for 6d led to an increased capacity for NO3? uptake, whereas the absence of both ions caused a decrease in the plant N concentration, with no change in NO3? uptake. In fumigated plants, NO2 uptake accounted for 20–40% of NO3? uptake. Root NO3? uptake in plants supplied with NH4+plus NO3? solutions was decreased by NO2 fumigation, whereas it was not significantly altered in the other treatments. In a second experiment, spruce seedlings were grown on a solution containing both NO2 and NH4+ and were fumigated or not with 100mm3m?3 NO2 for 7 weeks. Fumigated plants accumulated less dry matter, especially in the roots. Fluxes of the two N species were estimated from their accumulations in shoots and roots, xylem exudate analysis and 15N labelling. Root NH4+ uptake was approximately three times higher than NO3? uptake. Nitrogen dioxide uptake represented 10–15% of the total N budget of the plants. In control plants, N assimilation occurred mainly in the roots and organic nitrogen was the main form of N transported to the shoot. Phloem transport of organic nitrogen accounted for 17% of its xylem transport. In fumigated plants, neither NO3? nor NH4+ accumulated in the shoot, showing that all the absorbed NO2 was assimilated. Root NO3? reduction was reduced whereas organic nitrogen transport in the phloem increased by a factor of 3 in NO2-fimugated as compared with control plants. The significance of the results for the regulation of whole-plant N utilization is discussed.  相似文献   

7.
Recent reviews indicate that N deposition increases soil organic matter (SOM) storage in forests but the undelying processes are poorly understood. Our aim was to quantify the impacts of increased N inputs on soil C fluxes such as C mineralization and leaching of dissolved organic carbon (DOC) from different litter materials and native SOM. We added 5.5 g N m?2 yr?1 as NH4NO3 over 1 year to two beech forest stands on calcareous soils in the Swiss Jura. We replaced the native litter layer with 13C‐depleted twigs and leaves (δ13C: ?38.4 and ?40.8‰) in late fall and measured N effects on litter‐ and SOM‐derived C fluxes. Nitrogen addition did not significantly affect annual C losses through mineralization, but altered the temporal dynamics in litter mineralization: increased N inputs stimulated initial mineralization during winter (leaves: +25%; twigs: +22%), but suppressed rates in the subsequent summer. The switch from a positive to a negative response occurred earlier and more strongly for leaves than for twigs (?21% vs. 0%). Nitrogen addition did not influence microbial respiration from the nonlabeled calcareous mineral soil below the litter which contrasts with recent meta‐analysis primarily based on acidic soils. Leaching of DOC from the litter layer was not affected by NH4NO3 additions, but DOC fluxes from the mineral soils at 5 and 10 cm depth were significantly reduced by 17%. The 13C tracking indicated that litter‐derived C contributed less than 15% of the DOC flux from the mineral soil, with N additions not affecting this fraction. Hence, the suppressed DOC fluxes from the mineral soil at higher N inputs can be attributed to reduced mobilization of nonlitter derived ‘older’ DOC. We relate this decline to an altered solute chemistry by NH4NO3 additions, an increased ionic strength and acidification resulting from nitrification, rather than to a change in microbial decomposition.  相似文献   

8.
9.
In N-limited ecosystems, fertilization by N deposition may enhance plant growth and thus impact C sequestration. In many N deposition–C sequestration experiments, N is added directly to the soil, bypassing canopy processes and potentially favoring N immobilization by the soil. To understand the impact of enhanced N deposition on a low fertility unmanaged forest and better emulate natural N deposition processes, we added 18 kg N ha−1 year−1 as dissolved NH4NO3 directly to the canopy of 21 ha of spruce-hemlock forest. In two 0.3-ha subplots, the added N was isotopically labeled as 15NH4 + or 15NO3 (1% final enrichment). Among ecosystem pools, we recovered 38 and 67% of the 15N added as 15NH4 + and 15NO3 , respectively. Of 15N recoverable in plant biomass, only 3–6% was recovered in live foliage and bole wood. Tree twigs, branches, and bark constituted the most important plant sinks for both NO3 and NH4 +, together accounting for 25–50% of 15N recovery for these ions, respectively. Forest floor and soil 15N retention was small compared to previous studies; the litter layer and well-humified O horizon were important sinks for NH4 + (9%) and NO3 (7%). Retention by canopy elements (surfaces of branches and boles) provided a substantial sink for N that may have been through physico-chemical processes rather than by N assimilation as indicated by poor recoveries in wood tissues. Canopy retention of precipitation-borne N added in this particular manner may thus not become plant-available N for several years. Despite a large canopy N retention potential in this forest, C sequestration into new wood growth as a result of the N addition was only ~16 g C m−2 year−1 or about 10% above the current net annual C sequestration for this site.  相似文献   

10.
In many forests of Europe and north-eastern North America elevated N deposition has opened the forest N cycle, resulting in NO3 ? leaching. On the other hand, despite this elevated N deposition, the dominant fate of NO3 ? and NH4 + in some of these forests is biotic or abiotic immobilization in the soil organic matter pool, preventing N losses. The environmental properties controlling mineral N immobilization and the variation and extent of mineral N immobilization in forest soils are not yet fully understood. In this study we investigated a temperate mixed deciduous forest, which is subjected to an average N deposition of 36.5 kg N ha?1 yr?1, but at the same time shows low NO3 ? concentrations in the groundwater. The aim of this study was to investigate whether the turnover rate of the mineral N pool could explain these low N leaching losses. A laboratory 15N pool dilution experiment was conducted to study gross and net N mineralization and nitrification and mineral N immobilization in the organic and uppermost (0–10 cm) mineral layer of the forest soil. Two locations, one at the forest edge (GE) and another one 145 m inside the forest (GF1), were selected. In the organic layers of GE and GF1, the gross N mineralization averaged 10.9 and 11.1 mg N kg?1 d?1, the net N mineralization averaged 6.1 and 6.8 mg N kg?1 d?1 and NH4 + immobilization rates averaged 3.8 and 3.6 mg N kg?1 d?1. In the organic layer of GE and GF1, the average gross nitrification was 3.8 and 4.6 mg N kg?1 d?1, the average net nitrification was ?25.2 and ?31.3 mg N kg?1 d?1 and the NO3 ? immobilization rates averaged 29.0 and 35.9 mg N kg?1 d?1. For the mineral (0–10 cm) layer the same trend could be observed, but the N transformation rates were much lower for the NH4 + pool and not significantly different from zero for the NO3 ? pool. Except for the turnover of the NH4 + pool in the mineral layer, no significant differences were observed between location GE and GF1. The ratio of NH4 + immobilization to gross N mineralization, gross N mineralization to gross nitrification, and NO3 ? immobilisation to gross nitrification led to the following observations. The NH4 + pool of the forest soil was controlled by N mineralization and NO3 ? immobilization was importantly controlling the forest NO3 ? pool. Therefore it was concluded that this process is most probably responsible for the limited NO3 ? leaching from the forest ecosystem, despite the chronically high N deposition rates.  相似文献   

11.
The effect of ectomycorrhizal association of Pinus pinaster with Hebeloma cylindrosporum was investigated in relation to the nitrogen source supplied as mineral (NH4+ or NO3?) or organic N (L ‐glutamate) and at 5 mol m?3. Plants were grown for 14 and 16 weeks with mineral and organic N, respectively, and samples were collected during the last 6 weeks of culture. Total fungal biomass was estimated using glucosamine amount and its viability was assessed using the glucosamine to ergosterol ratio. Non‐mycorrhizal plants grew better with NH4+ than with NO3? and grew very slowly when supplied with L ‐glutamate. The presence of the fungus decreased the growth of the host plant with mineral N whereas it increased it with L ‐glutamate. Whatever the N source, most of the living fungal biomass was associated with the roots, whereas the main part of the total biomass was assayed outside the root. The form of mineral N did not significantly affect N accumulation rates over the 42 d in control plants. In mycorrhizal plants grown on either N source, the fungal tissues developing outside of the root were always the main N sink. The ectomycorrhizal association did not change 15NH4+ uptake rate by roots, suggesting that the growth decrease of the host‐plant was related to the carbon cost for fungal growth and N assimilation rather than to a direct effect on NH4+ acquisition. In contrast, in NO3?‐grown plants, in addition to draining carbon for NO3? reduction the fungus competed with the root for NO3? uptake. With NH4+ or NO3? feeding, although mycorrhizal association improved N accumulation in shoots, we concluded that it was unlikely that the fungus had supplied the plant with N. In L ‐glutamate‐grown plants, the presence of the fungus increased the proportion of glutamine in the xylem sap and improved both N nutrition and the growth rate of the host plant.  相似文献   

12.
Leaching of nitrate (NO3 ) below the root zone and gaseous losses of nitrogen (N) such as ammonia (NH3) volatilization, are major mechanisms of N loss from agricultural soils. New techniques to minimize such losses are needed to maximize N uptake efficiency and minimize production costs and the risk of potential N contamination of ground and surface waters. The effects of cellulose (C), clinoptilolite zeolite (CZ), or a combination of both (C+CZ) on NH3 volatilization and N transformation in a calcareous Riviera fine sand (loamy, siliceous, hyperthermic, Arenic Glossaqualf) from a citrus grove were investigated in a laboratory incubation study. Ammonia volatilization from NH4NO3 (AN), (NH4)2SO4(AS), and urea (U) applied at 200 mg N kg–1 soil decreased by 2.5-, 2.1- and 0.9-fold, respectively, with cellulose application at 15 g kg–1 and by 4.4-, 2.9- and 3.0-fold, respectively, with CZ application at 15 g kg–1 as compared with that from the respective sources without the amendments. Application of cellulose plus CZ (each at 15 g kg–1) was the most effective in decreasing NH3 volatilization. Application of cellulose increased the microbial biomass, which was responsible for immobilization of N, and thus decreased volatilization loss of NH3–N. The effect of CZ, on the other hand, may be due to increased retention of NH4 in the ion-exchange sites. The positive effect of interaction between cellulose and CZ amendment on microbial biomass was probably due to improved nutrient retention and availability to microorganisms in the soil. Thus, the amendments provide favorable conditions for microbial growth. These results indicate that soil amendment of CZ or CZ plus organic materials such as cellulose has great potential in reducing fertilizer N loss in sandy soils.  相似文献   

13.

Background and aims

The impacts of atmospheric nitrogen (N) deposition on terrestrial ecosystem processes remain controversial, mostly because of the uncertainty regarding the fates of deposited N. We conducted a 16-week simulated deposition study to experimentally trace N in a greenhouse plant-soil system.

Methods

Using a two-way factorial design, we added (15NH4)2SO4 solution twice a week to pots containing different soil organic matter (SOM) content and with or without a live plant (Salix dasyclados). The recoveries of 15N in soil, plant biomass, and leaching solution were quantified.

Results

We found most 15N was retained in soil (18.0–59.2%), with significantly more 15N recovered from high-SOM soils than from low-SOM soils. Plant presence significantly increased 15N retention in soil. Plant biomass accounted for 10–20% of the 15N input, with proportionally more 15N assimilated when plants were grown in low-SOM soils. Leaching loss of 15N was relatively low (10–17%).

Conclusion

Our study suggests that SOM content and plant presence significantly affect the fates of deposited N. Indeed, N would be preferentially retained in soils with high SOM content and live plant, while plants would assimilate more deposited N when grown in low SOM soils. Global biogeochemical models thus need to incorporate such soil-specific N retention and plant N assimilation.  相似文献   

14.
There is increasing concern over the impact of atmospheric nitrogen (N) deposition on forest ecosystems in the tropical and subtropical areas. In this study, we quantified atmospheric N deposition and revealed current plant and soil N status in 14 forests along a 150 km urban to rural transect in southern China, with an emphasis on examining whether foliar δ15N can be used as an indicator of N saturation. Bulk deposition ranged from 16.2 to 38.2 kg N ha?1 yr?1, while the throughfall covered a larger range of 11.7–65.1 kg N ha?1 yr?1. Foliar N concentration, NO3? leaching to stream, and soil NO3? concentration were low and NO3? production was negligible in some rural forests, indicating that primary production in these forests may be limited by N supply. But all these N variables were enhanced in suburban and urban forests. Across the study transect, throughfall N input was correlated positively with soil nitrification and NO3? leaching to stream, and negatively with pH values in soil and stream water. Foliar δ15N was between ?6.6‰ and 0.7‰, and was negatively correlated with soil NO3? concentration and NO3? leaching to stream across the entire transect, demonstrating that an increased N supply does not necessarily increase forest δ15N values. We proposed several potential mechanism that could contribute to the δ15N pattern, including (1) increased plant uptake of 15N‐depleted soil NO3?, (2) foliage uptake of 15N‐depleted NH4+, (3) increased utilization of soil inorganic N relative to dissolved organic N, and (4) increased fractionation during plant N uptake under higher soil N availability.  相似文献   

15.
In regions of mixed land use, some ecosystems are sinks for N pollution and others are sources. Yet, beyond this gross characterization, we have little understanding of how adjacent land-use types vary in mechanisms of N cycling and retention. This study assessed the rate and magnitude of soil N retention pathways in forest, urban, and agricultural ecosystems. Soil plots in each land use were labeled with inorganic 15N and cored at 15 min, 2 days, and 20 days following injection. Subsamples were biologically fractionated to differentiate labile and stable pools, while gross N transformations were assessed via the 15N isotope dilution method. Stable soil organic 15N formed rapidly (within 15 min) in all land uses when added as 15NH4 +, and became a proportionally larger sink for inorganic 15N over time. Forests had the lowest gross immobilization rates, but the greatest amount of stable N formation. Rapid retention of NH4 + in forests may be driven by abiotic processes, with root uptake becoming a more important mechanism of retention over time. Urban sites, on the other hand, had the highest gross microbial immobilization rates and highest root N uptake, suggesting that high short-term N retention may be due to rapid biological processing. Agricultural systems, with low root uptake and the lowest stable N formation, had little capacity for retention of added N. These apparently distinct land-use cases can be understood by synthesizing several emerging aspects of N retention theory that (1) distinguish kinetic and capacity N saturation, (2) recognize links between soil C saturation on minerals and N retention, and (3) account for rapid transfers of NH4 + to stable organic pools.  相似文献   

16.
We investigated soil fertility status under shifting cultivation in East Kalimantan with special reference to mineralization patterns of labile soil organic matter (SOM). The soils in this region were generally strongly acidic with high Al, low bases and low pH values. A 133-day incubation experiment using fresh soils revealed that NH4 + often accumulated during the course of N mineralization, indicating a delay of nitrification relative to N mineralization in these soils. Principal component analysis followed by stepwise multiple linear regression showed the contribution of soil physicochemical properties to mineralization patterns of SOM. Those results indicated that the overall SOM level positively contributed to the amount of readily mineralizable C and N, NH4 at day 133, and NO3 at day 133. The results also showed that the factors relating to soil acidity and P and K depletion, as well as accumulation of readily mineralizable C, contributed to suppress nitrification and accelerate NH4 + accumulation and possibly subsequent N immobilization. Our results suggest that it will be difficult to establish a cropping system without a long period of fallow unless very high amounts of fertilizer as well as liming are applied in these regions.  相似文献   

17.
Nitrogen (N) inputs to many terrestrial ecosystems are increasing, and most of these inputs are sequestered in soil organic matter within 1–3 years. Rapid (minutes to days) immobilization focused previous N retention research on actively cycling plant, microbial, and inorganic N pools. However, most ecosystem N resides in soil organic matter that is not rapidly cycled. This large, stable soil N pool may be an important sink for elevated N inputs. In this study, we measured the capacity of grassland soils to retain 15N in a pool that was not mineralized by microorganisms during 1-year laboratory incubations (called “the stable pool”). We added two levels (2.5 and 50 g N m−2) of 15NH4 + tracer to 60 field plots on coarse- and fine-textured soils along a soil carbon (C) gradient from Texas to Montana, USA. We hypothesized that stable tracer 15N retention and stable bulk soil (native + tracer) N pools would be positively correlated with soil clay and C content and stable soil C pools (C not respired during the incubation). Two growing seasons after the 15N addition, soils (0- to 20-cm depth) contained 71% and 26% of the tracer added to low- and high-N treatments, respectively. In both N treatments, 50% of the tracer retained in soil was stable. Total soil C (r 2 = 0.72), stable soil C (r 2 = 0.68), and soil clay content (r 2 = 0.27) were correlated with stable bulk soil N pools, but not with stable 15N retention. We conclude that on annual time scales, substantial quantities of N are incorporated into stable organic pools that are not readily susceptible to microbial remineralization or subsequent plant uptake, leaching losses, or gaseous losses. Stable N formation may be an important pathway by which rapid soil N immobilization translates into long-term N retention. Received 2 April 2001; accepted 12 November 2001.  相似文献   

18.
Field experiments were carried out in 1987 on winter wheat crops grown on three types of soil. 15N-labelled urea, 15NH4NO3 or NH4 15NO3 (80 kg N ha-1) was applied at tillering. The soils (chalky soil, hydromorphic loamy soil, sandy clay soil) were chosen to obtain a range of nitrogen dynamics, particularly nitrification. Soil microbial N immobilization and crop N uptake were measured at five dates. Shortly after fertilizer application (0–26 days), the amount of N immobilized in soil were markedly higher with labelled urea or ammonium than that with nitrate in all soils. During the same period, crop 15N uptake occurred preferentially at the expense of nitrate. Nitrification differed little between soils, the rates were 2.0 to 4.7 kg N ha-1 day-1 at 9°C daily mean temperature. The differences in immobilization and uptake had almost disappeared at flowering and harvest. 15N recovery in soil and crop varied between 50 and 100%. Gaseous losses probably occurred by volatilization in the chalky soil and denitrification in the hydromorphic loamy soil. These losses affected the NH4 + and NO3 - pools differently and determined the partitioning of fertilizer-N between immobilization and absorption.  相似文献   

19.
The increasing concentration of atmospheric carbon dioxide (CO2) is expected to lead to enhanced competition between plants and microorganisms for the available nitrogen (N) in soil. Here, we present novel results from a 15N tracing study conducted with a sheep‐grazed pasture soil that had been under 10 years of CO2 enrichment. Our study aimed to investigate changes in process‐specific gross N transformations in a soil previously exposed to an elevated atmospheric CO2 (eCO2) concentration and to examine indicators for the occurrence of progressive nitrogen limitation (PNL). Our results show that the mineralization–immobilization turnover (MIT) was enhanced under eCO2, which was driven by the mineralization of recalcitrant organic N. The retention of N in the grassland was enhanced by increased dissimilatory NO3? reduction to NH4+ (DNRA) and decreased NH4+ oxidation. Our results indicate that heterotrophic processes become more important under eCO2. We conclude that higher MIT of recalcitrant organic N and enhanced N retention are mechanisms that may alleviate PNL in grazed temperate grassland.  相似文献   

20.
Seasonal dynamics of S, Ca and N were examined at the Huntington Forest, a northern hardwood ecosystem in the central Adirondacks of New York for a period of 34 months (1985–1988). Solute concentrations and fluxes in bulk precipitation, throughfall (TF) and leachates from the forest floor, E horizon and B horizon were quantified. Both above and below-ground elemental fluxes mediated by vegetation (e.g. uptake, litter inputs, and fine roots production) were also determined. The roles of abiotic and biotic processes were ascertained based on both changes in solute concentrations through the strata of the ecosystem as well as differences between dormant and growing seasons. Concentrations of SO4 2−, NO3 , NH4 + and Ca2+ were greater in TF than precipitation. Forest floor leachates had greater concentrations of SO4 2−, NO3 + NH4 + and Ca2+ (9, 6 and 77 μeq L−1, respectively) than TF. There were differences in concentrations of ions in leachates from the forest floor between the dormant and growing seasons presumably due to vegetation uptake and microbial immobilization. Concentrations and fluxes of NO3 and NH; were greatest in early spring followed by a rapid decline which coincided with a demand for N by vegetation in late spring. Vegetation uptake (44.7 kg N ha−1 yr−1 ) could account for the low leaching rates of N03 . Within the mineral soil, changes with soil depth and the absence of seasonal patterns suggest that cation exchange (Ca+) or anion sorption (SO4 2−) are primarily responsible for regulating solute concentrations. The increase in SO4 2− concentration after leachates passed through the mineral soil may be attributed to desorption of sulfate that was adsorbed during an earlier period when SO4 2− concentrations would have been greater due to elevated S inputs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号