首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Regulatory T cells (Tregs), which are characterized by expression of CD4, CD25, and Foxp3, play a crucial role in the control of immune responses to both self and non-self Ags. To date, there are only limited data on their role in physiological and pathological hepatic immune responses. In this study, we examined the role of hepatic Tregs in immune-mediated liver injury by using the murine Con A-induced hepatitis model. Con A treatment was associated with an increased number of Foxp3(+) Tregs in liver but not in spleen. Moreover, the expression levels of Foxp3, CTLA-4, glucocorticoid-induced TNF receptor, as well as the frequency of CD103 of Tregs were increased after Con A injection, being significantly higher in liver than in spleen. Depleting CD25(+) cells aggravated liver injury, whereas adoptively transferring CD25(+) cells or Tregs reduced liver injury in Con A-treated recipients. Con A treatment induced elevated serum levels and hepatic mononuclear mRNA expressions of TGF-beta, which were reduced by Tregs depletion. In addition, anti-TGF-beta mAbs blocked the suppressive function of Tregs from Con A-treated mice in vitro. Finally, TGF-beta receptor II dominant-negative mice, whose T cells express a dominant negative form of TGFbetaRII and therefore cannot respond to TGF-beta, had a higher mortality rate and severer liver injury than normal mice injected with the same dose of Con A. These results indicate that CD4(+)CD25(+) Tregs play an important role in limiting the liver injury in Con A-induced hepatitis via a TGF-beta-dependent mechanism.  相似文献   

2.
Multiple factors control susceptibility of C57BL/6 mice to infection with the helminth Heligmosomoides polygyrus, including TGF-β signaling, which inhibits immunity in vivo. However, mice expressing a T cell-specific dominant-negative TGF-β receptor II (TGF-βRII DN) show dampened Th2 immunity and diminished resistance to infection. Interestingly, H. polygyrus-infected TGF-βRII DN mice show greater frequencies of CD4(+)Foxp3(+)Helios(+) Tregs than infected wild-type mice, but levels of CD103 are greatly reduced on both these cells and on the CD4(+)Foxp3(+)Helios(-) population. Although Th9 and Th17 levels are comparable between infected TGF-βRII DN and wild-type mice, the former develop exaggerated CD4(+) and CD8(+) T cell IFN-γ responses. Increased susceptibility conferred by TGF-βRII DN expression was lost in IFN-γ-deficient mice, although they remained unable to completely clear infection. Hence, overexpression of IFN-γ negatively modulates immunity, and the presence of Helios(+) Tregs may maintain susceptibility on the C57BL/6 background.  相似文献   

3.
We developed a transgenic (Tg) mouse that expresses TGF-beta under control of the IL-2 promoter to investigate Th3 cell differentiation both in vitro and in vivo. We previously found that repetitive in vitro Ag stimulation results in constant expression of Foxp3 in TGF-beta-Tg Th3 cells that acquire regulatory function independent of surface expression of CD25. To examine the differentiation and function of Th3 cells in vivo and to compare them with thymic-derived CD4(+)CD25(+) regulatory T cells (Treg), we introduced the TGF-beta transgene into T cells of IL-2-deficient (IL-2(-/-)) mice. We found that the induction, differentiation, and function of TGF-beta-derived Foxp3(+) Th3 cells were independent of IL-2, which differs from thymic Tregs. In an environment that lacks functional CD25(+) thymic-derived Tregs, expression of the TGF-beta transgene in IL-2(-/-) mice led to the induction of distinct CD25(-) regulatory cells in the periphery. These cells expressed Foxp3 and efficiently controlled hyperproliferation of T cells and rescued the IL-2(-/-) mouse from lethal autoimmunity. Unlike IL-2(-/-) animals, TGF-beta/IL-2(-/-) mice had normal numbers of T cells, B cells, macrophages, and dendritic cells and did not have splenomegaly, lymphadenopathy, or inflammation in multiple organs. Accumulation of Foxp3(+) cells over time, however, was dependent on IL-2. Our results suggest that TGF-beta-derived Foxp3(+)CD25(+/-) Th3 regulatory cells represent a different cell lineage from thymic-derived CD25(+) Tregs in the periphery but may play an important role in maintaining thymic Tregs in the peripheral immune compartment by secretion of TGF-beta.  相似文献   

4.
Regulatory T cells (Tregs) constitute an attractive therapeutic target given their essential role in controlling autoimmunity. However, recent animal studies provide evidence for functional heterogeneity and lineage plasticity within the Treg compartment. To understand better the plasticity of human Tregs in the context of type 1 diabetes, we characterized an IFN-γ-competent subset of human CD4(+)CD127(lo/-)CD25(+) Tregs. We measured the frequency of Tregs in the peripheral blood of patients with type 1 diabetes by epigenetic analysis of the Treg-specific demethylated region (TSDR) and the frequency of the IFN-γ(+) subset by flow cytometry. Purified IFN-γ(+) Tregs were assessed for suppressive function, degree of TSDR demethylation, and expression of Treg lineage markers FOXP3 and Helios. The frequency of Tregs in peripheral blood was comparable but the FOXP3(+)IFN-γ(+) fraction was significantly increased in patients with type 1 diabetes compared to healthy controls. Purified IFN-γ(+) Tregs expressed FOXP3 and possessed suppressive activity but lacked Helios expression and were predominately methylated at the TSDR, characteristics of an adaptive Treg. Naive Tregs were capable of upregulating expression of Th1-associated T-bet, CXCR3, and IFN-γ in response to IL-12. Notably, naive, thymic-derived natural Tregs also demonstrated the capacity for Th1 differentiation without concomitant loss of Helios expression or TSDR demethylation.  相似文献   

5.
Interest in the use of regulatory T cells (Tregs) as cellular therapeutics has been tempered by reports of naturally occurring Tregs losing Foxp3 expression and producing IL-17, raising concerns over a switch to pathogenic function under inflammatory conditions in vivo. TGF-β-induced Tregs (inducible Tregs [iTregs]), generated in large numbers in response to disease-relevant Ags, represent the most amenable source of therapeutic Tregs. Using Foxp3-reporter T cells recognizing myelin basic protein (MBP), we investigated the capacity of iTregs to produce effector-associated cytokines under proinflammatory cytokine conditions in vitro and whether this translated into proinflammatory function in vivo. In contrast with naturally occurring Tregs, iTregs resisted conversion to an IL-17-producing phenotype but were able to express T-bet and to produce IFN-γ. iTregs initiated their T-bet expression during their in vitro induction, and this was dependent on exposure to IFN-γ. IL-12 reignited iTreg expression of T-bet and further promoted iTreg production of IFN-γ upon secondary stimulation. Despite losing Foxp3 expression and expressing both T-bet and IFN-γ, MBP-responsive IL-12-conditioned iTregs induced only mild CNS inflammation and only when given in high numbers. Furthermore, iTregs retained an ability to suppress naive T cell clonal expansion in vivo and protected against the development of experimental autoimmune encephalomyelitis. Therefore, despite bearing predictive hallmarks of pathogenic effector function, previously Foxp3(+) iTregs have much lower proinflammatory potential than that of MBP-responsive Th1 cells. Our results demonstrate that autoprotective versus autoaggressive functions in iTregs are not simply a binary relationship to be determined by their relative expression of Foxp3 versus T-bet and IFN-γ.  相似文献   

6.
CD4(+)Foxp3(+) regulatory T cells (Tregs) have been considered crucial in controlling immune system homeostasis, and their derangement is often associated to autoimmunity. Tregs identification is, however, difficult because most markers, including CD25 and Foxp3, are shared by recently activated T cells. We show in this paper that CD4(+)Foxp3(+) T cells are generated in peripheral lymphoid organs on immunization and readily accumulate in the target organ of an autoimmune reaction, together with classical inflammatory cells, constituting up to 50% of infiltrating CD4(+) T cells. Most CD4(+)Foxp3(+) T cells are, however, CD25(-) and express proinflammatory cytokines such as IL-17 and IFN-γ, questioning their suppressive nature. Moreover, in vitro CD4(+) T lymphocytes from naive and autoimmune mice, stimulated to differentiate into Th1, Th2, Th17, and induced Tregs, display early mixed expression of lineage-specific markers. These results clearly point to an unprecedented plasticity of naive CD4(+) T cells, that integrating inflammatory signals may change their fate from the initial lineage commitment to a different functional phenotype.  相似文献   

7.
IL-33 administration is associated with facilitation of Th2 responses and cardioprotective properties in rodent models. However, in heart transplantation, the mechanism by which IL-33, signaling through ST2L (the membrane-bound form of ST2), promotes transplant survival is unclear. We report that IL-33 administration, while facilitating Th2 responses, also increases immunoregulatory myeloid cells and CD4(+) Foxp3(+) regulatory T cells (Tregs) in mice. IL-33 expands functional myeloid-derived suppressor cells, CD11b(+) cells that exhibit intermediate (int) levels of Gr-1 and potent T cell suppressive function. Furthermore, IL-33 administration causes an St2-dependent expansion of suppressive CD4(+) Foxp3(+) Tregs, including an ST2L(+) population. IL-33 monotherapy after fully allogeneic mouse heart transplantation resulted in significant graft prolongation associated with increased Th2-type responses and decreased systemic CD8(+) IFN-γ(+) cells. Also, despite reducing overall CD3(+) cell infiltration of the graft, IL-33 administration markedly increased intragraft Foxp3(+) cells. Whereas control graft recipients displayed increases in systemic CD11b(+) Gr-1(hi) cells, IL-33-treated recipients exhibited increased CD11b(+) Gr-1(int) cells. Enhanced ST2 expression was observed in the myocardium and endothelium of rejecting allografts, however the therapeutic effect of IL-33 required recipient St2 expression and was dependent on Tregs. These findings reveal a new immunoregulatory property of IL-33. Specifically, in addition to supporting Th2 responses, IL-33 facilitates regulatory cells, particularly functional CD4(+) Foxp3(+) Tregs that underlie IL-33-mediated cardiac allograft survival.  相似文献   

8.
It is well established that CD4(+)CD25(+)Foxp3(+) regulatory T cells (Tregs) play a crucial role in the course of different infectious diseases. However, contradictory results have been published regarding to malaria infection. In this study, we report that specific ablation of Foxp3(+) Tregs in Plasmodium yoelii-infected DEREG-BALB/c mice leads to an increase in T cell activation accompanied by a significant decrease in parasitemia. To better understand how Foxp3(+) Tregs orchestrate this phenotype, we used microarrays to analyze CD4(+)CD25(+)Foxp3(+) Tregs and CD4(+)CD25(-)Foxp3(-) T cells in the course of P. yoelii infection. Using this approach we identified genes specifically upregulated in CD4(+)CD25(+)Foxp3(+) Tregs in the course of infection, such as G-protein-coupled receptor 83 and Socs2. This analysis also revealed that both CD4(+)CD25(+)Foxp3(+) Tregs and CD4(+)CD25(-)Foxp3(-) T cells upregulate CTLA-4, granzyme B, and, more strikingly, IL-10 during acute blood infection. Therefore, we aimed to define the function of T cell-derived IL-10 in this context by Cre/loxP-mediated selective conditional inactivation of the IL-10 gene in T cells. Unexpectedly, IL-10 ablation in T cells exerts only a minor effect on parasite clearance, even though CD8(+) T cells are more strongly activated, the production of IFN-γ and TNF-α by CD4(+)CD25(-) T cells is increased, and the suppressive activity of CD4(+)CD25(+) Tregs is reduced upon infection. In summary, these results suggest that CD4(+)Foxp3(+) Tregs modulate the course of P. yoelii infection in BALB/c mice. Moreover, CD4(+) T cell-derived IL-10 affects T effector function and Treg activity, but has only a limited direct effect on parasite clearance in this model.  相似文献   

9.
It is emerging that CD4(+)Foxp3(+) regulatory T (Treg) cells can produce the proinflammatory cytokine IFN-γ when stimulated in a Th1 cytokine environment. In this study, we report that Foxp3(+) Treg cells readily produced IFN-γ in vivo in a highly inflammatory model of graft-versus-host disease (GVHD) and during a Th1-dominated immune response to intracellular bacteria. Moreover, stimulation in vitro via TCR in the presence of IL-12 alone was sufficient to induce IFN-γ production by Treg cells in a dose-dependent manner. Transfer of donor Treg cells can prevent lethal GVHD; therefore, we used this model as a robust readout for in vivo Treg function. Interestingly, >50% of allogeneic donor, but not residual recipient Foxp3(+) Treg cells produced IFN-γ after transplantation, suggesting that this cytokine production was alloantigen specific. These IFN-γ producers were stable Foxp3(+) Treg cells because methylation analysis of the Foxp3 gene locus of transferred and reisolated Treg cells during GVHD showed a fully demethylated Treg-specific-demethylated region. Next, we addressed whether IFN-γ production was supporting or rather impairing the immunosuppressive function of Treg cells during GVHD. Blocking of IFN-γ with specific mAb completely abolished the beneficial effect of donor Treg cells. We could further show that only wild-type Treg cells, but not Treg cells from IFN-γ-deficient donor mice, prevented GVHD. This indicated that Treg cell-intrinsic IFN-γ production was required for their protective function. In conclusion, our data show that IFN-γ produced by Foxp3(+) Treg cells has essential immune-regulatory functions that are required for prevention of experimental GVHD.  相似文献   

10.
11.
TGF-beta has been shown to be critical in the generation of CD4(+)CD25(+)Foxp3(+) regulatory T cells (Tregs). Because Th3 cells produce large amounts of TGF-beta, we asked whether induction of Th3 cells in the periphery was a mechanism by which CD4(+)CD25(+) Tregs were induced in the peripheral immune compartment. To address this issue, we generated a TGF-beta1-transgenic (Tg) mouse in which TGF-beta is linked to the IL-2 promoter and T cells transiently overexpress TGF-beta upon TCR stimulation but produce little or no IL-2, IL-4, IL-10, IL-13, or IFN-gamma. Naive TGF-beta-Tg mice are phenotypically normal with comparable numbers of lymphocytes and thymic-derived Tregs. We found that repeated antigenic stimulation of pathogenic myelin oligodendrocyte glycoprotein (MOG)-specific CD4(+)CD25(-) T cells from TGF-beta Tg mice crossed to MOG TCR-Tg mice induced Foxp3 expression in both CD25(+) and CD25(-) populations. Both CD25 subsets were anergic and had potent suppressive properties in vitro and in vivo. Furthermore, adoptive transfer of these induced regulatory CD25(+/-) T cells suppressed experimental autoimmune encephalomyelitis when administrated before disease induction or during ongoing experimental autoimmune encephalomyelitis. The suppressive effect of TGF-beta on T cell responses was due to the induction of Tregs and not to the direct inhibition of cell proliferation. The differentiation of Th3 cells in vitro was TGF-beta dependent as anti-TGF-beta abrogated their development. Thus, Ag-specific TGF-beta-producing Th3 cells play a crucial role in inducing and maintaining peripheral tolerance by driving the differentiation of Ag-specific Foxp3(+) regulatory cells in the periphery.  相似文献   

12.
IL-6 is a proinflammatory cytokine and its overproduction is implicated in a variety of inflammatory disorders. Recent in vitro analyses suggest that IL-6 is a key cytokine that determines the balance between Foxp3(+) regulatory T cells (Tregs) and Th17 cells. However, it remains unclear whether excessive IL-6 production in vivo alters the development and function of Foxp3(+) Tregs. In this study, we analyzed IL-6 transgenic (Tg) mice in which serum IL-6 levels are constitutively elevated. Interestingly, in IL-6 Tg mice, whereas peripheral lymphoid organs were enlarged, and T cells exhibited activated phenotype, Tregs were not reduced but rather increased compared with wild-type mice. In addition, Tregs from Tg mice normally suppressed proliferation of naive T cells in vitro. Furthermore, Tregs cotransferred with naive CD4 T cells into SCID-IL-6 Tg mice inhibited colitis as successfully as those transferred into control SCID mice. These results indicate that overproduction of IL-6 does not inhibit development or function of Foxp3(+) Tregs in vivo. However, when naive CD4 T cells alone were transferred, Foxp3(+) Tregs retrieved from SCID-IL-6 Tg mice were reduced compared with SCID mice. Moreover, the Helios(-) subpopulation of Foxp3(+) Tregs, recently defined as extrathymic Tregs, was significantly reduced in IL-6 Tg mice compared with wild-type mice. Collectively, these results suggest that IL-6 overproduced in vivo inhibits inducible Treg generation from naive T cells, but does not affect the development and function of natural Tregs.  相似文献   

13.
IL-10-producing B cells, also known as regulatory B cells (Bregs), play a key role in controlling autoimmunity. In this study, we report that chimeric mice specifically lacking IL-10-producing B cells (IL-10(-/-)B cell) developed an exacerbated arthritis compared with chimeric wild-type (WT) B cell mice. A significant decrease in the absolute numbers of Foxp3 regulatory T cells (Tregs), in their expression level of Foxp3, and a marked increase in inflammatory Th1 and Th17 cells were detected in IL-10(-/-) B cell mice compared with WT B cell mice. Reconstitution of arthritic B cell deficient (μMT) mice with different B cell subsets revealed that the ability to modulate Treg frequencies in vivo is exclusively restricted to transitional 2 marginal zone precursor Bregs. Moreover, transfer of WT transitional 2 marginal zone precursor Bregs to arthritic IL-10(-/-) mice increased Foxp3(+) Tregs and reduced Th1 and Th17 cell frequencies to levels measured in arthritic WT mice and inhibited inflammation. In vitro, IL-10(+/+) B cells established longer contact times with arthritogenic CD4(+)CD25(-) T cells compared with IL-10(-/-) B cells in response to Ag stimulation, and using the same culture conditions, we observed upregulation of Foxp3 on CD4(+) T cells. Thus, IL-10-producing B cells restrain inflammation by promoting differentiation of immunoregulatory over proinflammatory T cells.  相似文献   

14.
Rheumatoid arthritis (RA) is an autoimmune disease that is characterized by uncontrolled joint inflammation and damage to bone and cartilage. Previous studies have shown that chemokine receptors have important roles in RA development, and that blocking these receptors effectively inhibits RA progression. Our study was undertaken to investigate the role of AMG487, a selective CXCR3 antagonist, in DBA/1J mice bearing collagen-induced arthritis (CIA). Following induction of CIA, animals were treated with 5 mg/kg AMG487 intraperitoneally every 48 h, starting from day 21 until day 41 and evaluated for clinical score, and histological hallmarks of arthritic inflammation. We further investigated the effect of AMG487 on Th1 (T-bet), Th17 (IL-17A, RORγt, STAT3), Th22 (IL-22), and T regulatory (Treg; Foxp3 and IL-10) cells in splenic CXCR3+ and CD4+ T cells using flow cytometry. We also assessed the effect of AMG487 on T-bet, RORγt, IL-17A, IL-22, Foxp3, and IL-10 at both mRNA and protein levels using RT-PCR and Western blot analyses of knee samples. The severity of clinical scores, and histological inflammatory damage decreased significantly in AMG487-treated compared with CIA control mice. Moreover, the percentage of Th1, Th17, and Th22 cells decreased significantly and that of Treg cells increased in AMG487-treated mice. We further observed that AMG487-treatment downregulated T-bet, IL-17A, RORγt, and IL-22, whereas it upregulated Foxp3 and IL-10 mRNA and protein levels. This study demonstrates the antiarthritic effects of AMG487 in CIA animal model and supports the development of CXCR3 antagonists as a novel strategy for the treatment of inflammatory and arthritic conditions.  相似文献   

15.
Infection with the malaria parasite, Plasmodium, is characterized by excessive inflammation. The establishment of a precise balance between the pro- and anti-inflammatory responses is critical to guarantee control of the parasite and survival of the host. IL-10, a key regulatory cytokine produced by many cells of the immune system, has been shown to protect mice against pathology during acute Plasmodium0 chabaudi chabaudi AS model of malaria. However, the critical cellular source of IL-10 is still unknown. In this article, we demonstrate that T cell-derived IL-10 is necessary for the control of pathology during acute malaria, as mice bearing specific deletion of Il10 in T cells fully reproduce the phenotype observed in Il10(-)(/)(-) mice, with significant weight loss, decline in temperature, and increased mortality. Furthermore, we show that IFN-γ(+) Th1 cells are the main producers of IL-10 throughout acute infection, expressing high levels of CD44 and ICOS, and low levels of CD127. Although Foxp3(+) regulatory CD4(+) T cells produce IL-10 during infection, highly activated IFN-γ(+) Th1 cells were shown to be the essential and sufficient source of IL-10 to guarantee protection against severe immune-mediated pathology. Finally, in this model of malaria, we demonstrate that the generation of protective IL10(+)IFN-γ(+) Th1 cells is dependent on IL-27 signaling and independent of IL-21.  相似文献   

16.
17.
18.
OX40 is a member of the TNFR superfamily and has potent T cell costimulatory activities. OX40 also inhibits the induction of Foxp3(+) regulatory T cells (Tregs) from T effector cells, but the precise mechanism of such inhibition remains unknown. In the present study, we found that CD4(+) T effector cells from OX40 ligand-transgenic (OX40Ltg) mice are highly resistant to TGF-beta mediated induction of Foxp3(+) Tregs, whereas wild-type B6 and OX40 knockout CD4(+) T effector cells can be readily converted to Foxp3(+) T cells. We also found that CD4(+) T effector cells from OX40Ltg mice are heterogeneous and contain a large population of CD44(high)CD62L(-) memory T cells. Analysis of purified OX40Ltg naive and memory CD4(+) T effector cells showed that memory CD4(+) T cells not only resist the induction of Foxp3(+) T cells but also actively suppress the conversion of naive CD4(+) T effector cells to Foxp3(+) Tregs. This suppression is mediated by the production of IFN-gamma by memory T cells but not by cell-cell contact and also involves the induction of T-bet. Importantly, memory CD4(+) T cells have a broad impact on the induction of Foxp3(+) Tregs regardless of their origins and Ag specificities. Our data suggest that one of the mechanisms by which OX40 inhibits the induction of Foxp3(+) Tregs is by inducing memory T cells in vivo. This finding may have important clinical implications in tolerance induction to transplanted tissues.  相似文献   

19.
The immune regulatory function of macrophages (M?s) in mixed chimeras has not been determined. In the present study, with a multi-lineage B6-to-BALB/c mixed chimeric model, we examined the ability of donor-derived splenic M?s in the induction of regulatory T cells (Treg). B6 splenic M?s from mixed chimeras induced significantly less cell proliferation, more IL-10 and TGF-β, and less IL-2 and IFN-γ productions of CD4(+) T cells from BALB/c mice than naive B6 M?s did, whereas they showed similar stimulatory activity to the third part C3H CD4(+) T cells. Importantly, highly purified donor F4/80(+)CD11c(-) M?s efficiently induced recipient CD4(+)Foxp3(+) Treg cells from CD4(+)CD25(-)Foxp3(-) T cells. Furthermore, donor M?s of mixed chimeras produced more IL-10 and less IFN-γ than those of naive mice when cultured with BALB/c but not the third party C3H CD4(+) T cells. Induction of recipient CD4(+) Treg cells by donor M?s was significantly blocked by anti-IL-10, but not by anti-TGF-β mAb. Therefore, donor M?s have the ability to induce recipient CD4(+)Foxp3(+) Treg cells in a donor antigen-specific manner, at least partially, via an IL-10-dependent pathway. This study for the first time showed that, in mixed allogeneic chimeras, donor M?s could be specifically tolerant to recipients and gained the ability to induce recipient but not the third party Foxp3(+) Treg cells. Whether this approach is involved in transplant immune tolerance needs to be determined.  相似文献   

20.
Common gamma chain (gammac)-receptor dependent cytokines are required for regulatory T cell (Treg) development as gammac(-/-) mice lack Tregs. However, it is unclear which gammac-dependent cytokines are involved in this process. Furthermore, thymic stromal lymphopoietin (TSLP) has also been suggested to play a role in Treg development. In this study, we demonstrate that developing CD4(+)Foxp3(+) Tregs in the thymus express the IL-2Rbeta, IL-4Ralpha, IL-7Ralpha, IL-15Ralpha, and IL-21Ralpha chains, but not the IL9Ralpha or TSLPRalpha chains. Moreover, only IL-2, and to a much lesser degree IL-7 and IL-15, were capable of transducing signals in CD4(+)Foxp3(+) Tregs as determined by monitoring STAT5 phosphorylation. Likewise, IL-2, IL-7, and IL-15, but not TSLP, were capable of inducing the conversion of CD4(+)CD25(+)Foxp3(-) thymic Treg progenitors into CD4(+)Foxp3(+) mature Tregs in vitro. To examine this issue in more detail, we generated IL-2Rbeta(-/-) x IL-7Ralpha(-/-) and IL-2Rbeta(-/-) x IL-4Ralpha(-/-) mice. We found that IL-2Rbeta(-/-) x IL-7Ralpha(-/-) mice were devoid of Tregs thereby recapitulating the phenotype observed in gammac(-/-) mice; in contrast, the phenotype observed in IL-2Rbeta(-/-) x IL-4Ralpha(-/-) mice was comparable to that seen in IL-2Rbeta(-/-) mice. Finally, we observed that Tregs from both IL-2(-/-) and IL-2Rbeta(-/-) mice show elevated expression of IL-7Ralpha and IL-15Ralpha chains. Addition of IL-2 to Tregs from IL-2(-/-) mice led to rapid down-regulation of these receptors. Taken together, our results demonstrate that IL-2 plays the predominant role in Treg development, but that in its absence the IL-7Ralpha and IL-15Ralpha chains are up-regulated and allow for IL-7 and IL-15 to partially compensate for loss of IL-2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号