首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Wasp-waist interactions in the North Sea ecosystem   总被引:1,自引:0,他引:1  

Background

In a “wasp-waist” ecosystem, an intermediate trophic level is expected to control the abundance of predators through a bottom-up interaction and the abundance of prey through a top-down interaction. Previous studies suggest that the North Sea is mainly governed by bottom-up interactions driven by climate perturbations. However, few studies have investigated the importance of the intermediate trophic level occupied by small pelagic fishes.

Methodology/Principal Findings

We investigated the numeric interactions among 10 species of seabirds, two species of pelagic fish and four groups of zooplankton in the North Sea using decadal-scale databases. Linear models were used to relate the time series of zooplankton and seabirds to the time series of pelagic fish. Seabirds were positively related to herring (Clupea harengus), suggesting a bottom-up interaction. Two groups of zooplankton; Calanus helgolandicus and krill were negatively related to sprat (Sprattus sprattus) and herring respectively, suggesting top-down interactions. In addition, we found positive relationships among the zooplankton groups. Para/pseudocalanus was positively related to C. helgolandicus and C. finmarchicus was positively related to krill.

Conclusion/Significance

Our results indicate that herring was important in regulating the abundance of seabirds through a bottom-up interaction and that herring and sprat were important in regulating zooplankton through top-down interactions. We suggest that the positive relationships among zooplankton groups were due to selective foraging and switching in the two clupeid fishes. Our results suggest that “wasp-waist” interactions might be more important in the North Sea than previously anticipated. Fluctuations in the populations of pelagic fish due to harvesting and depletion of their predators might accordingly have profound consequences for ecosystem dynamics through trophic cascades.  相似文献   

2.
3.
The Antarctic krill, Euphausia superba, and the Northern krill, Meganyctiphanes norvegica, are closely related species but occupy significantly different trophic and climatic environments. E. superba holds a key position as a phytoplankton grazer in the Southern Ocean. The omnivorous M. norvegica is an important member of plankton communities in the Northeast Atlantic. Both species expressed high proteolytic activities which were dominated by serine proteinases. In the stomachs of Antarctic krill, activities of total proteinase, trypsin, and chymotrypsin were significantly higher than in Northern krill. In the midgut glands, however, total proteinase and trypsin activities were similar in both species, but chymotrypsin activity was significantly higher in Antarctic krill. Moreover, Antarctic krill expressed four trypsin isoforms while only one isoform appeared in Northern krill. Chymotrypsin was present in either species as one single isoform. Antarctic krill adapted to the low and patchy distribution of food by elevated enzyme activities and the expression of trypsin isoforms with slightly different catalytic properties. Presumably, these enzymes facilitate in concerted action the efficient utilization of proteins from phytoplankton, the major food. Northern krill, in contrast, seems not to be equipped to face food limitation. It expresses a “simple” or “basic” set of digestive enzymes for utilizing abundant and easily digestible prey.  相似文献   

4.
Antarctic krill (Euphausia superba) is a key species in Antarctic marine ecosystems, as well as an important species in the Southern Ocean fishery. Here, we provide the first detailed photographic documentation of embryonic and larval development of Antarctic krill over a 5-month developmental period under controlled laboratory conditions. Developing embryos and larvae were photographed every 3 h and every 5 days, respectively. Our results indicated a developmental time of approximately 6 days for embryos and 138 days for larvae (0.5 °C). This study provided baseline biometry information for future investigations of Antarctic krill development under changing environmental conditions.  相似文献   

5.

Background

Mixed breeding systems with extended clonal phases and weak sexual recruitment are widespread in nature but often thought to impede the formation of discrete evolutionary clusters. Thus, cyclic parthenogens, such as cladocerans and rotifers, could be predisposed to “species problems” and a lack of discrete species. However, species flocks have been proposed for one cladoceran group, Eubosmina, where putative species are sympatric, and there is a detailed paleolimnological record indicating a Holocene age. These factors make the Eubosmina system suitable for testing the hypotheses that extended clonal phases and weak sexual recruitment inhibit speciation. Although common garden experiments have revealed a genetic component to the morphotypic variation, the evolutionary significance of the morphotypes remains controversial.

Methodology/Principal Findings

In the present study, we tested the hypothesis of a single polymorphic species (i.e., mixing occurs but selection maintains genes for morphology) in four northern European lakes where the morphotypes coexist. Our evidence is based on nuclear DNA sequence, mitochondrial DNA sequence, and morphometric analysis of coexisting morphotypes. We found significant genetic differentiation, genealogical exclusivity, and morphometric differentiation for coexisting morphotypes.

Conclusions

We conclude that the studied morphotypes represent a group of young species undergoing speciation with apparent reproductive barriers despite coexistence in the freshwater pelagic zone.  相似文献   

6.
The structure, functioning and dynamics of polar marine ecosystems are strongly influenced by the extent of sea ice. Ice algae and pelagic phytoplankton represent the primary sources of nutrition for higher trophic-level organisms in seasonally ice-covered areas, but their relative contributions to polar marine consumers remain largely unexplored. Here, we investigated the potential of diatom-specific lipid markers and highly branched isoprenoids (HBIs) for estimating the importance of these two carbon pools in an Antarctic pelagic ecosystem. Using GC-MS analysis, we studied HBI biomarkers in key marine species over three years in Adélie Land, Antarctica: euphausiids (ice krill Euphausia crystallorophias and Antarctic krill E. superba), fish (bald notothens Pagothenia borchgrevinki and Antarctic silverfish Pleuragramma antarcticum) and seabirds (Adélie penguins Pygoscelis adeliae, snow petrels Pagodroma nivea and cape petrels Daption capense). This study provides the first evidence of the incorporation of HBI lipids in Antarctic pelagic consumers. Specifically, a di-unsaturated HBI (diene) of sea ice origin was more abundant in ice-associated species than in pelagic species, whereas a tri-unsaturated HBI (triene) of phytoplanktonic origin was more abundant in pelagic species than in ice-associated species. Moreover, the relative abundances of diene and triene in seabird tissues and eggs were higher during a year of good sea ice conditions than in a year of poor ice conditions. In turn, the higher contribution of ice algal derived organic matter to the diet of seabirds was related to earlier breeding and higher breeding success. HBI biomarkers are a promising tool for estimating the contribution of organic matter derived from ice algae in pelagic consumers from Antarctica.  相似文献   

7.

Background

Sooty (Puffinus griseus) and short-tailed (P. tenuirostris) shearwaters are abundant seabirds that range widely across global oceans. Understanding the foraging ecology of these species in the Southern Ocean is important for monitoring and ecosystem conservation and management.

Methodology/Principal Findings

Tracking data from sooty and short-tailed shearwaters from three regions of New Zealand and Australia were combined with at-sea observations of shearwaters in the Southern Ocean, physical oceanography, near-surface copepod distributions, pelagic trawl data, and synoptic near-surface winds. Shearwaters from all three regions foraged in the Polar Front zone, and showed particular overlap in the region around 140°E. Short-tailed shearwaters from South Australia also foraged in Antarctic waters south of the Polar Front. The spatial distribution of shearwater foraging effort in the Polar Front zone was matched by patterns in large-scale upwelling, primary production, and abundances of copepods and myctophid fish. Oceanic winds were found to be broad determinants of foraging distribution, and of the flight paths taken by the birds on long foraging trips to Antarctic waters.

Conclusions/Significance

The shearwaters displayed foraging site fidelity and overlap of foraging habitat between species and populations that may enhance their utility as indicators of Southern Ocean ecosystems. The results highlight the importance of upwellings due to interactions of the Antarctic Circumpolar Current with large-scale bottom topography, and the corresponding localised increases in the productivity of the Polar Front ecosystem.  相似文献   

8.

Background

During the Ordovician the global diversity increased dramatically at family, genus and species levels. Partially the diversification is explained by an increased nutrient, and phytoplankton availability in the open water. Cephalopods are among the top predators of todays open oceans. Their Ordovician occurrences, diversity evolution and abundance pattern potentially provides information on the evolution of the pelagic food chain.

Methodology/Principal Findings

We reconstructed the cephalopod departure from originally exclusively neritic habitats into the pelagic zone by the compilation of occurrence data in offshore paleoenvironments from the Paleobiology Database, and from own data, by evidence of the functional morphology, and the taphonomy of selected cephalopod faunas. The occurrence data show, that cephalopod associations in offshore depositional settings and black shales are characterized by a specific composition, often dominated by orthocerids and lituitids. The siphuncle and conch form of these cephalopods indicate a dominant lifestyle as pelagic, vertical migrants. The frequency distribution of conch sizes and the pattern of epibionts indicate an autochthonous origin of the majority of orthocerid and lituitid shells. The consistent concentration of these cephalopods in deep subtidal sediments, starting from the middle Tremadocian indicates the occupation of the pelagic zone early in the Early Ordovician and a subsequent diversification which peaked during the Darriwilian.

Conclusions/Significance

The exploitation of the pelagic realm started synchronously in several independent invertebrate clades during the latest Cambrian to Middle Ordovician. The initial rise and diversification of pelagic cephalopods during the Early and Middle Ordovician indicates the establishment of a pelagic food chain sustainable enough for the development of a diverse fauna of large predators. The earliest pelagic cephalopods were slowly swimming vertical migrants. The appearance and early diversification of pelagic cephalopods is interpreted as a consequence of the increased food availability in the open water since the latest Cambrian.  相似文献   

9.
Productivity in the oceans is heightened around oceanographic and bathymetric features such as fronts and islands. This can have a flow-on effect, providing increased food availability for higher trophic level species. Using data from a 5-day combined visual and acoustic survey, we examined the hypothesis that higher Antarctic krill (Euphausia superba) density provides a lucrative resource for humpback whales (Megaptera novaeangliae) at a remote Antarctic feeding area, the Balleny Islands (67oS, 164°E). We assessed whale presence at the feeding area in relation to prey (krill), productivity and environmental variables using density surface modeling. We found stark differences between krill swarms near the islands and those in adjacent open water. Swarms were twice as dense and three times more numerous near the Balleny Islands compared to an open water pelagic environment, suggesting that the islands offered a profitable feeding opportunity. At the feeding area, whales were found in deeper and more productive waters with medium krill densities. These relationships, along with the high krill availability around the islands, may be the result of the Island Mass Effect.  相似文献   

10.
Antarctic krill (Euphausia superba) and salps (mainly Salpa thompsoni) are main components of Southern Ocean ecosystem, but little is known about their coastal distribution at a fine scale (<1 km). We deployed miniaturised cameras on breeding chinstrap (n = 9 birds) and gentoo penguins (n = 9 birds) in the Antarctic Peninsula region and obtained 2,333 krill images, 93 salp images and 609 sea floor images from 1,843 dives. 51.2 % of penguin dives that had salps present in the images occurred near the dives with krill images (within 5 min). The vertical distribution of salp images showed overlap with the upper depth zone of krill images. While 16.3 % of dives with krill images were associated in time with the sea floor, only 1.2 % of dives with salp images did. These results revealed close proximity between krill and salps within the penguin’s foraging range in an Antarctic coastal ecosystem. These results also imply that krill patches were common in both pelagic and benthic habitat, whereas salps were common mainly in pelagic habitat. If the effects of deployments are similar between the years or regions, inter-annual or regional comparison using the penguin-mounted camera will be valid for characterising prey environment in the penguin foraging area.  相似文献   

11.
12.
Stomach contents were identified from 206 Antarctic starry skate (Amblyraja georgiana) that were collected during three groundfish surveys (September 2007, April 2008 and January 2009) at South Georgia, Southern Ocean. The diet of A. georgiana varied with skate size and between years. Preferred prey included fish (particularly for larger individuals) and Antarctic krill, Euphausia superba, as well as amphipods, polychaetes and other benthic fauna. The skate A. georgiana appears to be an opportunistic predator, and the clear presence of Antarctic krill in this demersal predator’s diet may indicate a benthic habit of this euphausiid species, which has hitherto mainly been considered as occupying a purely pelagic niche.  相似文献   

13.
14.

Aim

The study of the factors that influence population connectivity and spatial distribution of genetic variation is crucial for understanding speciation and for predicting the effects of landscape modification and habitat fragmentation, which are considered severe threats to global biodiversity. This dual perspective is obtained from analyses of subalpine mountain species, whose present distribution may have been shaped both by cyclical climate changes over ice ages and anthropogenic perturbations of their habitats. Here, we examine the phylogeography, population structure and genetic diversity of the lacertid lizard Iberolacerta monticola, an endemism considered to be facing a high risk of extinction in several populations.

Location

Northwestern quadrant of the Iberian Peninsula.

Methods

We analyzed the mtDNA variation at the control region (454 bp) and the cytochrome b (598 bp) loci, as well as at 10 nuclear microsatellite loci from 17 populations throughout the distribution range of the species.

Results

According to nuclear markers, most sampling sites are defined as distinct, genetically differentiated populations, and many of them show traces of recent bottlenecks. Mitochondrial data identify a relatively old, geographically restricted lineage, and four to six younger geographically vicariant sister clades, whose origin may be traced back to the mid-Pleistocene revolution, with several subclades possibly associated to the mid-Bruhnes transition. Geographic range fragmentation of one of these clades, which includes lowland sites, is very recent, and most likely due to the accelerated loss of Atlantic forests by human intervention.

Main Conclusions

Altogether, the data fit a “refugia within refugia” model, some lack of pattern uniformity notwithstanding, and suggest that these mountains might be the cradles of new species of Iberolacerta. However, the changes operated during the Holocene severely compromise the long-term survival of those genetic lineages more exposed to the anthropogenic perturbations of their habitats.  相似文献   

15.

Background

Gastric cancer is one of the most common cancers in the world. The “economically developed countries” life style, including diet, constitutes a risk factor favoring this cancer. Diet modulation may lower digestive cancer incidence. Among promising food components, dairy propionibacteria were shown to trigger apoptosis of human colon cancer cells, via the release of short-chain fatty acids acetate and propionate.

Methodology/Principal Findings

A fermented milk, exclusively fermented by P. freudenreichii, was recently designed. In this work, the pro-apoptotic potential of this new fermented milk was demonstrated on HGT-1 human gastric cancer cells. Fermented milk supernatant induced typical features of apoptosis including chromatin condensation, formation of apoptotic bodies, DNA laddering, cell cycle arrest and emergence of a subG1 population, phosphatidylserine exposure at the plasma membrane outer leaflet, reactive oxygen species accumulation, mitochondrial transmembrane potential disruption, caspase activation and cytochrome c release. Remarkably, this new fermented milk containing P. freudenreichii enhanced the cytotoxicity of camptothecin, a drug used in gastric cancer chemotherapy.

Conclusions/Significance

Such new probiotic fermented milk may thus be useful as part of a preventive diet designed to prevent gastric cancer and/or as a food supplement to potentiate cancer therapeutic treatments.  相似文献   

16.

Background

In crustaceans, several mechanisms provide for the mechanical strength of the cuticular “tools” (dactyli, claws, jaws), which serve to catch and crush food objects. Studies on the mandibles of the endemic Baikal amphipod Acanthogammarus grewingkii by means of electron microscopy and elemental analysis have revealed specific structural features of these mouthparts.

Methodology

The fine structure of the mandible has been studied by means of SEM, TEM, and AFM; methods used to analyze its elemental and phase composition include XEPMA, XPS, SEM-EDS analysis, and XRD.

Conclusion

Functional adaptations of the mandible in A. grewingkii provide for the optimum combination of mechanical hardness and fracture resistance, which is achieved due to a complex structure and composition of its cutting parts. Teeth of the mandible are covered by a thin layer of silica (10–20 µm). Their epicuticle is characterized by a high density, consists of three layers, and increases in thickness toward the tooth apex. The epicuticle is enriched with Br, while the concentrations of Ca and P reach the peak values in the softer internal tissues of the teeth. These data broaden the view of the diversity of adaptation mechanisms providing for the strengthening of cuticular “tools” in crustaceans.  相似文献   

17.

Background

The primary objective of this study is to reconstruct the phylogeny of the hentzi species group and sister species in the North American tarantula genus, Aphonopelma, using a set of mitochondrial DNA markers that include the animal “barcoding gene”. An mtDNA genealogy is used to consider questions regarding species boundary delimitation and to evaluate timing of divergence to infer historical biogeographic events that played a role in shaping the present-day diversity and distribution. We aimed to identify potential refugial locations, directionality of range expansion, and test whether A. hentzi post-glacial expansion fit a predicted time frame.

Methods and Findings

A Bayesian phylogenetic approach was used to analyze a 2051 base pair (bp) mtDNA data matrix comprising aligned fragments of the gene regions CO1 (1165 bp) and ND1-16S (886 bp). Multiple species delimitation techniques (DNA tree-based methods, a “barcode gap” using percent of pairwise sequence divergence (uncorrected p-distances), and the GMYC method) consistently recognized a number of divergent and genealogically exclusive groups.

Conclusions

The use of numerous species delimitation methods, in concert, provide an effective approach to dissecting species boundaries in this spider group; as well they seem to provide strong evidence for a number of nominal, previously undiscovered, and cryptic species. Our data also indicate that Pleistocene habitat fragmentation and subsequent range expansion events may have shaped contemporary phylogeographic patterns of Aphonopelma diversity in the southwestern United States, particularly for the A. hentzi species group. These findings indicate that future species delimitation approaches need to be analyzed in context of a number of factors, such as the sampling distribution, loci used, biogeographic history, breadth of morphological variation, ecological factors, and behavioral data, to make truly integrative decisions about what constitutes an evolutionary lineage recognized as a “species”.  相似文献   

18.

Background

Heat shock protein 60 (HSP60) is a chaperonin with essential functions for cell physiology and survival, and its expression correlates with prognosis in a number of malignancies. The aim of this study is to determine the relationship of HSP60 status with clinicopathological parameters and prognosis in gastric cancer.

Methods

The levels of HSP60 and matrix metallopeptidase 9 (MMP-9) antigen was evaluated by immunohistochemistry in 223 gastric carcinoma samples. The association between HSP60 and MMP-9, clinicopathological parameters, and prognosis of gastric cancer was examined.

Results

The level of HSP60 protein was significantly associated with depth invasion, lymph node metastasis and stage of disease (all P<0.05). Both univariate and multivariate analyses revealed that HSP60 was an independent prognostic factor for both overall survival (OS) and recurrence-free survival (RFS) (both P<0.05). Furthermore, HSP60 overexpression was associated with a poor prognosis in patients with advanced gastric cancer in different risk groups. Moreover, HSP60 was significantly correlated with MMP-9 among 223 gastric cancer tissues (P<0.001). Patients who had HSP60 overexpression, in which tumor cells displayed high invasiveness, had poor OS and shorter RFS.

Conclusion

HSP60 plays an important role on tumor aggressiveness and prognosis, and may act as a promising target for prognostic prediction.  相似文献   

19.
20.

Background

Speciose clades usually harbor species with a broad spectrum of adaptive strategies and complex distribution patterns, and thus constitute ideal systems to disentangle biotic and abiotic causes underlying species diversification. The delimitation of such study systems to test evolutionary hypotheses is difficult because they often rely on artificial genus concepts as starting points. One of the most prominent examples is the bellflower genus Campanula with some 420 species, but up to 600 species when including all lineages to which Campanula is paraphyletic. We generated a large alignment of petD group II intron sequences to include more than 70% of described species as a reference. By comparison with partial data sets we could then assess the impact of selective taxon sampling strategies on phylogenetic reconstruction and subsequent evolutionary conclusions.

Methodology/Principal Findings

Phylogenetic analyses based on maximum parsimony (PAUP, PRAP), Bayesian inference (MrBayes), and maximum likelihood (RAxML) were first carried out on the large reference data set (D680). Parameters including tree topology, branch support, and age estimates, were then compared to those obtained from smaller data sets resulting from “classification-guided” (D088) and “phylogeny-guided sampling” (D101). Analyses of D088 failed to fully recover the phylogenetic diversity in Campanula, whereas D101 inferred significantly different branch support and age estimates.

Conclusions/Significance

A short genomic region with high phylogenetic utility allowed us to easily generate a comprehensive phylogenetic framework for the speciose Campanula clade. Our approach recovered 17 well-supported and circumscribed sub-lineages. Knowing these will be instrumental for developing more specific evolutionary hypotheses and guide future research, we highlight the predictive value of a mass taxon-sampling strategy as a first essential step towards illuminating the detailed evolutionary history of diverse clades.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号