首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aldehyde dehydrogenases (ALDHs) are members of NAD(P)(+)-dependent protein superfamily that catalyze the oxidation of a wide range of endogenous and exogenous highly reactive aliphatic and aromatic aldehyde molecules to their corresponding non toxic carboxylic acids. Research evidence has shown that ALDHs represent a promising class of genes to improve growth development, seed storage and environmental stress adaptation in higher plants. The recently completed genome sequences of several plant species have resulted in the identification of a large number of ALDH genes, most of which still need to be functionally characterized. In this paper, we identify members of the ALDH gene superfamily in soybean genome, and provide a unified nomenclature for the entire soybean ALDH gene families. The soybean genome contains 18 unique ALDH sequences encoding members of five ALDH families involved in a wide range of metabolic and molecular detoxification pathways. In addition, we describe the biochemical requirements and cellular metabolic pathways of selected members of ALDHs in soybean responses to environmental stress conditions.  相似文献   

2.
The completion of the rice genome sequence has made it possible to identify and characterize new genes and to perform comparative genomics studies across taxa. The aldehyde dehydrogenase (ALDH) gene superfamily encoding for NAD(P)+-dependent enzymes is found in all major plant and animal taxa. However, the characterization of plant ALDHs has lagged behind their animal- and prokaryotic-ALDH homologs. In plants, ALDHs are involved in abiotic stress tolerance, male sterility restoration, embryo development and seed viability and maturation. However, there is still no structural property-dependent functional characterization of ALDH protein superfamily in plants. In this paper, we identify members of the rice ALDH gene superfamily and use the evolutionary nesting events of retrotransposons and protein-modeling–based structural reconstitution to report the genetic and molecular and structural features of each member of the rice ALDH superfamily in abiotic/biotic stress responses and developmental processes. Our results indicate that rice-ALDHs are the most expanded plant ALDHs ever characterized. This work represents the first report of specific structural features mediating functionality of the whole families of ALDHs in an organism ever characterized.  相似文献   

3.
Aldehyde dehydrogenase (ALDH) superfamily represents a group of NAD(P)+-dependent enzymes that catalyze the oxidation of a wide spectrum of endogenous and exogenous aldehydes. With the advent of megabase genome sequencing, the ALDH superfamily is expanding rapidly on many fronts. As expected, ALDH genes are found in virtually all genomes analyzed to date, indicating the importance of these enzymes in biological functions. Complete genome sequences of various species have revealed additional ALDH genes. As of July 2000, the ALDH superfamily consists of 331 distinct genes, of which eight are found in archaea, 165 in eubacteria, and 158 in eukaryota. The number of ALDH genes in some species with their genomes completely sequenced and annotated, Escherichia coli and Caenorhabditis elegans, ranges from 10 to 17. In the human genome, 17 functional genes and three pseudogenes have been identified to date. Divergent evolution, based on multiple alignment analysis of 86 eukaryotic ALDH amino-acid sequences, was the basis of the standardized ALDH gene nomenclature system (Pharmacogenetics 9: 421–434, 1999). Thus far, the eukaryotic ALDHs comprise 20 gene families. A complete list of all ALDH sequences known to date is presented here along with the evolution analysis of the eukaryotic ALDHs.  相似文献   

4.
Aldehyde dehydrogenase (ALDH) superfamily represents a group of NAD(P)(+)-dependent enzymes that catalyze the oxidation of a wide spectrum of endogenous and exogenous aldehydes. With the advent of megabase genome sequencing, the ALDH superfamily is expanding rapidly on many fronts. As expected, ALDH genes are found in virtually all genomes analyzed to date, indicating the importance of these enzymes in biological functions. Complete genome sequences of various species have revealed additional ALDH genes. As of July 2000, the ALDH superfamily consists of 331 distinct genes, of which eight are found in archaea, 165 in eubacteria, and 158 in eukaryota. The number of ALDH genes in some species with their genomes completely sequenced and annotated, Escherichia coli and Caenorhabditis elegans, ranges from 10 to 17. In the human genome, 17 functional genes and three pseudogenes have been identified to date. Divergent evolution, based on multiple alignment analysis of 86 eukaryotic ALDH amino-acid sequences, was the basis of the standardized ALDH gene nomenclature system (Pharmacogenetics 9: 421-434, 1999). Thus far, the eukaryotic ALDHs comprise 20 gene families. A complete list of all ALDH sequences known to date is presented here along with the evolution analysis of the eukaryotic ALDHs.  相似文献   

5.
6.

Background

Aldehyde dehydrogenases (ALDHs) are members of the NAD(P)+-dependent protein superfamily which catalyzes aliphatic and aromatic aldehyde oxidation to non-toxic carboxylic acids. ALDH genes may offer promise for improving plant adaptation to environmental stress. Recently, elucidated genome sequences of Gossypium raimondii provide a foundation for systematic identification and analysis of ALDH genes. To date, this has been accomplished for many plant species except G. raimondii.

Results

In this study, thirty unique ALDH sequences that code for 10 ALDH families were identified in the G. raimondii genome. Phylogenetic analysis revealed that ALDHs were split into six clades in G. raimondii, and ALDH proteins from the same families were clustered together. Phylogenetic relationships of ALDHs from 11 plant species suggest that ALDHs in G. raimondii shared the highest protein homology with ALDHs from poplar. Members within ALDH families possessed homologous exon–intron structures. Chromosomal distribution of ALDH did not occur evenly in the G. raimondii genome and many ALDH genes were involved in the syntenic region as documented by identification of physical locations among single chromosomes. In addition, syntenic analysis revealed that homologues of many G. raimondii ALDHs appeared in corresponding Arabidopsis and poplar syntenic blocks, indicating that these genes arose prior to G. raimondii, Arabidopsis and poplar speciation. Finally, based on gene expression analysis of microarray and RNA-seq, we can speculate that some G. raimondii ALDH genes might respond to drought or waterlogging stresses.

Conclusion

Genome-wide identification and analysis of the evolution and expression of ALDH genes in G. raimondii laid a foundation for studying this gene superfamily and offers new insights into the evolution history and speculated roles in Gossypium. These data can be used to inform functional genomic studies and molecular breeding in cotton.  相似文献   

7.
Relationships within the aldehyde dehydrogenase extended family   总被引:2,自引:0,他引:2       下载免费PDF全文
One hundred-forty-five full-length aldehyde dehydrogenase-related sequences were aligned to determine relationships within the aldehyde dehydrogenase (ALDH) extended family. The alignment reveals only four invariant residues: two glycines, a phenylalanine involved in NAD binding, and a glutamic acid that coordinates the nicotinamide ribose in certain E-NAD binary complex crystal structures, but which may also serve as a general base for the catalytic reaction. The cysteine that provides the catalytic thiol and its closest neighbor in space, an asparagine residue, are conserved in all ALDHs with demonstrated dehydrogenase activity. Sixteen residues are conserved in at least 95% of the sequences; 12 of these cluster into seven sequence motifs conserved in almost all ALDHs. These motifs cluster around the active site of the enzyme. Phylogenetic analysis of these ALDHs indicates at least 13 ALDH families, most of which have previously been identified but not grouped separately by alignment. ALDHs cluster into two main trunks of the phylogenetic tree. The largest, the "Class 3" trunk, contains mostly substrate-specific ALDH families, as well as the class 3 ALDH family itself. The other trunk, the "Class 1/2" trunk, contains mostly variable substrate ALDH families, including the class 1 and 2 ALDH families. Divergence of the substrate-specific ALDHs occurred earlier than the division between ALDHs with broad substrate specificities. A site on the World Wide Web has also been devoted to this alignment project.  相似文献   

8.
Aldehyde dehydrogenases (ALDHs) oxidize aldehydes to the corresponding carboxylic acids using either NAD or NADP as a coenzyme. Aldehydes are highly reactive aliphatic or aromatic molecules that play an important role in numerous physiological, pathological, and pharmacological processes. ALDHs have been discovered in practically all organisms and there are multiple isoforms, with multiple subcellular localizations. More than 160 ALDH cDNAs or genes have been isolated and sequenced to date from various sources, including bacteria, yeast, fungi, plants, and animals. The eukaryote ALDH genes can be subdivided into several families; the human genome contains 19 known ALDH genes, as well as many pseudogenes. Noteworthy is the fact that elevated activity of various ALDHs, namely ALDH1A2, ALDH1A3, ALDH1A7, ALDH2*2, ALDH3A1, ALDH4A1, ALDH5A1, ALDH6, and ALDH9A1, has been observed in normal and cancer stem cells. Consequently, ALDHs not only may be considered markers of these cells, but also may well play a functional role in terms of self-protection, differentiation, and/or expansion of stem cell populations. The ALDH3 family includes enzymes able to oxidize medium-chain aliphatic and aromatic aldehydes, such as peroxidic and fatty aldehydes. Moreover, these enzymes also have noncatalytic functions, including antioxidant functions and some structural roles. The gene of the cytosolic form, ALDH3A1, is localized on chromosome 17 in human beings and on the 11th and 10th chromosome in the mouse and rat, respectively. ALDH3A1 belongs to the phase II group of drug-metabolizing enzymes and is highly expressed in the stomach, lung, keratinocytes, and cornea, but poorly, if at all, in normal liver. Cytosolic ALDH3 is induced by polycyclic aromatic hydrocarbons or chlorinated compounds, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin, in rat liver cells and increases during carcinogenesis. It has been observed that this increased activity is directly correlated with the degree of deviation in hepatoma and lung cancer cell lines, as is the case in chemically induced hepatoma in rats. High ALDH3A1 expression and activity have been correlated with cell proliferation, resistance against aldehydes derived from lipid peroxidation, and resistance against drug toxicity, such as oxazaphosphorines. Indeed, cells with a high ALDH3A1 content are more resistant to the cytostatic and cytotoxic effects of lipidic aldehydes than are those with a low content. A reduction in cell proliferation can be observed when the enzyme is directly inhibited by the administration of synthetic specific inhibitors, antisense oligonucleotides, or siRNA or indirectly inhibited by the induction of peroxisome proliferator-activated receptor γ (PPARγ) with polyunsaturated fatty acids or PPARγ transfection. Conversely, cell proliferation is stimulated by the activation of ALDH3A1, whether by inhibiting PPARγ with a specific antagonist, antisense oligonucleotides, siRNA, or a medical device (i.e., composite polypropylene prosthesis for hernia repair) used to induce cell proliferation. To date, the mechanisms underlying the effects of ALDHs on cell proliferation are not yet fully clear. A likely hypothesis is that the regulatory effect is mediated by the catabolism of some endogenous substrates deriving from normal cell metabolism, such as 4-hydroxynonenal, which have the capacity to either stimulate or inhibit the expression of genes involved in regulating proliferation.  相似文献   

9.
Evidence is presented for six opossum ALDH1A genes, including four ALDH1A1-like genes on chromosome 6 and ALDH1A2- and ALDH1A3-like genes on chromosome 1. Predicted structures for the opossum aldehyde dehydrogenase (ALDH) subunits and the intron–exon boundaries for opossum ALDH genes showed a high degree of similarity with other mammalian ALDHs. Phylogenetic analyses supported the proposed designation of these opossum class 1 ALDHs as ALDH1A-like, ALDH1A2-like, and ALDH1A3-like and are therefore likely to play important roles in retinal and peroxidic aldehyde metabolism. Alignments of predicted opossum ALDH1A amino acid sequences with sheep ALDH1A1 and rat ALDH1A2 sequences demonstrated conservation of key residues previously shown to participate in catalysis and coenzyme binding. Amino acid substitution rates observed for family 1A ALDHs during vertebrate evolution indicated that ALDH1A2-like genes are evolving slower than ALDH1A1- and ALDH1A3-like genes. It is proposed that the common ancestor for ALDH1A genes predates the appearance of birds during vertebrate evolution.  相似文献   

10.
The cDNA clone for rat liver microsomal aldehyde dehydrogenase (msALDH) was isolated and sequenced. The deduced amino acid sequence consisting of 484 amino acid residues revealed that the carboxyl-terminal region of msALDH has a hydrophobic segment, which is probably important for the insertion of this enzyme into the endoplasmic reticulum membrane. COS-1 cells transfected with the expression vector pcD containing the full-length cDNA showed that the active enzyme was expressed and localized mainly on the cytoplasmic surface of the endoplasmic reticulum membranes. It has been proposed that ALDH isozymes form a superfamily consisting of class 1, 2, and 3 ALDHs (Hempel, J., Harper, K., and Lindahl, R., (1989) Biochemistry 28, 1160-1167). Comparison of the amino acid sequence of rat liver msALDH with those of rat other class ALDHs showed that msALDH was 24.2, 24.0, and 65.5% identical to phenobarbital-inducible ALDH (variant class 1), mitochondrial ALDH (class 2), and tumor-associated ALDH (class 3), respectively. Several amino acid residues common to the other known ALDHs, however, were found to be conserved in msALDH. Based on these results, we proposed to classify msALDH as a new type, class 4 ALDH.  相似文献   

11.
12.
Aldehyde dehydrogenases (ALDHs) are a superfamily of several isoenzymes widely expressed in bacteria, yeast, plant and animals. Three major classes of ALDHs have been traditionally identified, classes 1, 2 and 3. Both exogenous and endogenous aldehydes, including aldehydes derived from lipid peroxidation, are oxidized by the ALDH superfamily. Several changes in ALDH isoenzyme expression take place in hepatoma cells, in particular cytosolic class 3 ALDH (ALDH3), not expressed in normal hepatocytes, appears and increases with the degree of deviation. It has been demonstrated that cytosolic ALDH3 is important in determining the resistance of tumor cells to antitumor drugs, such as cyclophosphamide. Moreover, hepatoma-associated ALDH3 seems to be important in metabolizing aldehydes derived from lipid peroxidation, and in particular the cytostatic aldehyde 4-hydroxynonenal (4-HNE). We demonstrated previously that restoring endogenous lipid peroxidation in hepatoma cells by enriching them with arachidonic acid causes a decrease of mRNA, protein and enzyme activity of ALDH3 and that this decrease reduces cell growth and/or causes cell death, depending on basal class 3 ALDH activity. To confirm the correlation between inhibition of class 3 ALDH and reduction of cell proliferation, we exposed hepatoma cells to antisense oligonucleotides (ODNs) against ALDH3. In JM2 hepatoma cell line, with high ALDH3 activity, the exposure to antisense ODNs significantly decreases mRNA and enzyme activity (90%). At the same time, cell growth was reduced by about 70%. The results confirm that in hepatoma cells ALDH3 expression is closely related with cell growth, and that its inhibition is important in reducing the proliferation of hepatoma cells overexpressing ALDH3.  相似文献   

13.
The male fertility restorer (RF) proteins belong to extended protein families associated with the cytoplasmic male sterility in higher plants. Up till now, there is no devised nomenclature for naming the RF proteins. The systematic sequencing of new plant species in recent years has uncovered the existence of several novel RF genes and their encoded proteins. Their naming has been simply arbitrary and could not be adequately handled in the context of comparative functional genomics. We propose in this study a unified nomenclature for the RF extended protein families across all plant species. This new and unified nomenclature relies upon previously developed nomenclature for the first ever characterized RF gene, RF2A/ALDH2B2, a member of ALDH gene superfamily, and adheres to the guidelines issued by the ALDH Genome Nomenclature Committees. The proposed nomenclature reveals that RF gene superfamily encodes currently members of 51 families. This unified nomenclature accommodates functional RF genes and pseudogenes, and offers the flexibility needed to incorporate additional RFs as they become available in future. In addition, we provide a phylogenetic relationship between the RF extended families and use computational protein modeling to demonstrate the high divergence of RF functional specializations through specific structural features of selected members of RF superfamily.  相似文献   

14.
Aldehyde dehydrogenases (ALDHs) are a superfamily of several isoenzymes widely expressed in bacteria, yeast, plant and animals. Three major classes of ALDHs have been traditionally identified, classes 1, 2 and 3. Both exogenous and endogenous aldehydes, including aldehydes derived from lipid peroxidation, are oxidized by the ALDH superfamily. Several changes in ALDH isoenzyme expression take place in hepatoma cells, in particular cytosolic class 3 ALDH (ALDH3), not expressed in normal hepatocytes, appears and increases with the degree of deviation. It has been demonstrated that cytosolic ALDH3 is important in determining the resistance of tumor cells to antitumor drugs, such as cyclophosphamide. Moreover, hepatoma-associated ALDH3 seems to be important in metabolizing aldehydes derived from lipid peroxidation, and in particular the cytostatic aldehyde 4-hydroxynonenal (4-HNE). We demonstrated previously that restoring endogenous lipid peroxidation in hepatoma cells by enriching them with arachidonic acid causes a decrease of mRNA, protein and enzyme activity of ALDH3 and that this decrease reduces cell growth and/or causes cell death, depending on basal class 3 ALDH activity. To confirm the correlation between inhibition of class 3 ALDH and reduction of cell proliferation, we exposed hepatoma cells to antisense oligonucleotides (ODNs) against ALDH3. In JM2 hepatoma cell line, with high ALDH3 activity, the exposure to antisense ODNs significantly decreases mRNA and enzyme activity (90%). At the same time, cell growth was reduced by about 70%. The results confirm that in hepatoma cells ALDH3 expression is closely related with cell growth, and that its inhibition is important in reducing the proliferation of hepatoma cells overexpressing ALDH3.  相似文献   

15.
Cytoplasmic male sterility is a maternally transmitted inability to produce viable pollen. Male sterility occurs in Texas (T) cytoplasm maize as a consequence of the premature degeneration of the tapetal cell layer during microspore development. This sterility can be overcome by the combined action of two nuclear restorer genes, rf1 and rf2a. The rf2a gene encodes a mitochondrial aldehyde dehydrogenase (ALDH) that is capable of oxidizing a variety of aldehydes. Six additional ALDH genes were cloned from maize and Arabidopsis. In vivo complementation assays and in vitro enzyme analyses demonstrated that all six genes encode functional ALDHs. Some of these ALDHs are predicted to accumulate in the mitochondria, others in the cytosol. The intron/exon boundaries of these genes are highly conserved across maize and Arabidopsis and between mitochondrial and cytosolic ALDHs. Although animal, fungal, and plant genomes each encode both mitochondrial and cytosolic ALDHs, it appears that either the gene duplications that generated the mitochondrial and the cytosolic ALDHs occurred independently within each lineage or that homogenizing gene conversion-like events have occurred independently within each lineage. All studied plant genomes contain two confirmed or predicted mitochondrial ALDHs. It appears that these mitochondrial ALDH genes arose via independent duplications after the divergence of monocots and dicots or that independent gene conversion-like events have homogenized the mitochondrial ALDH genes in the monocot and dicot lineages. A computation approach was used to identify amino acid residues likely to be responsible for functional differences between mitochondrial and cytosolic ALDHs.  相似文献   

16.
17.
Abstract

Aldehydes are highly reactive molecules that may have a variety of effects on biological systems. They can be generated from a virtually limitless number of endogenous and exogenous sources. Although some aldehyde-mediated effects such as vision are beneficial, many effects are deleterious, including cytotoxicity, mutagenicity, and carcinogenicity. A variety of enzymes have evolved to metabolize aldehydes to less reactive forms. Among the most effective pathways for aldehyde metabolism is their oxidation to carboxylic acids by aldehyde dehydrogenases (ALDHs).

ALDHs are a family of NADP-dependent enzymes with common structural and functional features that catalyze the oxidation of a broad spectrum of aliphatic and aromatic aldehydes. Based on primary sequence analysis, three major classes of mammalian ALDHs — 1, 2, and 3 — have been identified. Classes 1 and 3 contain both constitutively expressed and inducible cytosolic forms. Class 2 consists of constitutive mitochondrial enzymes. Each class appears to oxidize a variety of substrates that may be derived either from endogenous sources such as amino acid, biogenic amine, or lipid metabolism or from exogenous sources, including aldehydes derived from xenobiotic metabolism.

Changes in ALDH activity have been observed during experimental liver and urinary bladder carcinogenesis and in a number of human tumors, including some liver, colon, and mammary cancers. Changes in ALDH define at least one population of preneoplastic cells having a high probability of progressing to overt neoplasms. The most common change is the appearance of class 3 ALDH dehydrogenase activity in tumors arising in tissues that normally do not express this form. The changes in enzyme activity occur early in tumorigenesis and are the result of permanent changes in ALDH gene expression.

This review discusses several aspects of ALDH expression during carcinogenesis. A brief introduction examines the variety of sources of aldehydes. This is followed by a discussion of the mammalian ALDHs. Because the ALDHs are a relatively understudied family of enzymes, this section presents what is currently known about the general structural and functional properties of the enzymes and the interrelationships of the various forms.

The remainder of the review discusses various aspects of the ALDHs in relation to tumorigenesis. The expression of ALDH during experimental carcinogenesis and what is known about the molecular mechanisms underlying those changes are discussed. This is followed by an extended discussion of the potential roles for ALDH in tumorigenesis. The role of ALDH in the metabolism of cyclophosphamidelike chemotherapeutic agents is described. This work suggests that modulation of ALDH activity may be an important determinant of the effectiveness of certain chemotherapeutic agents. The evidence that changes in ALDH are part of an adaptive response of preneoplastic and neoplastic cells to altered cell physiology or stress is then considered. Roles in the metabolism of aldehydes generated from lipid peroxidation and as part of the Ah gene-mediated response to xenobiotic exposure are both discussed. The data are consistent with a role for certain ALDHs in lipid aldehyde metabolism. Biochemical and genetic data also imply that changes in ALDH may be linked, in part, to cellular adaptation to oxidative stress.

Finally, a model of inducible ALDH gene regulation is proposed. The model incorporates current information about ALDH gene expression with the regulation of other genes known to be part of the adaptive responses occurring in neoplastic cells. The model suggests that regulation of class 1 and 3 ALDH gene activity may be complex, involving the tissue-specific ability to respond to a variety of physiological cues. The model also suggests several avenues for future research that should provide a clearer understanding of the regulation of this important gene family in response to a variety of factors.  相似文献   

18.
Vitamin A (retinol) and provitamin A (beta-carotene) are metabolized to specific retinoid derivatives which function in either vision or growth and development. The metabolite 11-cis-retinal functions in light absorption for vision in chordate and nonchordate animals, whereas all-trans-retinoic acid and 9-cis-retinoic acid function as ligands for nuclear retinoic acid receptors that regulate gene expression only in chordate animals. Investigation of retinoid metabolic pathways has resulted in the identification of numerous retinoid dehydrogenases that potentially contribute to metabolism of various retinoid isomers to produce active forms. These enzymes fall into three major families. Dehydrogenases catalyzing the reversible oxidation/reduction of retinol and retinal are members of either the alcohol dehydrogenase (ADH) or short-chain dehydrogenase/reductase (SDR) enzyme families, whereas dehydrogenases catalyzing the oxidation of retinal to retinoic acid are members of the aldehyde dehydrogenase (ALDH) family. Compilation of the known retinoid dehydrogenases indicates the existence of 17 nonorthologous forms: five ADHs, eight SDRs, and four ALDHs, eight of which are conserved in both mouse and human. Genetic studies indicate in vivo roles for two ADHs (ADH1 and ADH4), one SDR (RDH5), and two ALDHs (ALDH1 and RALDH2) all of which are conserved between humans and rodents. For several SDRs (RoDH1, RoDH4, CRAD1, and CRAD2) androgens rather than retinoids are the predominant substrates suggesting a function in androgen metabolism as well as retinoid metabolism.  相似文献   

19.
In recent years, there has been a significant increase in the number of completely sequenced plant genomes. The comparison of fully sequenced genomes allows for identification of new gene family members, as well as comprehensive analysis of gene family evolution. The aldehyde dehydrogenase (ALDH) gene superfamily comprises a group of enzymes involved in the NAD+- or NADP+-dependent conversion of various aldehydes to their corresponding carboxylic acids. ALDH enzymes are involved in processing many aldehydes that serve as biogenic intermediates in a wide range of metabolic pathways. In addition, many of these enzymes function as ‘aldehyde scavengers’ by removing reactive aldehydes generated during the oxidative degradation of lipid membranes, also known as lipid peroxidation. Plants and animals share many ALDH families, and many genes are highly conserved between these two evolutionarily distinct groups. Conversely, both plants and animals also contain unique ALDH genes and families. Herein we carried out genome-wide identification of ALDH genes in a number of plant species—including Arabidopsis thaliana (thale crest), Chlamydomonas reinhardtii (unicellular algae), Oryza sativa (rice), Physcomitrella patens (moss), Vitis vinifera (grapevine) and Zea mays (maize). These data were then combined with previous analysis of Populus trichocarpa (poplar tree), Selaginella moellindorffii (gemmiferous spikemoss), Sorghum bicolor (sorghum) and Volvox carteri (colonial algae) for a comprehensive evolutionary comparison of the plant ALDH superfamily. As a result, newly identified genes can be more easily analyzed and gene names can be assigned according to current nomenclature guidelines; our goal is to clarify previously confusing and conflicting names and classifications that might confound results and prevent accurate comparisons between studies.  相似文献   

20.
Aldehyde dehydrogenases (ALDHs) belong to a superfamily of NAD(P)+-dependent enzymes, which catalyze the oxidation of endogenous and exogenous aldehydes to their corresponding acids. Increased expression and/or activity of ALDHs, particularly ALDH1A1, have been reported to occur in human cancers. It is proposed that the metabolic function of ALDH1A1 confers the “stemness” properties to normal and cancer stem cells. Nevertheless, the identity of ALDH isozymes that contribute to the enhanced ALDH activity in specific types of human cancers remains to be elucidated. ALDH1B1 is a mitochondrial ALDH that metabolizes a wide range of aldehyde substrates including acetaldehyde and products of lipid peroxidation (LPO). In this study, we immunohistochemically examined the expression profile of ALDH1A1 and ALDH1B1 in human adenocarcinomas of colon (N = 40), lung (N = 30), breast (N = 33) and ovary (N = 33) using an NIH tissue array. The immunohistochemical expression of ALDH1A1 or ALDH1B1 in tumor tissues was scored by their intensity (scale = 1–3) and extensiveness (% of total cancer cells). Herein we report a 5.6-fold higher expression score for ALDH1B1 in cancerous tissues than that for ALDH1A1. Remarkably, 39 out of 40 colonic cancer specimens were positive for ALDH1B1 with a staining intensity of 2.8 ± 0.5. Our study demonstrates that ALDH1B1 is more profoundly expressed in the adenocarcinomas examined in this study relative to ALDH1A1 and that ALDH1B1 is dramatically upregulated in human colonic adenocarcinoma, making it a potential biomarker for human colon cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号