首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Predicting oligomerization states of coiled coils.   总被引:13,自引:5,他引:8       下载免费PDF全文
An algorithm based on the profile method was developed that faithfully distinguishes between the amino acid sequences of dimeric and trimeric coiled coils. Normalized sequence profiles derived from nonhomologous, two- and three-stranded, coiled-coil sequences with unambiguous registers were used to assign dimer and trimer propensities to test sequences. The difference between the dimer and trimer profile scores accurately reflected the preferred oligomerization state. The method relied on two strategies that may be generally applicable to profile calculations--profile values of solvent-exposed residues and of amino acids that were underrepresented in the data-base were given zero weight. Differences between the dimer and trimer profiles revealed sequence patterns that match and extend experimental studies of oligomer specification.  相似文献   

2.
A new multidimensional scoring approach for identifying and distinguishing trimeric and dimeric coiled coils is implemented in the MultiCoil program. The program extends the two-stranded coiled-coil prediction program PairCoil to the identification of three-stranded coiled coils. The computations are based upon data gathered from a three-stranded coiled-coil database comprising 6,319 amino acid residues, as well as from the previously constructed two-stranded coiled-coil database. In addition to identifying coiled coils not predicted by the two-stranded database programs, MultiCoil accurately classifies the oligomerization states of known dimeric and trimeric coiled coils. Analysis of the MultiCoil scores provides insight into structural features of coiled coils, and yields estimates that 0.9% of all protein residues form three-stranded coiled coils and that 1.5% form two-stranded coiled coils. The MultiCoil program is available at http://theory.Ics.mit.edu/multicoil.  相似文献   

3.
4.
Coiled-coils are widespread protein–protein interaction motifs typified by the heptad repeat (abcdefg)n in which “a” and “d” positions are hydrophobic residues. Although identification of likely coiled-coil sequences is robust, prediction of strand order remains elusive. We present the X-ray crystal structure of a short form (residues 583–611), “Q1-short,” of the coiled-coil assembly specificity domain from the voltage-gated potassium channel Kv7.1 (KCNQ1) determined at 1.7 Å resolution. Q1-short lacks one and half heptads present in a previously studied tetrameric coiled-coil construct, Kv7.1 585–621, “Q1-long.” Surprisingly, Q1-short crystallizes as a trimer. In solution, Q1-short self-assembles more poorly than Q1-long and depends on an R-h-x-x-h-E motif common to trimeric coiled-coils. Addition of native sequences that include “a” and “d” positions C-terminal to Q1-short overrides the R-h-x-x-h-E motif influence and changes assembly state from a weakly associated trimer to a strongly associated tetramer. These data provide a striking example of a naturally occurring amino sequence that exhibits context-dependent folding into different oligomerization states, a three-stranded versus a four-stranded coiled-coil. The results emphasize the degenerate nature of coiled-coil energy landscapes in which small changes can have drastic effects on oligomerization. Discovery of these properties in an ion channel assembly domain and prevalence of the R-h-x-x-h-E motif in coiled-coil assembly domains of a number of different channels that are thought to function as tetrameric assemblies raises the possibility that such sequence features may be important for facilitating the assembly of intermediates en route to the final native state.  相似文献   

5.
Coiled coils are α-helical interactions found in many natural proteins. Various sequence-based coiled-coil predictors are available, but key issues remain: oligomeric state and protein-protein interface prediction and extension to all genomes. We present SpiriCoil (http://supfam.org/SUPERFAMILY/spiricoil), which is based on a novel approach to the coiled-coil prediction problem for coiled coils that fall into known superfamilies: hundreds of hidden Markov models representing coiled-coil-containing domain families. Using whole domains gives the advantage that sequences flanking the coiled coils help. SpiriCoil performs at least as well as existing methods at detecting coiled coils and significantly advances the state of the art for oligomer state prediction. SpiriCoil has been run on over 16 million sequences, including all completely sequenced genomes (more than 1200), and a resulting Web interface supplies data downloads, alignments, scores, oligomeric state classifications, three-dimensional homology models and visualisation. This has allowed, for the first time, a genomewide analysis of coiled-coil evolution. We found that coiled coils have arisen independently de novo well over a hundred times, and these are observed in 16 different oligomeric states. Coiled coils in almost all oligomeric states were present in the last universal common ancestor of life. The vast majority of occasions that individual coiled coils have arisen de novo were before the last universal common ancestor of life; we do, however, observe scattered instances throughout subsequent evolutionary history, mostly in the formation of the eukaryote superkingdom. Coiled coils do not change their oligomeric state over evolution and did not evolve from the rearrangement of existing helices in proteins; coiled coils were forged in unison with the fold of the whole protein.  相似文献   

6.
MOTIVATION: Accurate multiple sequence alignments are essential in protein structure modeling, functional prediction and efficient planning of experiments. Although the alignment problem has attracted considerable attention, preparation of high-quality alignments for distantly related sequences remains a difficult task. RESULTS: We developed PROMALS, a multiple alignment method that shows promising results for protein homologs with sequence identity below 10%, aligning close to half of the amino acid residues correctly on average. This is about three times more accurate than traditional pairwise sequence alignment methods. PROMALS algorithm derives its strength from several sources: (i) sequence database searches to retrieve additional homologs; (ii) accurate secondary structure prediction; (iii) a hidden Markov model that uses a novel combined scoring of amino acids and secondary structures; (iv) probabilistic consistency-based scoring applied to progressive alignment of profiles. Compared to the best alignment methods that do not use secondary structure prediction and database searches (e.g. MUMMALS, ProbCons and MAFFT), PROMALS is up to 30% more accurate, with improvement being most prominent for highly divergent homologs. Compared to SPEM and HHalign, which also employ database searches and secondary structure prediction, PROMALS shows an accuracy improvement of several percent. AVAILABILITY: The PROMALS web server is available at: http://prodata.swmed.edu/promals/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

7.
8.
Predicting RNA 3D structure from sequence is a major challenge in biophysics. An important sub-goal is accurately identifying recurrent 3D motifs from RNA internal and hairpin loop sequences extracted from secondary structure (2D) diagrams. We have developed and validated new probabilistic models for 3D motif sequences based on hybrid Stochastic Context-Free Grammars and Markov Random Fields (SCFG/MRF). The SCFG/MRF models are constructed using atomic-resolution RNA 3D structures. To parameterize each model, we use all instances of each motif found in the RNA 3D Motif Atlas and annotations of pairwise nucleotide interactions generated by the FR3D software. Isostericity relations between non-Watson–Crick basepairs are used in scoring sequence variants. SCFG techniques model nested pairs and insertions, while MRF ideas handle crossing interactions and base triples. We use test sets of randomly-generated sequences to set acceptance and rejection thresholds for each motif group and thus control the false positive rate. Validation was carried out by comparing results for four motif groups to RMDetect. The software developed for sequence scoring (JAR3D) is structured to automatically incorporate new motifs as they accumulate in the RNA 3D Motif Atlas when new structures are solved and is available free for download.  相似文献   

9.
10.
We have crystallized the ≈190-Å-long parallel two-stranded coiled-coil oligomerization domain of the actin-bundling protein cortexillin I fromDictyostelium discoideum. The orthorhombic crystals belong to the space group C2221with unit cell dimensions ofa= 71.3 Å,b= 127.8 Å, andc= 91.6 Å. As both native and selenomethionine-substituted protein crystals diffract to 3.0 and 2.85 Å resolution, respectively, using synchrotron radiation, they are suitable for the first high-resolution structural analysis of a two-stranded coiled coil comprising more than six heptad repeats. Moreover, because the polypeptide chain fragment contains a recently identified two-heptad-repeat long sequence that is indispensable for the assembly of the cortexillin I coiled-coil oligomerization domain, its high-resolution structure should enable us to extend our knowledge on the molecular mechanisms underlaying coiled-coil formation and to establish the precise manner in which the two “trigger” sequences interact with one another in the dimer.  相似文献   

11.
Paircoil2: improved prediction of coiled coils from sequence   总被引:6,自引:0,他引:6  
We introduce Paircoil2, a new version of the Paircoil program, which uses pairwise residue probabilities to detect coiled-coil motifs in protein sequence data. Paircoil2 achieves 98% sensitivity and 97% specificity on known coiled coils in leave-family-out cross-validation. It also shows superior performance compared with published methods in tests on proteins of known structure.  相似文献   

12.
We describe a new algorithm for protein classification and the detection of remote homologs. The rationale is to exploit both vertical and horizontal information of a multiple alignment in a well-balanced manner. This is in contrast to established methods such as profiles and profile hidden Markov models which focus on vertical information as they model the columns of the alignment independently and to family pairwise search which focuses on horizontal information as it treats given sequences separately. In our setting, we want to select from a given database of "candidate sequences" those proteins that belong to a given superfamily. In order to do so, each candidate sequence is separately tested against a multiple alignment of the known members of the superfamily by means of a new jumping alignment algorithm. This algorithm is an extension of the Smith-Waterman algorithm and computes a local alignment of a single sequence and a multiple alignment. In contrast to traditional methods, however, this alignment is not based on a summary of the individual columns of the multiple alignment. Rather, the candidate sequence is at each position aligned to one sequence of the multiple alignment, called the "reference sequence." In addition, the reference sequence may change within the alignment, while each such jump is penalized. To evaluate the discriminative quality of the jumping alignment algorithm, we compare it to profiles, profile hidden Markov models, and family pairwise search on a subset of the SCOP database of protein domains. The discriminative quality is assessed by median false positive counts (med-FP-counts). For moderate med-FP-counts, the number of successful searches with our method is considerably higher than with the competing methods.  相似文献   

13.
We describe here a systematic investigation into the role of position a in the hydrophobic core of a model coiled-coil protein in determining coiled-coil stability and oligomerization state. We employed a model coiled coil that allowed the formation of an extended three-stranded trimeric oligomerization state for some of the analogs; however, due to the presence of a Cys-Gly-Gly linker, unfolding occurred from the same two-stranded monomeric oligomerization state for all of the analogs. Denaturation from a two-stranded state allowed us to measure the relative contribution of 20 different amino acid side chains to coiled-coil stability from chemical denaturation profiles. In addition, the relative hydrophobicity of the substituted amino acid side chains was assessed by reversed-phase high-performance liquid chromatography and found to correlate very highly (R = 0.95) with coiled-coil stability. We also determined the effect of position a in specifying the oligomerization state using ultracentrifugation as well as high-performance size-exclusion chromatography. We found that nine of the analogs populated one oligomerization state exclusively at peptide concentrations of 50 microM under benign buffer conditions. The Leu-, Tyr-, Gln-, and His-substituted analogs were found to be exclusively three-stranded trimers, while the Asn-, Lys-, Orn-, Arg-, and Trp-substituted analogs formed exclusively two-stranded monomers. Modeling results for the Leu-substituted analog showed that a three-stranded oligomerization state is preferred due to increased side-chain burial, while a two-stranded oligomerization state was observed for the Trp analog due to unfavorable cavity formation in the three-stranded state.  相似文献   

14.
The c-fes locus encodes a 93-kDa non-receptor protein tyrosine kinase (Fes) that regulates the growth and differentiation of hematopoietic and vascular endothelial cells. Unique to Fes is a long N-terminal sequence with two regions of strong homology to coiled-coil oligomerization domains. We introduced leucine-to-proline substitutions into the coiled coils that were predicted to disrupt the coiled-coil structure. The resulting mutant proteins, together with wild-type Fes, were fused to green fluorescent protein and expressed in Rat-2 fibroblasts. We observed that a point mutation in the first coiled-coil domain (L145P) dramatically increased Fes tyrosine kinase and transforming activities in this cell type. In contrast, a similar point mutation in the second coiled-coil motif (L334P) was without effect. However, combining the L334P and L145P mutations reduced transforming and kinase activities by approximately 50% relative to the levels of activity produced with the L145P mutation alone. To study the effects of the coiled-coil mutations in a biologically relevant context, we expressed the mutant proteins in the granulocyte-macrophage colony-stimulating factor (GM-CSF)-dependent myeloid leukemia cell line TF-1. In this cellular context, the L145P mutation induced GM-CSF independence, cell attachment, and spreading. These effects correlated with a marked increase in L145P protein autophosphorylation relative to that of wild-type Fes. In contrast, the double coiled-coil mutant protein showed greatly reduced kinase and biological activities in TF-1 cells. These data are consistent with a role for the first coiled coil in the negative regulation of kinase activity and a requirement for the second coiled coil in either oligomerization or recruitment of signaling partners. Gel filtration experiments showed that the unique N-terminal region interconverts between monomeric and oligomeric forms. Single point mutations favored oligomerization, while the double point mutant protein eluted essentially as the monomer. These data provide new evidence for coiled-coil-mediated regulation of c-Fes tyrosine kinase activity and signaling, a mechanism unique among tyrosine kinases.  相似文献   

15.
Intrinsic disorder in proteins has been explored to study lack of structure-function aspects of many proteins. The current study focuses on coiled coils which are often linked to intrinsic disorder. We present a sequence level analysis of human coiled coils to find out if this is universally true for all coiled coils. When annotated coiled-coil regions were collected from UniProt and investigated with disorder prediction tools namely-IUPred and DISpro, three patterns were commonly observed-disordered coiled coils (DisCCs), ordered coiled coils (OCCs) and the last one having a disordered region outside the coiled-coil region (DOCCs). Differential enrichment in the gene ontology was seen in these three categories. We found that OCCs are enriched in structural components of the extracellular space including the fibrinogen complex and laminin complex. On the contrary, DisCCs were found to be exclusively over-represented in proteins involved in actin filament, lamellipodium, cell junction, macromolecule complexes, ciliary rootlet and nucleolus. DOCCs are found to be associated with many regulatory and adaptor functions including positive regulation of calcium ion transport via store-operated calcium channel activity, cytoskeletal adaptor activity etc. Other than the GO-based analysis, sequence level analysis showed that disordered coiled-coil regions bear a high proportion of low-complexity regions as compared to ordered coiled coils. The former also has a higher probability of forming a dimer as compared to the ordered counterpart. Our study shows that the in silico approach of mapping of disorder in or around coiled coils in other biological systems or organisms can be applied to understand and rationalize the mode of action of these dynamic motifs.  相似文献   

16.
Myosin VI is a pointed-end–directed actin motor that is thought to function as both a transporter of cargoes and an anchor, capable of binding cellular components to actin for long periods. Dimerization via a predicted coiled coil was hypothesized to regulate activity and motor properties. However, the importance of the coiled-coil sequence has not been tested in vivo. We used myosin VI's well-defined role in actin stabilization during Drosophila spermatid individualization to test the importance in vivo of the predicted coiled coil. If myosin VI functions as a dimer, a forced dimer should fully rescue myosin VI loss of function defects, including actin stabilization, actin cone movement, and cytoplasmic exclusion by the cones. Conversely, a molecule lacking the coiled coil should not rescue at all. Surprisingly, neither prediction was correct, because each rescued partially and the molecule lacking the coiled coil functioned better than the forced dimer. In extracts, no cross-linking into higher molecular weight forms indicative of dimerization was observed. In addition, a sequence required for altering nucleotide kinetics to make myosin VI dimers processive is not required for myosin VI's actin stabilization function. We conclude that myosin VI does not need to dimerize via the predicted coiled coil to stabilize actin in vivo.  相似文献   

17.
In this study we compare commonly used coiled-coil prediction methods against a database derived from proteins of known structure. We find that the two older programs COILS and PairCoil/MultiCoil are significantly outperformed by two recent developments: Marcoil, a program built on hidden Markov models, and PCOILS, a new COILS version that uses profiles as inputs; and to a lesser extent by a PairCoil update, PairCoil2. Overall Marcoil provides a slightly better performance over the reference database than PCOILS and is considerably faster, but it is sensitive to highly charged false positives, whereas the weighting option of PCOILS allows the identification of such sequences.  相似文献   

18.
Alpha-helical coiled-coils are widely occurring protein oligomerization motifs. Here we show that most members of the collagen superfamily contain short, repeating heptad sequences typical of coiled coils. Such sequences are found at the N-terminal ends of the C-propeptide domains in all fibrillar procollagens. When fused C-terminal to a reporter molecule containing a collagen-like sequence that does not spontaneously trimerize, the C-propeptide heptad repeats induced trimerization. C-terminal heptad repeats were also found in the oligomerization domains of the multiplexins (collagens XV and XVIII). N-terminal heptad repeats are known to drive trimerization in transmembrane collagens, whereas fibril-associated collagens with interrupted triple helices, as well as collagens VII, XIII, XXIII, and XXV, were found to contain heptad repeats between collagen domains. Finally, heptad repeats were found in the von Willebrand factor A domains known to be involved in trimerization of collagen VI, as well as in collagen VII. These observations suggest that coiled-coil oligomerization domains are widely used in the assembly of collagens and collagen-like proteins.  相似文献   

19.
Intermediate filaments (IFs) are key components of the cytoskeleton in higher eukaryotic cells. The elementary IF 'building block' is an elongated coiled-coil dimer consisting of four consecutive alpha-helical segments. The segments 1A and 2B include highly conserved sequences and are critically involved in IF assembly. Based on the crystal structures of three human vimentin fragments at 1.4-2.3 A resolution (PDB entries 1gk4, 1gk6 and 1gk7), we have established the molecular organization of these two segments. The fragment corresponding to segment 1A forms a single, amphipatic alpha-helix, which is compatible with a coiled-coil geometry. While this segment might yield a coiled coil within an isolated dimer, monomeric 1A helices are likely to play a role in specific dimer-dimer interactions during IF assembly. The 2B segment reveals a double-stranded coiled coil, which unwinds near residue Phe351 to accommodate a 'stutter'. A fragment containing the last seven heptads of 2B interferes heavily with IF assembly and also transforms mature vimentin filaments into a new kind of structure. These results provide the first insight into the architecture and functioning of IFs at the atomic level.  相似文献   

20.
This year marks the 50th anniversary of Crick’s seminal paper on the packing of α-helices into coiled-coil structures. The central tenet of Crick’s work is the interdigitation of side chains, which directs the helix–helix interactions; so called knobs-into-holes packing. Subsequent determinations of coiled-coil-protein sequences and structures confirmed the key features of Crick’s model and established it as a fundamental concept in structural biology. Recently, we developed a program, SOCKET, to recognise knobs-into-holes packing in protein structures, which we applied to the Protein Data Bank to compile a database of coiled-coil structures. In addition to classic structures, the database reveals 4-helix bundles and larger helical assemblies. Here, we describe how the more-complex structures can be understood by extending Crick’s principles for classic coiled coils. In the simplest case, each helix of a 2-stranded structure contributes a single seam of (core) knobs-into-holes to the helical interface. 3-, 4-, and 5-Stranded structures, however, are best considered as rings of helices with cycles of knobs-into-holes. These higher-order oligomers make additional (peripheral) knobs-into-holes that broaden the helical contacts. Combinations of core and peripheral knobs may be assigned to different sequence repeats offset within the same helix. Such multiple repeats lead to multi-faceted helices, which explain structures above dimers. For instance, coiled-coil oligomer state correlates with the offset of the different repeats along a sequence. In addition, certain multi-helix assemblies can be considered as conjoined coiled coils in which multi-faceted helices participate in more than one coiled-coil motif.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号