首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M Tsubaki  A Hiwatashi  Y Ichikawa 《Biochemistry》1989,28(25):9777-9784
Reduction of cytochrome P-450scc(SF) (SF, substrate free) purified from bovine adrenocortical mitochondria with sodium dithionite (Na2S2O4) or with beta-NADPH mediated by catalytic amounts of adrenodoxin and adrenodoxin reductase in the presence of phenyl isocyanide produced a ferrous cytochrome P-450scc(SF)-phenyl isocyanide complex with Soret absorbance maximum at 455 nm having a shoulder at 425 nm. On the other hand, when a preformed cytochrome P-450scc(SF)-adrenodoxin complex was reduced chemically or enzymatically under the same conditions, the absorbance spectrum showed drastic changes, i.e., an increase in intensity at 425 nm and a concomitant decrease in intensity at 455 nm. Similar spectral changes could be produced by addition of the same amount of reduced adrenodoxin afterward to the ferrous cytochrome P-450scc(SF)-phenyl isocyanide complex. Titration experiments with adrenodoxin showed that (1) a 1:1 stoichiometric saturation of the spectral change was obtained for both the absorbance increase at 425 nm and the absorbance decrease at 455 nm, (2) there was no spectral change in the presence of 0.35 M NaCl, and (3) there was no spectral change for cytochrome P-450scc(SF) whose Lys residue(s) essential to the interaction with adrenodoxin had been covalently modified with PLP. These results suggest that ternary complex formation of ferrous cytochrome P-450scc(SF)-phenyl isocyanide with reduced adrenodoxin caused a conformational change around the ferrous heme moiety. By analysis of temperature and pH dependencies of the spectral change of the ternary complex, it was suggested that this conformational change may reflect the essential step for electron transfer from reduced adrenodoxin to the ferrous-dioxygen complex of cytochrome P-450scc.  相似文献   

2.
The in vivo administration of piperonyl butoxide (PB) or propyl isome (PI), both methylenedioxyphenyl compounds, to mice affects the levels of several hepatic cytochrome P-450 spectral interactions. The difference spectrum produced by carbon monoxide (commonly employed as a measurement of cytochrome P-450 levels) is initially lowered in magnitude by both compounds. The reduction is followed by an increase with time indicative of cytochrome induction. This biphasic effect, when produced by piperonyl butoxide, is accompanied by specific changes in the levels of the cytochrome P-450 difference spectra produced by hexobarbital, a type-I substrate, and pyridine, a type-II substrate. In addition, the ethyl isocyanide (EtNC) equilibrium point, calculated from the pH effect on the 455-nm and 430-nm peaks of the ethyl isocyanide-cytochrome P-450 difference spectrum, undergoes a biphasic shift. In contrast, propyl isome has the same effect on the substrate difference spectra as it does on the cytochrome level and produces no change in the ethyl isocyanide equilibrium point with time.  相似文献   

3.
Benzo(α)pyrene treatment resulted in stimulation of only cytochrome P-450K and benzo(α)pyrene hydroxylase activity in rat kidney cortex microsomes. Spectral properties of cytochrome P-450K showed that the 452 nm peak of the reduced hemoprotein CO-complex was not shifted in benzo(α)pyrene-treated rats. The off-balance absolute spectrum of oxidized cytochrome P-450K displayed an absorption maximum at 414 nm, another band at 385 nm, and a distinct shoulder at 398 nm. Addition of benzo(α)pyrene to kidney microsomes resulted in a type I spectral change seen only in benzo(α)pyrene-treated rats. The addition of ethyl isocyanide to dithionitetreated microsomes from control rats gave rise to two Soret peaks, 432 nm and 458 nm. These peaks were proportionately increased in benzo(α)pyrene-treated rats; furthermore, the 458 nm peak was not shifted. The relative heights of the two peaks were in a pH-dependent equilibrium similar to that observed in liver; however, in contrast to liver, the pH, at which the ratio of the peak heights equals one, was the same for both benzo(α)pyrene-treated and control microsomes. These data indicate that the newly induced hemoprotein has spectral properties markedly different from those of the benzo(α)pyrene-induced liver hemoprotein, yet similar to those of the “noninduced” kidney hemoprotein. α-Naphthoflavone, an inhibitor of the aryl hydroxylase system, induced a type I spectral change, suggesting the mode of action of α-naphthoflavone to be its interaction with cytochrome P-450K probably at or near the active site. Finally, the rate of reduction of cytochrome P-450K was not affected by the presence of benzo(α)pyrene.  相似文献   

4.
A carbon monoxide-binding pigment which shows an absorption peak at about 450 nm in the reduced carbon monoxide difference spectrum was purified from the microsomal fraction of yeast grown anaerobically. The spectral characteristics of the pigment were practically identical with those of cytochrome P-450 of hepatic microsomes, especially from polycyclic hydrocarbon-induced animals. The pigment was denatured to P-420, and bound with ethyl isocyanide in the reduced state. Although Type I spectral change was not evident, the pigment showed Type II and modified Type II spectral changes upon binding with some organic compounds, as in the case of hepatic cytochrome P-450. These observations clearly indicate that the carbon monoxide-binding pigment of yeast microsomes may be designated as cytochrome P-450 of yeast.  相似文献   

5.
Housefly microsomes contain two spectrally different forms of cytochrome P-450 which we have termed P-450 and P-450I. Methods have been developed for the fractionation and chromatographic purification of these two hemoprotein forms. Microsomes are solubilized first with Triton X-100 in the presence of glycerol, dithiothreitol, ethylenediaminetetra-acetic acid, and phenobarbital. Cytochrome P-450 is recovered in a floating pellet after the addition of 25% ammonium sulfate followed by centrifugation, whereas cytochrome P-450I remains in the 25% ammonium sulfate supernatant fluid. Cytochrome P-450 is purified further by Sephadez G-200 and DEAE-Sephadex A-50 column chromatography, which also allows the isolation of cytochrome b5 and NADPH-dependent cytochrome P-450 reductase in good yields and with little cross-contamination. Cytochrome P-450 apparently is free of cytochromes b5 and P-420 as well as of reductase and is obtained in a final yield of approximately 16% with a 6.9-fold purification. Its maximum absorbance is at 45 mn in the CO-difference spectrum and its average extinction coefficient is 103 cm-1 nm-1. Cytochrome P-450I is purified by Sephadex G-25 column chromatography but still contains some cytochromes b5 and P-420 as well as reductase. Its maximum absorbance is at 448.5 nm in the CO-difference spectrum and its extinction coefficient is 83 to 86 cm-1 mM-1. Both cytochromes hydroxylate type I substrates such as aminopyrine. Sufficient amounts of reductase are present in the cytochrome P-450I preparation to sustain activity, but the reductase has to be added to cytochrome P-450 in a reconstituted system for activity. Cytochrome P-450 is fairly stable, whereas cytochrome P-450I can be isolated only when protected by a substrate (phenobarbital). Detergent-solubilized housefly cytochromes P-450 and P-450I seem to correspond to either aggregates or oligomeric proteins. Cytochrome P-450 appears to correspond to a tetramer, each subunit having a molecular weight of 45,000, whereas cytochrome P-450I may correspond to an aggregate of at least 10 subunits. The cytochrome P-450 aggregate is dissociated by 6 M urea, but cytochrome P-450I remains as such.  相似文献   

6.
The most common cause of congenital adrenal hyperplasia is deficiency of cytochrome P450c21 (21-hydroxylase), which catalyzes the synthesis of adrenal steroids. We have cloned the human P450c21 cDNA into yeast expression vectors under the control of either the glyceraldehyde-3-phosphate-dehydrogenase (GAPDH) promoter or the aldehyde-dehydrogenase (ADH) promoter. P450c21 RNA, protein, and enzyme activity can be detected, indicating that both promoters drive the synthesis of P450c21. The expressed P450c21 catalyzes the conversion of both of its substrates, with Km and Vmax values of 0.33 microM and 280 nmoles/hr.nmole of P450c21 protein for progesterone, and 0.23 microM and 450 nmoles/hr.nmole for 17-hydroxyprogesterone. These kinetic properties are similar to those of human P450c21 expressed in COS-1 cells. The microsomal fraction containing P450c21 exhibited an absorption peak at 450 nm upon binding to CO, demonstrating its hemoprotein nature. The CO-difference spectra indicated that there were about 0.08 nmole P450c21 hemoprotein/mg microsomal protein. Coupling this expression system with site-directed mutagenesis, the Asn-172 mutant of P450c21 had about 20-100 lower Vmax values; yet it retained normal affinity toward both substrates. This mutant protein also exhibited an altered absorbance with a peak at 420 nm rather than at 450 nm.  相似文献   

7.
Cytochromes P-450 and P-448 in rat liver microsomes were solubilized with sodium cholate and were partially purified. The preparations contained 5.0–5.5 nmoles of cytochrome P-450 or P-448 per mg of protein; contamination with cytochrome P-420 and cytochrome b5, was less than 10% of the total heme content. The absolute spectra of Cytochromes P-450 and P-448 differed only slightly; both hemoproteins had a Soret peak at 418–419 nm in the oxidized absolute spectra and at 448 and 450 nm in the reduced plus CO absolute spectra. Both hemoproteins showed typical type I (benzphetamine) and type II (aniline) binding spectra but differed in their binding of hexobarbital (another type I substrate). The total phospholipid content of the preparation (per mg protein) has been reduced by approximately 90% relative to microsomes and the hemoprotein has been purified 20–25 fold with respect to phospholipid. The partially purified hemoprotein fractions, after combination with a reductase and lipid fraction, were capable of oxidizing a variety of substrates inluding drugs, steroids, and chemical carcinogens.  相似文献   

8.
A peak near 420 nm interfering with the spectral detection of cytochrome P450 has been reported for invertebrates and fish. It has been variously suggested to be a breakdown product of P450, or a hemoprotein with unknown functions. Similar spectra were observed in the present work with a neotropical fish, an amphibian, and rodents. Comparative analysis showed that difference spectra resulted from an unknown hemoprotein and neither from P420, nor from hemoglobin, that may contaminate animal microsomes. Seasonal appearance of this protein was observed and its spectrum described. This protein completely substituted P450 in spectra of liver microsomes of fish and rodents collected in the summer, while in the winter the same animals displayed either the classic P450 spectra (rodents) or those accompanied with the low-intensity 421-nm peak (fish). We suggest that the compound visualized in P450 spectra is a functional protein and not an artifact. The possibility that an unknown protein may substitute for cytochrome P450 in microsomes under certain environmental conditions and play a role in animal adaptation to unfavorable environmental fluctuations is discussed.  相似文献   

9.
A form of cytochrome P-450 catalyzing lanosterol 14 alpha-demethylation (tentatively called "P-450(14)DM") was purified from microsomes of semi-anaerobically grown cells of Saccharomyces cerevisiae to gel electrophoretic homogeneity. An apparent monomeric Mr = 58,000 was estimated for the purified cytochrome by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Both optical and EPR spectra of oxidized P-450(14)DM are characteristic of low spin ferric heme proteins, and its reduced CO complex showed a Soret absorption peak at 447 nm. As in the case of hepatic microsomal cytochromes P-450, the ethyl isocyanide complex of reduced P-450(14)DM was in a pH-dependent equilibrium between two states having Soret peaks at 429 and 453 nm, the equilibrium being considerably shifted toward the 453-nm state. Oxidized P-450(14)DM was peculiar in that in its CD spectrum there was a negative shoulder at 425 nm and the 350- and 414-nm troughs possessed larger and relatively smaller [theta] values, respectively, than those reported for other low spin ferric cytochromes P-450. Lanosterol was the only compound which caused a Type I spectral change in oxidized P-450(14)DM. The lanosterol-induced low to high spin state change was, however, only slight even at saturating concentrations of the sterol, indicating that the lanosterol-P-450(14)DM adduct was in a spin state equilibrium.  相似文献   

10.
The reduction of highly purified cytochrome P-450 from rabbit liver microsomes under anaerobic conditions requires 2 electrons per molecule. Similar results were obtained with dithionite, NADPH in the presence of NADPH-cytochrome P-450 reductase, or a photochemical system as the electron donor, with CO or other ligands, with substrate or phosphatidylcholine present, after denaturation to form cytochrome P-420, or with cytochrome P-450 partially purified from rat or mouse liver microsomes. The reduced cytochrome P-450 donates 2 electrons to dichlorophenolindophenol or to cytochrome c. Reoxidation of reduced cytochrome P-450 by molecular oxygen restores a state where 2 electrons from dithionite are required for re-reduction. Although these unexpected findings indicate the presence of an electron acceptor in addition to the heme iron atom, significant amounts of non-heme iron, other metals or cofactors, or disulfide bonds were not found, and free radicals were not detected by electron paramagnetic resonance spectrometry. Resolution of the cytochrome with acetone and acid yielded the apoenzyme, which did not accept electrons, and ferriprotoporphyrin IX, which accepted a single electron. A reconstituted hemoprotein preparation with the spectral characteristics of cytochrome P-420 accepted as much as 0.7 extra electron equivalent per heme. The midpoint oxidation-reduction potential of purified cytochrome P-450 from rabbit liver microsomes at pH 7.0 is -330 mv, and with CO present this value is changed to about -150 mv. The oxidation-reduction potential is unaffected by the presence of phosphatidylcholine or benzphetamine, a typical substrate. Laurate, aminopyrine, and benzphetamine undergo hydroxylation in the presence of chemically reduced cytochrome P-450 and molecular oxygen. Neither NADPH nor the reductase is required for substrate hydroxylation under these conditions.  相似文献   

11.
A purified low-spin form of cytochrome P-450 was isolated from phenobarbital-induced rabbit liver microsomes. The preparation was functionally active and free from cytochromes b5 and P-420 and phospholipids. The specific content of the cytochrome was 18 nmoles per mg of protein. At the molecular weight of the hemoprotein of 50,000, it corresponds to 90% of purification. The purified hemoprotein binds substrates of type II and some substrates of type I. The complexes formed reveal spectral properties, similar to those for the complexes of these substrates with the microsomal form of cytochrome P-450.  相似文献   

12.
The electron transport components of the microsomal fraction of cauliflower buds and mung bean hypocotyls were investigated using split-beam and dual wavelength spectrophotometry under a variety of reducing conditions. Cauliflower microsomes were found to contain an ascorbate-reducible component, termed cytochrome b-559.5 [E'0 = +135 +/- 20 mV; lambdamax (reduced minus oxidised) = 559.5, 527 and 429 nm at 23 degrees C], cytochrome b5 [E'0 = -20 +/- 20 mV; lambdamax (reduced minus oxidised) = 556, 526 and 425 nm at 23 degrees C], cytochromes P-450 and P-420. On the basis of binding studies with ethyl isocyanide, degradation of cytochrome P-450 to P-420, redox potential, aniline binding, and relative rates of reduction by NADPH and NADH, it is suggested that the cytochrome P-450 system is analogous to that mammalian microsomes. Other components, reducible only by dithionite, may also be present. Mung bean microsomes were found to contain an ascorbate-reducible component, termed cytochrome b-562 [E'0 = +120 +/- 20 mV; lambdamax (reduced minus oxidised) = 562, 528 and 430 nm at 23 degrees C], cytochrome b5, and a low potential component which was reducible only by sodium dithionite. No cytochrome P-450 or P-420 could be detected. A general method of analysis of the cytochromes was developed and applied to the microsomes from a variety of plant sources. The results indicate that large variations, both in type and amount of components, occur between the microsomes from different plant materials.  相似文献   

13.
The absorption spectra of oxidized P-450-isocyanide complexes were the same in difference spectra irrespective of the isocyanide derivative tested. However, with these reduced P-450-isocyanide complexes, absorption at 455 mμ increased, and that at 430 mμ decreased, with increasing carbon atom number of the isocyanide derivative at a definite pH. The same changes were seen with individual complexes with increasing pH.

The dissociation constants of oxidized P-450-isocyanide complexes decreased with increase in carbon atom number of the isocyanide. These results were confirmed by electron spin resonance (ESR) spectroscopy. However, the dissociation constants of reduced P-450-isocyanide complexes were essentially identical and the dissociation constants of the oxidized and reduced P-450-isocyanide complexes were little affected by pH.

The oxidized P-450-isocyanide complexes gave magnetically specific ESR signals. The orbital energy differences of d orbitals of the heme iron of the complexes increased with increase in the carbon atom number of the isocyanide.

Purified P-450 and its isocyanide complexes were rapidly reduced by a ferredoxin-NADP+ reductase system.  相似文献   


14.
T Shimizu  T Nozawa  M Hatano  Y Imai  R Sato 《Biochemistry》1975,14(19):4172-4178
Magnetic circular dichroism (MCD) spectra have been measured for cytochrome P-450 (P-450) purified from phenobarbital-induced rabbit liver microsomes. The temperature dependence of some of the MCD spectra has also been determined. The MCD spectrum of oxidized P-450 seems to suggest that it is in a state intermediate between the ferric low-spin states. Model experiments suggest that this anomaly arises from the coordination of a thiolate anion to the heme. Reduced P-450 shows a very peculiar MCD spectrum; the spectrum as well as its temperature dependence suggest that the heme in reduced P-450 is a "mixture" in terms of redox and/or spin states. The MCD spectrum of the CO complex of reduced P-450 exhibits an apparent Faraday A term around 450 nm which consists of about 50% C term and 50% the other terms, indicating that it is not in a purely ferrous low-spin state. The CO complex of reduced cytochrome P-420 (P-420), on the other hand, shows an MCD spectrum characteristic of a ferrous low-spin heme. It is suggested from model experiments that the thiolate anion coordinates to the heme trans to CO in the P-450-CO complex. The Soret region of the MCD spectrum of the EtNC complex of reduced P-450 is characterized by two apparent A terms around 430 and 455 nm, whereas that of the corresponding complex of P-420 has only one apparent A term around 434 nm.  相似文献   

15.
The addition of n-octylamine to microsomes prepared from the midgut of tobacco hornworm (Manduca sexta) larvae causes an unusual spectral interaction. The initial optical difference spectrum appears to be the sum of reduced cytochrome b5 and a type II difference spectrum of cytochrome P-450. This initial spectrum is unstable and diminishes in size, with a concurrent shift in peak (424 to 428 nm) and trough (409 and 392 to approx. 400 nm) positions, to yield a stable spectrum identical to the type II spectrum of cytochrome P-450. Thus, in addition to its interaction with cytochrome P-450, n-octylamine causes a reduction of cytochrome b5 which subsequently becomes reoxidized.The casual factor for this unusual spectral interaction occurs in the cytoplasm and appears to be protein-bound. It was also present in similar preparations from the tobacco budworm (Heliothis virescens) but not in those from rat or mouse liver or abdomens from insecticide-resistant or susceptible houseflies (Musca domestica).Microsomes from rat and mouse liver, but not those from housefly abdomens, exhibit similar unusual spectral interactions with n-octylamine when supplemented with the soluble factor from the hornworm.  相似文献   

16.
1. A new microsomal preparation, obtained from whole houseflies is described in terms of its cytochrome P-450 content and its hydroxylating activity. 2. Microsomes prepared from whole-fly brei, obtained with the aid of a mortar (a procedure that avoids the destruction of sarcosomes), contain 0.265nmol of cytochrome P-450 and hydroxylate naphthalene at a rate of 28.5nmol/mg of microsomal protein in 30min at 30 degrees C. This corresponds to 104nmol of naphthalene hydroxylated/nmol of cytochrome P-450. This is the highest rate ever reported for housefly and rat liver microsomal preparations. 3. Microsomal fractions prepared by procedures that do not retain the integrity of sarcosomes show the presence in the CO-difference spectrum of a 428nm peak. This cytochrome is associated with sarcosomal microsomes and it may be involved in the inhibition of insect microsomal mixed-function oxidases, although other factors cannot be discarded at present. 4. The inability to show cytochrome P-450 in microsomal fractions isolated from whole houseflies by other procedures may be at least partially due to a masking effect brought about by contamination with the sarcosomal cytochrome.  相似文献   

17.
The interactions of 5 carcinogenic and 1 non-carcinogenic nitrosamines with hepatic microsomal cytochrome (cyt.) P-450 were investigated, using both optical difference and electron paramagnetic resonance (EPR) spectroscopic methods. Liver microsomes from phenobarbital (PB)-pretreated mice and 3-methylcholanthrene (3-MC)-pretreated rats were used, in order to have an increased specific content of cyt. P-450 and cyt. P-448 respectively. The optical and EPR spectral data obtained in the oxidised state suggest that nitrosamines are able to bind both as substrates and as ligands to the hemoprotein cyt. P-450, depending on the concentration of nitrosamine, its chemical identity and the cytochrome species present. After reduction with dithionite or NADPH in the optical difference spectrum a Soret band developed between 444 and 453 nm to an extent, which is dependent on the particular nitrosamine present. This initial nitrosamine-induced spectrum might represent a ferrous nitric oxide (NO)-cyt. P-450 complex. It appears unstable and is converted kinetically into a spectrum lacking a Soret band, but with a predominant absorbance minimum at about 425 nm. A visible band is located at 585 nm. In the EPR spectrum a sharp 3-line signal around g = 2.01 appears concomitantly. Both spectral parameters are typical of a NO-cyt. P-420 complex. These results, in conjunction with metabolic studies, indicate that nitrosamines are denitrosated by a reductive process in which cyt. P-450 appears to be involved. The resulting NO-cyt. P-450 complex denatures to a NO-cyt. P-420 complex when the dioxygen level is not sufficiently high to complete successfully.  相似文献   

18.
The effects of high pressure (1-2000 bar) on the spin state and substrate binding equilibria in cytochrome P-450 have been determined. The high-spin (S = 5/2) to low spin (S = 1/2) transition of the ferric hemoprotein was monitored by uv-visible spectroscopy at various substrate concentrations. Increasing hydrostatic pressure on a sample of substrate-bound cytochrome P-450 resulted in a decrease in the high-spin fraction as monitored by a Soret maxima at 391 nm and an increase in the low-spin 417-nm region of the spectrum. These pressure-induced optical changes were totally reversible for all pressures below 800 bar and were found to correspond to simple substrate dissociation from the enzyme. High levels of the normally metabolized substrate, d-camphor, corresponding to a 99.9% saturation of the hemoprotein active site (50 mM Tris-Cl, 100 mM KCl, pH 7.2) completely prevented the pressure-induced high-spin to low-spin transition that is observed at less than saturating substrate concentrations. A gradual increase in the formation of the inactive P-420 form of the cytochrome was noted if the pressure of the sample was increased above 800 bar. These pressure-linked spectral changes were used to determine the microscopic volume change accompanying substrate binding, which was found to be -47.0 +/- 2 ml/mol (pH 7.2) which represents a substantial change for a ligand dissociation reaction. The observed volume change for camphor binding decreases to -30.6 +/- 2 ml/mol at pH 6.0, suggesting the involvement of a linked proton equilibrium. Various substrate analogs of camphor induce varying degrees of low-spin to high-spin shift upon binding to ferric cytochrome P-450 (3). The volume changes for the dissociation of these substrates were very similar to those obtained with camphor. The conformational changes associated with a shift from high- to low-spin ferric iron appear to be small in comparison to the overall macroscopic changes in volume accompanying substrate binding to the enzyme.  相似文献   

19.
Selective chemical modification of the hemoprotein by tetranitromethane was used in order to elucidate the functional role of tyrosine residues in the cytochrome P-450 LM2 molecule. It was shown that the degree of cytochrome P-450 LM2 modification can be determined, using the second derivative of the UV absorption spectra. Modification of one tyrosine residue resulted in the inactivation of cytochrome P-450 LM2. Nitration of the cytochrome was accompanied by changes in the spectral properties of the hemoprotein with the formation of spectra typical of hyperporphyrin structures, thus suggesting the involvement of tyrosine residues in the formation of the active center of cytochrome P-450 LM2.  相似文献   

20.
The interaction of alyphatic alcohols and cyclohexanol with cytochrome P-450 in microsomes has been investigated. All alchohols induced the modified 11 type spectral changes by mixing with microsomes. These changes are characterized by lambdamax = 412 and lambdamin = 380-382 nm in difference spectra. The dissociation constants of the alcohol cytochrome P-450 complexes are determined. On this dissociation constants influence pH and Triton X-100 presence. The interaction of the alcohols with cytochrome P-450 in phosphate buffer pH = 6,0 in the detergents absence is characterized by one dissociation constant for MeOH, EtOH, n-BuOH and cyclohexanol and by two dissociation constants for i-PrOH, i-BuOH and tert.-BuOH. The interaction of the alcohols with cytochrome P-450 in Tris-HCL-buffer (pH 7.5) in the Triton X-100 presence is characterized for all above alcohols by the dissociations constants, which are described by Taft equation with coefficient rho =-1.55. This fact confirms the interaction of alcohols HO-groups with heme iron of cytochrome P-450. The scheme of interaction of alcohols with cytochrome P-450 is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号