首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Short- and long-term responses of inorganic N pools and plant-atmosphere NH(3) exchange to changes in external N supply were investigated in 11-week-old plants of two grass species, Lolium perenne and Bromus erectus, characteristic of N-rich and N-poor grassland ecosystems, respectively. A switch of root N source from NO(-)(3)to NH(4)(+) caused within 3 h a 3- to 6-fold increase in leaf apoplastic NH(4)(+) concentration and a simultaneous decrease in apoplastic pH of about 0.4 pH units in both species. The concentration of total extractable leaf tissue NH(4)(+) also increased two to three times within 3 h after the switch. Removal of exogenous NH(4)(+) caused the apoplastic NH(4)(+) concentration to decline back to the original level within 24 h, whereas the leaf tissue NH(4)(+)concentration decreased more slowly and did not reach the original level in 48 h. After growing for 5 weeks with a steady-state supply of NO(-)(3)or NH(4)(+), L. perenne were in all cases larger, contained more N, and utilized the absorbed N more efficiently for growth than B. erectus, whereas the two species behaved oppositely with respect to tissue concentrations of NO(-)(3), NH(4)(+), and total N. Ammonia compensation points were higher for B. erectus than for L. perenne and were in both species higher for NH(4)(+)- than for NO(-)(3)-grown plants. Steady-state levels of apoplastic NH(4)(+), tissue NH(4)(+), and NH(3) emission were significantly correlated. It is concluded that leaf apoplastic NH(4)(+) is a highly dynamic pool, closely reflecting changes in the external N supply. This rapid response may constitute a signaling system coordinating leaf N metabolism with the actual N uptake by the roots and the external N availability.  相似文献   

2.
Like other nematodes, both L(3) and adult Teladosagia circumcincta secrete or excrete NH(3)/NH(4)(+), but the reactions involved in the production are unclear. Glutamate dehydrogenase is a significant source NH(3)/NH(4)(+) in some species, but previous reports indicate that the enzyme is absent from L(3)Haemonchus contortus. We show that glutamate dehydrogenase was active in both L(3) and adult T. circumcincta. The apparent K(m)s of the L(3) enzyme differed from those of the adult enzyme, the most significant of these being the increase in the K(m) for NH(4)(+) from 18mM in L(3) to 49mM in adults. The apparent V(max) of the oxidative deamination reaction was greater than that of the reductive reaction in L(3), but this was reversed in adults. The activity of the oxidative reaction of the L(3) enzyme was not affected by adenine nucleotides, but that of the reductive reaction was stimulated significantly by either ADP or ATP. The L(3) enzyme was more active with NAD(+) than it was with NADP(+), although the activities supported by NADH and NADPH were similar at saturating concentrations. While the activity of the oxidative reaction was sufficient to account for the NH(3)/NH(4)(+) efflux we have previously reported, the reductive amination reaction was likely to be more active.  相似文献   

3.
Exposure of oilseed rape (Brassica napus) plants to increasing leaf temperatures between 15 degrees C and 25 degrees C increased photorespiratory NH(4)(+) production from 0.7 to 3.5 micromol m(-2) s(-1). Despite the 5-fold increase in the rate of NH(4)(+) production, the NH(4)(+) concentration in root and leaf tissue water and xylem sap dropped significantly, whereas that in the leaf apoplastic fluid remained constant. The in vitro activity of glutamine synthetase (GS) in both leaves and roots also increased with temperature and in all cases substantially exceeded the observed rates of photorespiratory NH(4)(+) production. The surplus of GS in oilseed rape plants was confirmed using GS2 antisense plants with 50% to 75% lower in vitro leaf GS activity than in the wild type. Despite the substantial reduction in GS activity, there was no tendency for antisense plants to have higher tissue NH(4)(+) concentrations than wild-type plants and no overall correlation between GS activity and tissue NH(4)(+) concentration was observed. Antisense plants exposed to leaf temperatures increasing from 14 degrees C to 27 degrees C or to a trifold increase in the O(2) to CO(2) ratio did not show any change in steady-state leaf tissue NH(4)(+) concentration or in NH(3) emission to the atmosphere. The antisense plants also had similar leaf tissue concentrations of glutamine, glycine, and serine as the wild type, whereas glutamate increased by 38%. It is concluded that photorespiration does not control tissue or apoplastic levels of NH(4)(+) in oilseed rape leaves and, as a consequence, that photorespiration does not exert a direct control on leaf atmosphere NH(3) fluxes.  相似文献   

4.
Krouk G  Tillard P  Gojon A 《Plant physiology》2006,142(3):1075-1086
The NRT2.1 gene of Arabidopsis thaliana encodes a major component of the root high-affinity NO(3)(-) transport system (HATS) that plays a crucial role in NO(3)(-) uptake by the plant. Although NRT2.1 was known to be induced by NO(3)(-) and feedback repressed by reduced nitrogen (N) metabolites, NRT2.1 is surprisingly up-regulated when NO(3)(-) concentration decreases to a low level (<0.5 mm) in media containing a high concentration of NH(4)(+) or Gln (>or=1 mm). The NRT3.1 gene, encoding another key component of the HATS, displays the same response pattern. This revealed that both NRT2.1 and NRT3.1 are coordinately down-regulated by high external NO(3)(-) availability through a mechanism independent from that involving N metabolites. We show here that repression of both genes by high NO(3)(-) is specifically mediated by the NRT1.1 NO(3)(-) transporter. This mechanism warrants that either NRT1.1 or NRT2.1 is active in taking up NO(3)(-) in the presence of a reduced N source. Under low NO(3)(-)/high NH(4)(+) provision, NRT1.1-mediated repression of NRT2.1/NRT3.1 is relieved, which allows reactivation of the HATS. Analysis of atnrt2.1 mutants showed that this constitutes a crucial adaptive response against NH(4)(+) toxicity because NO(3)(-) taken up by the HATS in this situation prevents the detrimental effects of pure NH(4)(+) nutrition. It is thus hypothesized that NRT1.1-mediated regulation of NRT2.1/NRT3.1 is a mechanism aiming to satisfy a specific NO(3)(-) demand of the plant in relation to the various specific roles that NO(3)(-) plays, in addition to being a N source. A new model is proposed for regulation of the HATS, involving both feedback repression by N metabolites and NRT1.1-mediated repression by high NO(3)(-).  相似文献   

5.
The disruption of K(+) transport and accumulation is symptomatic of NH(4)(+) toxicity in plants. In this study, the influence of K(+) supply (0.02-40 mM) and nitrogen source (10 mM NH(4)(+) or NO(3)(-)) on root plasma membrane K(+) fluxes and cytosolic K(+) pools, plant growth, and whole-plant K(+) distribution in the NH(4)(+)-tolerant plant species rice (Oryza sativa L.) was examined. Using the radiotracer (42)K(+), tissue mineral analysis, and growth data, it is shown that rice is affected by NH(4)(+) toxicity under high-affinity K(+) transport conditions. Substantial recovery of growth was seen as [K(+)](ext) was increased from 0.02 mM to 0.1 mM, and, at 1.5 mM, growth was superior on NH(4)(+). Growth recovery at these concentrations was accompanied by greater influx of K(+) into root cells, translocation of K(+) to the shoot, and tissue K(+). Elevating the K(+) supply also resulted in a significant reduction of NH(4)(+) influx, as measured by (13)N radiotracing. In the low-affinity K(+) transport range, NH(4)(+) stimulated K(+) influx relative to NO(3)(-) controls. It is concluded that rice, despite its well-known tolerance to NH(4)(+), nevertheless displays considerable growth suppression and disruption of K(+) homeostasis under this N regime at low [K(+)](ext), but displays efficient recovery from NH(4)(+) inhibition, and indeed a stimulation of K(+) acquisition, when [K(+)](ext) is increased in the presence of NH(4)(+).  相似文献   

6.
Methylammonium and ammonium (MEP) permeases of Saccharomyces cerevisiae belong to a ubiquitous family of cytoplasmic membrane proteins that transport only ammonium (NH(4)(+) + NH(3)). Transport and accumulation of the ammonium analog [(14)C]methylammonium, a weak base, led to the proposal that members of this family were capable of energy-dependent concentration of the ammonium ion, NH(4)(+). In bacteria, however, ATP-dependent conversion of methylammonium to gamma-N-methylglutamine by glutamine synthetase precludes its use in assessing concentrative transport across the cytoplasmic membrane. We have confirmed that methylammonium is not metabolized in the yeast S. cerevisiae and have shown that it is little metabolized in the filamentous fungus Neurospora crassa. However, its accumulation depends on the energy-dependent acidification of vacuoles. A Deltavph1 mutant of S. cerevisiae and a Deltavma1 mutant, which lack vacuolar H(+)-ATPase activity, had large (fivefold or greater) defects in the accumulation of methylammonium, with little accompanying defect in the initial rate of transport. A vma-1 mutant of N. crassa largely metabolized methylammonium to methylglutamine. Thus, in fungi as in bacteria, subsequent energy-dependent utilization of methylammonium precludes its use in assessing active transport across the cytoplasmic membrane. The requirement for a proton gradient to sequester the charged species CH(3)NH(3)(+) in acidic vacuoles provides evidence that the substrate for MEP proteins is the uncharged species CH(3)NH(2). By inference, their natural substrate is NH(3), a gas. We postulate that MEP proteins facilitate diffusion of NH(3) across the cytoplasmic membrane and speculate that human Rhesus proteins, which lie in the same domain family as MEP proteins, facilitate diffusion of CO(2).  相似文献   

7.
There appears to be a flux of ammonium (NH(4)(+)/NH(3)) from neurons to glial cells in most nervous tissues. In bee retinal glial cells, NH(4)(+)/NH(3) uptake is at least partly by chloride-dependant transport of the ionic form NH(4)(+). Transmembrane transport of NH(4)(+) has been described previously on transporters on which NH(4)(+) replaces K(+), or, more rarely, Na(+) or H(+), but no transport system in animal cells has been shown to be selective for NH(4)(+) over these other ions. To see if the NH(4)(+)-Cl(-) cotransporter on bee retinal glial cells is selective for NH(4)(+) over K(+) we measured ammonium-induced changes in intracellular pH (pH(i)) in isolated bundles of glial cells using a fluorescent indicator. These changes in pH(i) result from transmembrane fluxes not only of NH(4)(+), but also of NH(3). To estimate transmembrane fluxes of NH(4)(+), it was necessary to measure several parameters. Intracellular pH buffering power was found to be 12 mM. Regulatory mechanisms tended to restore intracellular [H(+)] after its displacement with a time constant of 3 min. Membrane permeability to NH(3) was 13 microm s(-1). A numerical model was used to deduce the NH(4)(+) flux through the transporter that would account for the pH(i) changes induced by a 30-s application of ammonium. This flux saturated with increasing [NH(4)(+)](o); the relation was fitted with a Michaelis-Menten equation with K(m) approximately 7 mM. The inhibition of NH(4)(+) flux by extracellular K(+) appeared to be competitive, with an apparent K(i) of approximately 15 mM. A simple standard model of the transport process satisfactorily described the pH(i) changes caused by various experimental manipulations when the transporter bound NH(4)(+) with greater affinity than K(+). We conclude that this transporter is functionally selective for NH(4)(+) over K(+) and that the transporter molecule probably has a greater affinity for NH(4)(+) than for K(+).  相似文献   

8.
Ammonium is a central intermediate in the nitrogen metabolism of plants. We have previously shown that methyl jasmonate (MJ) not only increases the content of H(2)O(2), but also causes NH(4)(+) accumulation in rice leaves. More recently, H(2)O(2) is thought to constitute a general signal molecule participating in the recognition of and the response to stress factors. In this study, we examined the role of H(2)O(2) as a link between MJ and subsequent NH(4)(+) accumulation in detached rice leaves. MJ treatment resulted in an accumulation of NH(4)(+) in detached rice leaves, which was preceded by a decrease in the activity of glutamine synthetase (GS) and an increase in the specific activities of protease and phenylalanine ammonia-lyase (PAL). GS, PAL, and protease appear to be the enzymes responsible for the accumulation of NH(4)(+) in MJ-treated detached rice leaves. Dimethylthiourea (DMTU), a chemical trap for H(2)O(2), was observed to be effective in inhibiting MJ-induced NH(4)(+) accumulation in detached rice leaves. Scavengers of free radicals (sodium benzoate, SB, and glutathione, GSH), nitric oxide donor (N-tert-butyl-alpha-phenylnitrone, PBN), the inhibitors of NADPH oxidase (diphenyleneiodonium chloride, DPI, and imidazole, IMD), and inhibitors of phosphatidylinositol 3-kinase (wortmannin, WM, and LY 294002, LY), which have previously been shown to prevent MJ-induced H(2)O(2) production in detached rice leaves, inhibited MJ-induced NH(4)(+) accumulation. Similarly, changes in enzymes responsible for NH(4)(+) accumulation induced by MJ were observed to be inhibited by DMTU, SB, GSH, PBN DPI, IMD, WM, or LY. Seedlings of rice cultivar Taichung Native 1 (TN1) are jasmonic acid (JA)-sensitive and those of cultivar Tainung 67 (TNG67) are JA-insensitive. On treatment with JA, H(2)O(2) accumulated in the leaves of TN1 seedlings but not in the leaves of TNG67. Ethylene action inhibitor, silver thiosulfate, was observed to inhibit MJ- and abscisic acid-induced accumulation of NH(4)(+) and changes in enzymes responsible for NH(4)(+) accumulation in detached rice leaves, suggesting that the action of MJ and ABA is ethylene dependent.  相似文献   

9.
In the present study, impact of kinetin (KN; 10 and 100 μM) supplementation on growth, ammonium (NH(4)(+)) assimilation and antioxidant system in pea under hexavalent chromium toxicity (Cr VI; 50, 100 and 250 μM) was investigated. Chromium decreased growth, protein, and nitrogen, and activity of glutamine synthetase (GS) and glutamate synthase (GOGAT) while it increased NH(4)(+) content and activity of glutamate dehydrogenase (GDH). Kinetin at 100 μM decreased growth and NH(4)(+) assimilation, and together with Cr, it increased Cr toxicity. Chromium and 100 μM KN increased superoxide dismutase (SOD) and ascorbate peroxidase (APX) activities while decreasing activities of catalase (CAT), glutathione reductase (GR) and dehydroascorbate reductase (DHAR). Ascorbate and glutathione levels were decreased by Cr and 100 μM KN. In contrast, supplementation of 10 μM KN under Cr (VI) toxicity, protected NH(4)(+) assimilation and promoted growth of pea by increasing levels of some of the antioxidants i.e., CAT, GR, DHAR, ascorbate and glutathione. Results showed that 10 μM KN increases Cr tolerance while 100 μM KN exhibited opposite responses. These results could contribute to an understanding of the mechanisms of KN-mediated dual influence on metal tolerance in crop plants.  相似文献   

10.
Renal ammonium (NH3 + NH4+) transport is a key process for body acid-base balance. It is well known that several ionic transport systems allow NH4+ transmembrane translocation without high specificity NH4+, but it is still debated whether NH3, and more generally, gas, may be transported by transmembrane proteins. The human Rh glycoproteins have been proposed to mediate ammonium transport. Transport of NH4+ and/or NH3 by the epithelial Rh C glycoprotein (RhCG) may be of physiological importance in renal ammonium excretion because RhCG is mainly expressed in the distal nephron. However, RhCG function is not yet established. In the present study, we search for ammonium transport by RhCG. RhCG function was investigated by electrophysiological approaches in RhCG-expressing Xenopus laevis oocytes. In the submillimolar concentration range, NH4Cl exposure induced inward currents (IAM) in voltage-clamped RhCG-expressing cells, but not in control cells. At physiological extracellular pH (pHo) = 7.5, the amplitude of IAM increased with NH4Cl concentration and membrane hyperpolarization. The amplitude of IAM was independent of external Na+ or K+ concentrations but was enhanced by alkaline pHo and decreased by acid pHo. The apparent affinity of RhCG for NH4+ was affected by NH3 concentration and by changing pHo, whereas the apparent affinity for NH3 was unchanged by pHo, consistent with direct NH3 involvement in RhCG function. The enhancement of methylammonium-induced current by NH3 further supported this conclusion. Exposure to 500 microm NH4Cl induced a biphasic intracellular pH change in RhCG-expressing oocytes, consistent with both NH3 and NH4+ enhanced influx. Our results support the hypothesis of a specific role for RhCG in NH3 and NH4+ transport.  相似文献   

11.
Previous studies of the mitochondrial carbonic anhydrase (mtCA) of Chlamydomonas reinhardtii showed that expression of the two genes encoding this enzyme activity required photosynthetically active radiation and a low CO(2) concentration. These studies suggested that the mtCA was involved in the inorganic carbon-concentrating mechanism. We have now shown that the expression of the mtCA at low CO(2) concentrations decreases when the external NH(4)(+) concentration decreases, to the point of being undetectable when NH(4)(+) supply restricts the rate of photoautotrophic growth. The expression of mtCA can also be induced at supra-atmospheric partial pressure of CO(2) by increasing the NH(4)(+) concentration in the growth medium. Conditions that favor mtCA expression usually also stimulate anaplerosis. We therefore propose that the mtCA is involved in supplying HCO(3)(-) for anaplerotic assimilation catalyzed by phosphoenolpyruvate carboxylase, which provides C skeletons for N assimilation under some circumstances.  相似文献   

12.
The nature of the ammonium import into prokaryotes has been controversial. A systems biological approach makes us hypothesize that AmtB-mediated import must be active for intracellular NH(4)(+) concentrations to sustain growth. Revisiting experimental evidence, we find the permeability assays reporting passive NH(3) import inconclusive. As an inevitable consequence of the proposed NH(4)(+) transport, outward permeation of NH(3) constitutes a futile cycle. We hypothesize that the regulatory protein GlnK is required to fine-tune the active transport of ammonium in order to limit futile cycling whilst enabling an intracellular ammonium level sufficient for the cell's nitrogen requirements.  相似文献   

13.
14.
We have shown previously that NH(4)(+) binding to the external pore of a Kir2.1 channel induces channel inactivation possibly through conformational changes. In this study, we performed further biophysical analyses of the NH(4)(+)-induced inactivation modeled by a refined kinetic scheme. Also, we investigated the conformational change hypothesis by examining whether the chemical modification of single-cysteine substitution of amino acids located at the internal pore alters the kinetics of the NH(4)(+)-induced inactivation. In addition, we examined whether the mutation of amino acids located at various parts of a Kir2.1 channel influences the NH(4)(+)-induced inactivation. Kir2.1 channels were expressed in Xenopus oocytes and studied using patch-clamp techniques. The gating of the NH(4)(+)-induced inactivation was affected by mutation of several amino acids located at various regions of the Kir2.1 channel. These results suggest that amino acids from different parts of a Kir2.1 channel are involved in the channel closure. Furthermore, internal chemical modification of several cysteine mutants resulted in the block of inward currents and changes in the on and off rate for the NH(4)(+)-induced inactivation, suggesting that the internal pore mouth is involved in the closure of a Kir2.1 channel. Taken together these results provide new evidence for conformational changes affecting the NH(4)(+)-induced inactivation in the Kir2.1 channel.  相似文献   

15.
Function of a separate NH3-pore in Aquaporin TIP2;2 from wheat   总被引:1,自引:0,他引:1  
Bertl A  Kaldenhoff R 《FEBS letters》2007,581(28):5413-5417
Functional analysis of heterologously expressed TaTIP2;2 by means of stopped-flow spectrometric studies provide evidence for water and ammonia conductivity. A series of experiments under increasing pH indicate that the gaseous NH(3), rather than the ammonium ion NH(4)(+) was transported. Results from inhibitor studies strongly suggest that NH(3) is not transported in file with water, but through a separate pathway, which could be supplied by the 5th central pore in a tetramer conformation.  相似文献   

16.
Both Cs(+) and NH(4)(+) alter neuronal Cl(-) homeostasis, yet the mechanisms have not been clearly elucidated. We hypothesized that these two cations altered the operation of the neuronal K(+)-Cl(-) cotransporter (KCC2). Using exogenously expressed KCC2 protein, we first examined the interaction of cations at the transport site of KCC2 by monitoring furosemide-sensitive (86)Rb(+) influx as a function of external Rb(+) concentration at different fixed external cation concentrations (Na(+), Li(+), K(+), Cs(+), and NH(4)(+)). Neither Na(+) nor Li(+) affected furosemide-sensitive (86)Rb(+) influx, indicating their inability to interact at the cation translocation site of KCC2. As expected for an enzyme that accepts Rb(+) and K(+) as alternate substrates, K(+) was a competitive inhibitor of Rb(+) transport by KCC2. Like K(+), both Cs(+) and NH(4)(+) behaved as competitive inhibitors of Rb(+) transport by KCC2, indicating their potential as transport substrates. Using ion chromatography to measure unidirectional Rb(+) and Cs(+) influxes, we determined that although KCC2 was capable of transporting Cs(+), it did so with a lower apparent affinity and maximal velocity compared with Rb(+). To assess NH(4)(+) transport by KCC2, we monitored intracellular pH (pH(i)) with a pH-sensitive fluorescent dye after an NH(4)(+)-induced alkaline load. Cells expressing KCC2 protein recovered pH(i) much more rapidly than untransfected cells, indicating that KCC2 can mediate net NH(4)(+) uptake. Consistent with KCC2-mediated NH(4)(+) transport, pH(i) recovery in KCC2-expressing cells could be inhibited by furosemide (200 microM) or removal of external [Cl(-)]. Thermodynamic and kinetic considerations of KCC2 operating in alternate transport modes can explain altered neuronal Cl(-) homeostasis in the presence of Cs(+) and NH(4)(+).  相似文献   

17.
Catasetum fimbriatum is an epiphytic orchid from South America that has been used for 15 years as a model plant for metabolic and developmental studies in our laboratory. In this work, C. fimbriatum plants were aseptically grown with 6 mol m(-3) of either glutamine or inorganic nitrogen forms (NO(3)(-):NH(4)(+) ratios). The highest biomass accumulation was found in plants supplied with glutamine; no significant difference was observed in plants incubated in the presence of inorganic nitrogen sources. Nitrogen assimilation was limited in the presence NO(3)(-) as a sole nitrogen source. C. fimbriatum did not accumulate NO(3)(-) and very low rates of in vivo nitrate reductase activity were observed. Most nitrate reductase activity (70%) was detected in the 2 cm apical roots. Nitrate-treated plants exhibited relatively lower amounts of free amino-N, chlorophyll and free NH(4)(+) contents and higher soluble sugar contents than the NH(4)(+)-treated plants. While shoot glutamine synthetase activity was only slightly affected by nitrogen sources, root glutamine synthetase activity was not modified by any nitrogen form. Glutamate dehydrogenase-NADH activity in shoot tissues was not influenced by any nitrogen source. However, the glutamate dehydrogenase-NADH activity in roots was enhanced when NH(4)(+) tissue contents was augmented by increasing NH(4)(+) in the medium and by the presence of glutamine. Our results strongly suggest that organic nitrogen and NH(4)(+) are probably the most important nitrogen sources to C. fimbriatum plants.  相似文献   

18.
Luzhkov VB  Almlöf M  Nervall M  Aqvist J 《Biochemistry》2006,45(36):10807-10814
We report results from microscopic molecular dynamics and free energy perturbation simulations of substrate binding and selectivity for the Escherichia coli high-affinity ammonium transporter AmtB. The simulation system consists of the protein embedded in a model membrane/water surrounding. The calculated absolute binding free energies for the external NH(4)(+) ions are between -5.8 and -7.3 kcal/mol and are in close agreement with experimental data. The apparent pK(a) of the bound NH(4)(+) increases by more than 4 units, indicating a preference for binding ammonium ion and not neutral ammonia. The external binding site is also selective for NH(4)(+) toward monovalent metal cations by 2.4-4.4 kcal/mol. The externally bound NH(4)(+) shows strong electrostatic interactions with the proximal buried Asp160, stabilized in the anionic form, whereas the interactions with the aromatic rings of Phe107 and Trp148, lining the binding cavity, are less pronounced. Simulated mutation of the highly conserved Asp160 to Asn reduces the pK(a) of the bound ammonium ion by approximately 7 units and causes loss of its binding. The calculations further predict that the substrate affinity of E. coli AmtB depends on the ionization state of external histidines. The computed free energies of hypothetical intermediate states related to transfer of NH(3), NH(4)(+), or H(2)O from the external binding site to the first position inside the internal channel pore favor permeation of the neutral species through the channel interior. However, the predicted change in the apparent pK(a) of NH(4)(+) upon translocation from the external site, Am1, to the first internal site, Am2, indicates that ammonium ion becomes deprotonated only when it enters the channel interior.  相似文献   

19.
Ammonia is an abundant fermentation product in the forestomachs of ruminants and the intestine of other species. Uptake as NH3 or NH4+ should modulate cytosolic pH and sodium-proton exchange via Na+/H+ exchanger (NHE). Transport rates of Na+, NH4+, and NH3 across the isolated rumen epithelium were studied at various luminal ammonia concentrations and pH values using the Ussing chamber method. The patch-clamp technique was used to identify an uptake route for NH4+. The data show that luminal ammonia inhibits electroneutral Na transport at pH 7.4 and abolishes it at 30 mM (P < 0.05). In contrast, at pH 6.4, ammonia stimulates Na transport (P < 0.05). Flux data reveal that at pH 6.4, approximately 70% of ammonia is absorbed in the form of NH4+, whereas at pH 7.4, uptake of NH3 exceeds that of NH4+ by a factor of approximately four. The patch-clamp data show a quinidine-sensitive permeability for NH4+ and K+ but not Na+. Conductance was 135 +/- 12 pS in symmetrical NH(4)Cl solution (130 mM). Permeability was modulated by the concentration of permeant ions, with P(K) > P(NH4) at high and P(NH4) > P(K) at lower external concentrations. Joint application of both ions led to anomalous mole fraction effects. In conclusion, the luminal pH determines the predominant form of ammonia absorption from the rumen and the effect of ammonia on electroneutral Na transport. Protons that enter the cytosol through potassium channels in the form of NH4+ stimulate and nonionic diffusion of NH3 blocks NHE, thus contributing to sodium transport and regulation of pH.  相似文献   

20.
Normal human colonic luminal (NH(4)(+)) concentration ([NH(4)(+)]) ranges from approximately 10 to 100 mM. However, the nature of the effects of NH(4)(+) on transport, as well as NH(4)(+) transport itself, in colonic epithelium is poorly understood. We elucidate here the effects of apical NH(4)(+) on cAMP-stimulated Cl(-) secretion in colonic T84 cells. In HEPES-buffered solutions, 10 mM apical NH(4)(+) had no significant effect on cAMP-stimulated current. In contrast, 10 mM apical NH(4)(+) reduced current within 5 min to 61 +/- 4% in the presence of 25 mM HCO(3)(-). Current inhibition was not simply due to an increase in extracellular K(+)-like cations, in that the current magnitude was 95 +/- 5% with 10 mM apical K(+) and 46 +/- 3% with 10 mM apical NH(4)(+) relative to that with 5 mM apical K(+). We previously demonstrated that inhibition of Cl(-) secretion by basolateral NH(4)(+) occurs in HCO(3)(-)-free conditions and exhibits anomalous mole fraction behavior. In contrast, apical NH(4)(+) inhibition of current in HCO(3)(-) buffer did not show anomalous mole fraction behavior and followed the absolute [NH(4)(+)] in K(+)-NH(4)(+) mixtures, where K(+) concentration + [NH(4)(+)] = 10 mM. The apical NH(4)(+) inhibitory effect was not prevented by 100 microM methazolamide, suggesting no role for apical carbonic anhydrase. However, apical NH(4)(+) inhibition of current was prevented by 10 min of pretreatment of the apical surface with 500 microM DIDS, 100 microM 4,4'-dinitrostilbene-2,2'-disulfonic acid (DNDS), or 25 microM niflumic acid, suggesting a role for NH(4)(+) action through an apical anion exchanger. mRNA and protein for the apical anion exchangers SLC26A3 [downregulated in adenoma (DRA)] and SLC26A6 [putative anion transporter (PAT1)] were detected in T84 cells by RT-PCR and Northern and Western blots. DRA and PAT1 appear to associate with CFTR in the apical membrane. We conclude that the HCO(3)(-) dependence of apical NH(4)(+) inhibition of secretion is due to the action of NH(4)(+) on an apical anion exchanger.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号